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The emerging role of sacubitril/
valsartan in pulmonary
hypertension with heart failure
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Min Tao, Yipeng Lu, Wei Wang, Hui Qian and Zhenglu Shang*

Department of Cardiology, Wuxi Huishan District People’s Hospital, Wuxi, China

Pulmonary hypertension due to left heart disease (PH-LHD) represents
approximately 65%–80% of all patients with PH. The progression, prognosis, and
mortality of individuals with left heart failure (LHF) are significantly influenced by
PH and right ventricular (RV) dysfunction. Consequently, cardiologists should
devote ample attention to the interplay between HF and PH. Patients with PH
and HF may not receive optimal benefits from the therapeutic effects of
prostaglandins, endothelin receptor antagonists, or phosphodiesterase inhibitors,
which are specific drugs for pulmonary arterial hypertension (PAH). Sacubitril/
valsartan, the angiotensin receptor II blocker-neprilysin inhibitor (ARNI), was
recommended as the first-line therapy for patients with heart failure with
reduced ejection fraction (HFrEF) by the 2021 European Society of Cardiology
Guidelines. Although ARNI is effective in treating left ventricular (LV)
enlargement and lower ejection fraction, its efficacy in treating individuals with
PH and HF remains underexplored. Considering its vasodilatory effect at the
pre-capillary level and a natriuretic drainage role at the post-capillary level, ARNI
is believed to have a broad range of potential applications in treating PH-LHD.
This review discusses the fundamental pathophysiological connections between
PH and HF, emphasizing the latest research and potential benefits of ARNI in PH
with various types of LHF and RV dysfunction.
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1. Introduction

Exercise intolerance and a loss of compensatory mechanisms are prevalent in advanced

pulmonary hypertension (PH). In patients with advanced left heart failure (LHF), PH may

persist for an extended period and serve as a marker of poor prognosis. Small pulmonary

artery remodeling results in increased pulmonary vascular resistance (PVR) and

pulmonary artery pressure (PAP). The right ventricle is particularly susceptible to

pressure overload, and it can no longer maintain cardiac output through hypertrophy and

increased contractility (1, 2). Over the past decade, PH and right ventricular (RV)

dysfunction have attracted significant interest in LHF (3, 4). However, the effective

treatment for these complex diseases remains elusive, necessitating further research into

prospective medications.

Initially, activation of the renin-angiotensin-aldosterone system (RAAS) contributes to

increased blood pressure and cardiac contractility, but it later exacerbates HF due to fluid

retention. Overactivation of RAAS also promotes pulmonary vascular and RV remodeling

by stimulating cell proliferation, hypertrophy, and vasoconstriction (5). Pulmonary
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vascular remodeling is mitigated by treatment with angiotensin

receptor antagonists (ARBs) (6). Angiotensin-converting enzyme

inhibitor (ACEI) or ARB treatment demonstrated favorable safety

and tolerability profiles in patients with PAH, and these

individuals also experienced lower rates of HF re-hospitalization

(7). To counteract the negative consequences of aberrant RAAS

activation, the body releases a group of vasoactive peptides

known as natriuretic peptides (NP) (8). Atrial NP (ANP), B-type

NP (BNP), and C-type NP (CNP) have been found to protect

against PH progression. ANP and BNP infusion improved

human lung hemodynamics, while CNP improved PH in

experimental rats (9, 10). ANP and BNP promote vasodilation

and prevent vascular remodeling, counteracting the deleterious

effects of RASS on the heart. They also exert anti-proliferative

effects on pulmonary vascular smooth muscle cells (11, 12).

Despite these advancements in mitigating PH progression with

HF, single drug preparations have not yielded more promising

therapeutic effects on this condition.

Sacubitril/valsartan, known as ARNI, rectifies the imbalance

between the RAAS and NP systems, exhibiting significant efficacy

in LHF (13). Through simultaneous inhibition of neprilysin and

the angiotensin AT1 receptor, ARNI suppresses pro-fibrotic/pro-

hypertrophic mechanisms while promoting anti-fibrotic/anti-

hypertrophic mechanisms (14). Prostanoids, endothelin receptor

antagonists, or Ca2+ channel blockers have been used to treat

PH, but the 5-year survival rate remains below 60% (15).

Echocardiographic parameters, including LVEF, systolic PAP, and

cardiac valvular insufficiency, consistently improved after ARNI

therapy (16). ARNI exerts anti-toxicity and vasodilation effects

by enhancing the cGMP signaling pathway and inhibiting NP

degradation. Furthermore, ARNI remains effective when other

vasodilators fail to reverse PH. By increasing the pulmonary

artery pulsatility index and decreasing PVR, ARNI enhanced RV-

PA coupling, cardiac index, and left ventricular (LV) function

(17). This article focuses on the latest developments of ARNI in

the treatment of PH, particularly when associated with LHF and

RV dysfunction, as this is a novel and underexplored area.
2. Pharmacological mechanism of
sacubitril/valsartan

Coronary artery disease and hypertension contribute to LV

systolic dysfunction, instigating sustained pathological activation

of the RAAS and SNS (8). NPs are released to counterbalance

atrial and ventricular dilatation in response to RAAS and SNS

functional impairment. ANP, BNP, and CNP possess natriuretic,

diuretic, vasodilatory, antifibrotic, and antihypertrophic

properties (18). However, their role in HF is overshadowed by

the vasoconstriction and sodium-retaining capacity of RAAS.

NP cleavage is primarily catalyzed by the neutral

endopeptidase neprilysin (NEP). NEP inhibition elevates

bradykinin, NP, and adrenomedullin levels, mitigating the

neurohormonal activation that leads to sodium retention,

vasoconstriction, and cardiac remodeling (19). NEP is not solely

involved in NP catabolism but also participates in the
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degradation of other bioactive peptides, such as adrenomedullin,

endothelin, substance P, and angiotensin II (Ang II). Although

NEP inhibition alone increases NP levels, this effect might be

counteracted by a concomitant rise in Ang II and other peptides

(20). Although the diuretic and natriuretic effects of NEP

inhibitors are not linked to harmful RAAS activation, oral

administration of the precursor drug candoxatril does not result

in a sustained antihypertensive effect. The absence of a blood-

pressure-lowering effect from NEP inhibitors is secondary to

NEP catabolism inhibition, which raises Ang II and endothelin 1

(ET-1) levels, neutralizing the enhanced vasodilatory effect of

NEP inhibition (21, 22).

Sacubitril/valsartan is a first-in-class ARNI composed of

valsartan’s molecular portion and the NEP inhibitor prodrug,

sacubitril. In the Prospective Comparison of ARNI with ACEI to

Determine Impact on Global Mortality and Morbidity in Heart

Failure (PARADIGM-HF), it was observed that ARNI increased

BNP and cGMP levels through NEP inhibition (23). Blockade of

the type 1 Ang II receptor (AT1R) inactivated multiple tyrosine-

phosphorylated proteins responsible for cell proliferation,

hypertrophy, and fibrosis, including the JAK kinase family (JAK2

and Tyk2) and phosphorylated kinase-C (PKC). Elevated NP

levels also produced favorable biological effects via the soluble

guanosine cyclase (sGC)/cGMP pathway (24, 25). The enzyme

PKG, which mediates titin phosphorylation, experienced further

enhancement by cGMP. Patients with heart failure with

preserved ejection fraction [HFpEF, defined as left ventricular

ejection fraction (LVEF)≥ 50%] exhibited a high ratio of stiff

(N2B) isoforms to compliant (N2BA) isoforms. Phosphorylation

of N2B isoforms by PKG reduced resting stiffness of

cardiomyocytes (14). Furthermore, during a follow-up period

lasting 12 weeks after discharge, the levels of NT-proBNP and

the risk of endpoint events such as cardiovascular death and

rehospitalization for HF were reduced by an average of 30% in

patients with HF who continued taking ARNI compared to those

who switched to enalapril (26). Matrix metalloproteinase

(MMP)-9 levels, along with its specific inhibitor, tissue inhibitor

of metalloproteinase levels (TIMP)-1, and the levels of

procollagen amino-terminal prepropeptide type I (PINP) and

type III (PIIINP), were reduced following ARNI treatment,

indicating a decrease in collagen fibers (27).

MicroRNAs (miRs) play a role in regulating cardiac apoptosis,

angiogenesis, fibrosis, and myocardial hypertrophy, leading to

molecular and structural adaptive changes that could impact HF

pathology (28). In a rodent model of chronic myocardial

infarction, ARNI treatment led to the downregulation of miR-

181a expression, which in turn attenuated myocardial fibrosis

and pathological hypertrophy (29). After one year of follow-up in

cardiac resynchronization therapy with a defibrillator (CRTd)

non-responders, patients treated with ARNI exhibited elevated

levels of miR-18 and miR-145, and decreased levels of miR-181.

Indirect evidence of the advantageous epigenetic effects of ARNI

in high-risk failing patients is demonstrated by the direct

correlation between plasma miR-18 and miR-145 fold increases

with EF improvements, and the inverse correlation with

NT-proBNP (30).
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3. The RAAS and NPs in PH

When the circulating blood volume (due to blood loss or

dehydration) or cardiac output decreases, juxtaglomerular cells

situated on the lateral endothelium of the afferent arterioles

release renin into circulation. The primary function of renin is to

hydrolyze angiotensinogen, secreted from the liver, to produce

angiotensin I (Ang I). In pulmonary artery endothelial cells, ACE

cleaves Ang I to Ang II by removing two C-terminal residues.

Ang II upregulates vasopressin released from the central nervous

system and induces contraction of vascular smooth muscle cells

in the pulmonary circulation, as well as in systemic arterial and

venous circuits (31).

Indeed, the RAAS is more complex than the classical pathway.

Ang II may be produced by chymotrypsin found in mast cells and

skeletal muscle or by cathepsin G present in inflammatory cells

(32). The binding of Ang II to AT1 receptors causes

vasoconstriction by upregulating ET-1 or decreasing NO

bioavailability. Stimulation of AT1 receptors leads to the

migration and proliferation of vascular smooth muscle cells, as

well as cardiomyocyte hypertrophy (33). ACE2, a homolog of

ACE, competes with ACE1 to convert Ang II to Ang 1–7 and

Ang 1–9. The ACE2/Ang1–7/Mas receptor (MasR) axis is known

to provide cardioprotective effects. In type-2 diabetic (T2DM)

patients with poor glycemic control, myocardial levels of both

ACE2 and glycosylated ACE2 were elevated, while the expression

of Ang 1–9, Ang 1–7, and MasR was reduced, indicating

impaired ACE2 activity and the anti-remodeling effects of renin-

angiotensin system (RAS) suppression. High levels of myocardial

fibrosis were subsequently observed in these patients and in

T2DM explanted hearts (34, 35). Ang (1–7) can be produced not

only by cleaving a carboxylate-terminal residue from Ang II via

the carboxypeptidase ACE2, but also directly from Ang I by NP

and prolyl-carboxypeptidase. Ang (1–7) binding to the G

protein-coupled MasR counteracts Ang II to produce

vasodilatory effects without stimulating aldosterone secretion (36,

37). Plasma renin activity, Ang I, and Ang II levels were

significantly elevated in patients with PAH, which were positively

related to disease deterioration and markedly increased the risk

of death or lung transplantation. The arterial hypertension group

of rats receiving Ang II infusion exhibited atrial and perivascular

fibrosis in the aorta and pulmonary arteries, with increased AT1

receptor binding in the great vessels but unchanged atria. This

suggests that these responses were not related to ventricular wall

stress but to RAAS hormonal effects (38). In line with this,

RAAS promoted the proliferation of pulmonary artery smooth

muscle cells through increased AT1 receptor binding in patients

with idiopathic PAH (iPAH) (39). In a piglet overflow model,

losartan resulted in a 51% and 35% reduction in shunt-induced

PVR and medial thickness, respectively. Decreased PVR was

accompanied by a sustained increase in ET-1, ETB receptor, and

Ang1 expression, suggesting that Ang II antagonists and ET

receptor blockers could be combined in early PAH (40). Ang II

predominantly binds to angiotensin type 1 receptor (AGTR1) to

promote vascular smooth muscle contraction. Chung WK et al.
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discovered a correlation between AGTR1 and age at iPAH

diagnosis, while no such correlation was found with AGT, ACE,

CMA1, or CYP11B2. This finding suggests that losartan may

play a role in delaying PAH disease progression (41).

Pulmonary vascular remodeling is characterized by hyperplasia

of the media and neo-muscularization of the subendothelial layer,

leading to vasodilatory dysfunction, arterial lumen narrowing, and

elevated PAP. ANP and BNP have been implicated in the

pathogenesis of myocardial hypertrophy and fibrosis (42). BNP,

though primarily triggered by cardiomyocyte stretch, is

upregulated in PH (43). By activating the particulate guanylyl

cyclase-linked receptor and natriuretic peptide receptor-A (NPR-

A), BNP traditionally mediates vasodilatory effects to increase

intracellular cGMP levels (44). (Figure 1) Wijeyaratne CN et al.

found that BNP also inhibits vascular smooth muscle

proliferation and counteracts the RAAS, thereby attenuating

pulmonary vascular remodeling and inhibiting the synthesis of

growth factors such as endothelin (45). Infusion of the human

BNP nesiritide decreased right atrial pressure, mean PAP, and

post-pulmonary capillary wedge pressure (PCWP) in patients

with HF and PH, thus increasing cardiac output (46). The

vasodilator nitric oxide (NOx) levels were reduced in patients

with PH, but the expression of NOx receptors and ET-1 was

increased. Nesiritide significantly increased NOx and cGMP

levels to promote vasodilation in these patients (47). Nesiritide

may have therapeutic potential to slow the progression of RV

dysfunction. Nesiritide rapidly reduced PCWP, and increased

stroke volume and cardiac output after administration for 3 h,

with these effects persisting for at least 24 h (48). Although BNP

alone had no significant effect on pulmonary hemodynamics, it

enhanced the diastolic effect of the phosphodiesterase-5 inhibitor

sildenafil on the pulmonary vasculature (44).
4. Sacubitril/valsartan in PH with
different types of LHF

The 5th World Symposium on PH proposed classifying PH

into five categories: (1) PH due to pulmonary vascular disease;

(2) PH due to LHD; (3) PH due to lung disease or hypoxia; (4)

PH due to chronic thromboembolic disease; (5) a miscellaneous

collection of PH syndromes caused by a variety of disorders,

including hemolytic anemias and sarcoidosis (49).
4.1. Characterization of PH in HFrEF and
HFpEF

LHD is one of the most common causes of PH and is typically

classified as post-capillary or group 2 PH. Hemodynamic

parameters that predict survival and prognosis in patients with

HF include pulmonary artery wedge pressure (PAWP), mean

PAP and PVR, and PA compliance/capacitance (50, 51). In post-

capillary PH, an elevation of PAWP leads to a corresponding

increase in mean PAP to maintain an average transpulmonary
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FIGURE 1

RAAS and NP mechanism in PH. In the pulmonary circulation, activated RAAS induce smooth muscle cell contraction. Angiotensin-(1–7) counteracts
angiotensin II to produce vasodilatory effects. BNP released from heart ventricle counteracts RAAS to attenuate vasoconstriction, hypertrophy, fibrosis
and other deleterious effects. RAAS, renin-angiotensin-aldosterone system; NP, natriuretic peptide; PH, pulmonary hypertension; PAEC, pulmonary
artery endothelial cells; PASMC, pulmonary artery smooth muscle cell; Ang I, angiotensin I; Ang II, angiotensin II; Ang-(1–7), angiotensin-(1–7); ACE,
angiotensin-converting enzyme; BNP, B-type natriuretic peptide; NPR-A, natriuretic peptide receptor-A; GTP, guanosine triphosphate; cGMP, cyclic
guanosine monophosphate.
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pressure gradient (TPG =mPAP—PAWP) of less than 12 mm Hg

(52). However, TPG is influenced by volume loading and cardiac

function, which does not predict prognosis in PH-LHD. The

diastolic pressure gradient (DPG), determined by the difference

between diastolic PAP and PAWP, is thought to be less

dependent on stroke volume and loading conditions. Intimal

hypertrophy, intima and outer membrane fibrosis, and vascular

occlusion were observed in patients with pre- and post-capillary

(Cpc) -PH and with DPG≥ 7 mmHg, suggesting that decreased

pulmonary vascular compliance may also cause small vessel

proliferative vasculopathy (53, 54). However, patients with PH-

LDH and with DPG≥ 7 mm Hg had a lower survival rate than

those with DPG < 7 mmHg, and DPG was only minimally

predictive of idiopathic cardiomyopathy (55). By applying the

support vector machine–recursive feature elimination algorithm,

our group found that EPB42 and IFIT2 were highly expressed in

PAH patients, while FOSB and SNF1LK showed opposite trends.

These four potential genes may distinguish PH patients from

healthy individuals and can be used for early diagnosis of PH (56).

Up to 60% of patients with severe LV systolic insufficiency and

70% of patients with pure LV diastolic insufficiency may develop

PH (57, 58). There were also differences between PH-HFrEF
Frontiers in Cardiovascular Medicine 04
[heart failure with reduced ejection fraction, defined as left

ventricular ejection fraction (LVEF) < 40%] and PH-HFpEF. In a

report combining retrospective and prospective data, using DPG

> 7 mmHg as a diagnostic criterion, the Cpc-PH values for

HFpEF and HFrEF were 22.6% and 18.8%, respectively (59). For

similar DPG cutoff values, the Cpc-PH rate observed in

PH-HFpEF was more than two times higher than that of

PH-HFrEF (60). However, patients with stage D HFrEF may also

have a Cpc-PH-LHD phenotype, with specific manifestations of

mean PAP > 25 mm Hg, PCWP > 15 mm Hg, DPG > 7 mm Hg,

and PVR > 3 WU (61). In HFrEF and HFpEF, the initiating

factor for PH is impaired LV diastolic and filling function, which

allows elevated left atrial pressure to reach the right heart

eventually. The type of LV cardiomyocyte hypertrophy and the

amount of reactive and alternative fibrosis well distinguished

between HFpEF and HFrEF (62). HFrEF is more prevalent in

conditions such as ischemic cardiomyopathy, dilated

cardiomyopathy, and secondary mitral valve insufficiency. The

primary mechanisms of HFrEF formation are cardiomyocyte

elongation and loss of LV compliance. Impaired left atrial

kinetics form the basis of PH elevation. HFrEF predominantly

presents with increased left atrial and eccentric remodeling as a
frontiersin.org
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TABLE 1 Effects of sacubitril/valsartan on PH in patients with HFrEF and
HFpEF.

Type of
experiment

Type
of HF

Results Reference

Retrospective cohort
study

HFrEF Improvement of LV
reverse remodeling
Reduction of PASP

M.G. Moon,
et al. (2021)

HFrEF Improvement of PAP and
LA diameter (women >
men)

M. Landolfo, F,
et al. (2020)

Retrospective case-
series

HFrEF A rapid decrease in PAP
after switching to
sacubitril/valsartan

J.S. Tran, et al.
(2021)

HFpEF Reduction of PAP and Burgdorf C, et al.

Xu et al. 10.3389/fcvm.2023.1125014
result of severe mitral regurgitation. Notably, in patients with

HFrEF and LV dilatation, functional mitral regurgitation is

common and may be a potentially significant cause of PH. In

these patients, mitral valve repair treatment has been shown to

significantly improve pulmonary hemodynamics, including

reductions in mean PAP and PAWP (63, 64). Patients with

hypertension, obesity, and diabetes mellitus are susceptible to

HFpEF, which leads to LV centripetal hypertrophy and increased

diastolic stiffness. Even during the early stages of HFpEF,

unfavorable diastolic ventricular interactions have been observed

during exercise, serving as the primary mechanism of increased

PAWP in the obese phenotype (65).

mean PCWP
Improvement of NYHA
function

(2021)

Prospective
observational study

HFrEF Reduction of LV end-
systolic volume and
systolic PAP

M.V. Polito,
et al. (2020)

Cross-sectional,
retrospective, and
single center study

HFrEF Reduction of PAS
Improvement of LV
remodeling, RV function,
and exercise tolerance

Yenerçağ M,
et al. (2021)

Case report HFrEF Improvement of LV
systolic function
Reduction of PAH

Gulin D, et al.
(2019)

HFrEF, heart failure with reduced ejection fraction; HFpEF, heart failure with

preserved ejection fraction; LV, left ventricular; RV, right ventricular; PASP,

pulmonary artery systolic pressure; LA, left atrial; PAP, pulmonary arterial

pressure; PCWP, pulmonary capillary wedge pressure; PAS, pulmonary artery

stiffness; NYHA, New York heart association; PH, pulmonary hypertension; PAH,

pulmonary arterial hypertension.
4.2. Clinical application of sacubitril/
valsartan in PH with HFrEF and HFpEF

A retrospective cohort study discovered that patients with

HFrEF exhibited a significant decrease in pulmonary artery

systolic pressure (PASP) after six months of early initiation of

treatment with ARNI, which, in conjunction with LV reverse

remodeling, demonstrated a better prognosis. This effect of ARNI

does not appear to be dependent on other medications (66).

Real-world studies observed that ARNI reduced LV end-systolic

volume and systolic PAP in patients with HFrEF over six

months, even with a reduced furosemide dosage (67). Gender

differences were also observed in the effect of initial ARNI

treatment on PAP. At up to 12 months, LVEF, relative wall

thickness, and E/A did not show greater improvement in women

than in men, but left atrial diameter and PAP demonstrated

superiority in women (68). As a new first-line agent in HF,

patients with HFrEF taking ACEI or ARB experienced a rapid

decrease in PAP after switching to ARNI, which was equally

effective in patients with low TPG, relatively normal PVR, and

elevated TPG and (or) PVR (69).

Pulmonary artery stiffness (PAS) is a crucial determinant of

pulmonary sclerosis, characterized by increased vascular stiffness,

pulmonary artery endothelial dysfunction, and inflammation

(70). New non-invasive tools such as echocardiography and

cardiac magnetic resonance imaging (MRI) can quantify PAP

and vascular resistance (71). PAS was significantly elevated in

patients with HFrEF and was independently associated with the

severity of the New York Heart Association (NYHA) functional

class. A recent study demonstrated that after six months of

ARNI administration for patients with HFrEF, there was a

significant decrease in PAS calculated from the maximal

frequency shift and acceleration time of the pulmonary artery

flow trace. The study also showed a significant improvement in

LV remodeling, RV function, and exercise tolerance (72).

Prospective Comparison of ARNI With ARB Global Outcomes

in HF With Preserved Ejection Fraction (PARAGON-HF) is a

multicenter, international, randomized, double-blind, event-

driven trial designed to compare the long-term efficacy and

safety of ARNI vs. valsartan alone in patients with chronic HF

with LVEF >45%. The prevalence of PH in patients with HFpEF

was close to one-third, and elevated PASP might serve as an
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independent risk factor for predicting mortality in patients with

HFpEF in the trial (73). In HF hospitalized patients with

significantly elevated PASP, HFpEF-PH had a higher 5-year

mortality rate, possibly because several therapeutic regimens have

been used to reduce HFrEF mortality. A subset of patients with

HFpEF appeared to develop intrinsic pulmonary vascular disease,

evidenced by elevated mPAP and an increase in PVR and TPG

(74). Recent studies have shown that ARNI was equally effective

in patients with HFpEF-PH, and even the lowest dose of ARNI

significantly reduced PAP and mean PCWP in patients with

HFpEF. Not only were the hemodynamic parameters improved,

but the NYHA functional class was also enhanced by at least one

level (75) (Table 1).
5. Implications of sacubitril/valsartan
for PH with right ventricular
dysfunction

Elevated mean PAP is not sufficient to define pulmonary

vascular disease, as the causes for PH can vary, including

increased cardiac output, elevated pulmonary wedge pressure,

and hyperviscosity. At the 6th World Symposium on PH, it was

also recommended that DPG should be excluded from the

definition of Cpc-PH as it is not necessarily a poor prognostic

factor (76). Thus, it remains controversial whether DPG is

important to LHD-PH prognosis because the underlying diseases
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causing LV dysfunction might be different. Impairment of RV

contractile function and increased afterload due to PAH may

both contribute to RV dysfunction (77).

Chronic right heart failure (RHF) results from a long-term

increase in RV afterload that eventually overwhelms the

compensatory mechanisms of the RV. Epinephrine stimulates the

compensatory drive mechanisms that maintain systolic cardiac

function when RV afterload is increased but ultimately leads to

myocardial dysfunction if sustained over time (33). Furthermore,

the prolonged increase in adrenergic tone results in

downregulation of RV myocardial beta receptors and depletion

of norepinephrine reserves (78). A recent nuclear imaging study

of a small group of patients with PAH suggested these patients

might have significant sympathetic dysfunction. Compared with

the control group, the Cardiac (79) Iodine-metaiodobenzylguanidine

uptake showed reduced LVEF in the PH group. Heart-to-

mediastinum ratios and washout rate are associated with PVR,

right atrial pressure, tricuspid plane systolic excursion,

NT-proBNP, and peak VO2 (80). In a rabbit model of systemic

RV afterload induced by pulmonary artery band, ventricular-

ventricular interactions via TGF-b1, CTGF, and ET-1 signaling

pathways led not only to RV hypertrophy but also to secondary

LV fibrosis and RV apoptosis. However, Ang-II receptor blockade

with losartan ameliorated this interventricular crosstalk. Notably,

LV CTGF mRNA expression increased after pulmonary artery

band treatment, and losartan reduced pulmonary artery band-

induced CTGF mRNA expression (81). Since pulmonary RAAS

activity correlates with prognosis in patients with iPAH, it can be

hypothesized from this experiment that losartan may reverse RV

hypertrophy and reduce LV load by blocking pro-fibrotic signals.

Telmisartan has also been found to improve RV remodeling,

possibly through inhibition of MMP-2 and MMP-9 activity (82).

However, Borgdorff MA et al. discovered that losartan combined

with eplerenone did not improve RV systolic and diastolic

function, nor did it prevent myocardial fibrosis and RV

hypertrophy (83). The reason for this contrast may be the

physiological difference between LV and RV, or inhibition of

RAAS secondary to the blockade of AT1R on the pulmonary

vasculature, rather than the direct myocardial effect on RV.

Doppler cardiac ultrasound and cardiopulmonary exercise testing

revealed that losartan reduced PAP and right atrial diameter, and

improved patients’ exercise tolerance (84). Differences in the

physiology and complex pathologic structure of human and

rodent hearts may account for the issue. More robust evidence

from invasive tests (placement of cardiac catheters) is required to

measure accurate pressure on the right side of the heart.

RV dysfunction signifies HF progression and may even become

a worse prognostic factor (85). In a comparison with the

independent RV failure model induced by pulmonary trunk

banding, ARNI significantly reduced RV systolic pressure

(RVSP), RV hypertrophy, RV end-diastolic, and end-systolic

volumes in the group with PH. This suggests that ARNI may not

directly affect RV remodeling but produces right heart benefits

by improving pulmonary vascular function (86). RV hypertrophy

transmural reorientation of collagen and myofibers was also

weakened, indicating that the effect of ARNI on RV remodeling
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was manifested not only in hemodynamics but also in the

biomechanical properties of the RV at the tissue level (87). ARNI

alone may decrease PAP and RV remodeling through an increase

in endogenous NP. Clements RT et al. treated the PH rat model

induced by SU5146 and hypoxia with ARNI for six weeks and

found a decrease in RV pressure and fibrosis, accompanied by an

increase in pulmonary ANP, BNP, and cGMP levels (88).

Bosentan, a specific and competitive dual endothelin receptor

blocker with low molecular weight, is the first novel oral drug

approved for treating PAH. However, Bosentan acts primarily by

dilating the pulmonary vasculature without acting directly to

prevent RHF. In the monocrotaline-induced rat model of severe

PH, ARNI enhanced the effect of Bosentan on reducing PVR,

RV hypertrophy, and fibrosis. Cultured human pulmonary artery

smooth muscle cells derived from iPAH patients simultaneously

validated the anti-smooth muscle proliferative effect of ARNI

(89). Thus, ARNI may have a synergistic effect on traditional

drugs for treating PH. Loss of the NO pathway typically results

in endothelial dysfunction in PH patients, followed by

compensatory vasodilation mediated by the natriuretic peptide

clearance receptor (NPR-C). Activation of the NPR-C signaling

pathway may exhibit antiproliferative effects, while hypoxia-

induced downregulation of NPR-C expression may lead to

pulmonary vascular remodeling and elevated PAP (90).

Inflammatory infiltration represents another mechanism in the

pathogenesis of pulmonary vascular disease, with the accumulation

of extracellular matrix proteins such as fibronectin (91). In

monocrotaline-induced and hypoxia-induced rats, ARNI not only

increased the levels of ANP and CNP in circulating blood and

lung tissues but also displayed the same trend in the expression

of NPR-A, C, and cGMP. Circulating levels of IL-1β, IL-6, and

TNF-α subjected to ARNI intervention were reduced in both

animal models, and the anti-inflammatory effect may be related

to the ANP/NPR-A/cGMP pathway (92).
6. Effects and adverse events of
sacubitril/valsartan for PH in advanced
HF and chronic kidney disease

Long-term left atrial pressure leads to severe PH in patients

with advanced HFrEF, which might disqualify them for heart

transplantation. When conventional treatments like diuresis,

vasodilation therapy, and mechanical support demonstrated no

apparent efficacy, experimental ARNI produced better outcomes

than expected. After 24 h of ARNI administration, PASP and

PVR were significantly reduced, allowing four patients in real-

world cases to regain heart transplant candidacy, without

postoperative RHF or hypotension requiring vascular

compression support (17).

In addition to HFrEF, adult congenital heart disease patients

develop subpulmonary artery ventricular dysfunction and PH.

Lluri G et al. reported that four patients with cyanosis,

complicated coronary artery disease, and high PAP experienced a

significant improvement in symptoms after taking ARNI, and

their NYHA class III condition improved to class II (93). A case
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1125014
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 2 Effects of sacubitril/valsartan in patients with RV dysfunction.

RV measurements Type of
experiment

Results Reference

RV end-diastolic and end-
systolic volumes

Rat model of RV
failure

Reduced Andersen S, et al.
(2019)

RVSP Rat model of RV
failure

Reduced Andersen S, et al.
(2019)

Rat model of PH Reduced Clements RT,
et al. (2019)

RVDP Rat model of PH Reduced Clements RT,
et al. (2019)

RV maximum pressure Rat model of PH Reduced Sharifi KiaD,
et al. (2020)

RVFW thickness Rat model of PH Reduced Sharifi KiaD,
et al. (2020)

RV s’ Rat model of PH Improved Clements RT, et,
al. (2019)

Real-world study of
patients with HFrEF

Improved Correale M, et al.
(2020)

TAPSE Real-world study of
patients with HFrEF

Improved Correale M, et al.
(2020)

Real-world study of
patients with HFrEF

Improved Correale M, et al.
(2021)

RV-FW-LS Real-world study of
patients with HFrEF

Improved Correale M, et al.
(2021)

RV-4Ch-LS Real-world study of
patients with HFrEF

Improved Correale M, et al.
(2021)

RV, right ventricular; RVSP, right ventricular systolic pressure; PH, pulmonary

hypertension; RVDP, right ventricular end diastolic pressure; RVWF, right

ventricular free wall; RV S’, RV DTI-derived tricuspid lateral annular systolic

velocity wave; HFrEF, heart failure with reduced ejection fraction; TAPSE,

tricuspid annular plane systolic excursion; RV-FW-LS, peak longitudinal strain of

RV free wall; RV-4Ch-LS, RV four-chamber strain.
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report observed that one patient developed reduced LVEF and

RVSP capacity with PH in the second year after heart

transplantation. After practical application of ARNI, this patient

exhibited increased activity endurance and improved LV systolic

function (LVEF up from 29% to 41%) with a reduction in PAH

(RVSP down from 65% to 50%) (94). Even in patients with

refractory HFrEF combined with PH, ARNI has shown

surprising efficacy. The gradually increasing dose of ARNI

reduced filling pressures without impairing normal renal

function. With hemodynamic support for a decrease in the right

atrial pressure/PCWP ratio, echocardiography displayed a

reduction of the E/A ratio and left atrial volumetry (67).

Patients with HF frequently exhibit reduced renal function,

while patients with chronic kidney disease (CKD) often face a

high risk of cardiovascular events (95). Compared with the RAS

inhibitor, ARNI significantly increased estimated glomerular

filtration rate (eGFR) and decreased NT-proBNP in patients with

both HF and CKD (96). In a real-world study involving patients

with all stages of CKD, low baseline GFR <30 ml/min/1.73 m2

was identified as an independent predictor for worse clinical

outcomes. The data revealed that treatment with ARNI resulted

in fewer cardiovascular deaths or hospitalizations for HF than

treatment with standard therapy without ARNI in both patients

with GFR≥ 30 ml/min/1.73 m2 and with GFR < 30 ml/min/

1.73 m2 (97). One year of treatment with ARNI significantly

improved systolic and diastolic heart function in patients with

end-stage kidney disease and HFrEF, but ARNI did not increase

hyperkalemia or hypotension risk in these patients (98). Early

worsening renal function (WRF), defined as a >20% decrease in

eGFR, occurred in patients with ARNI therapy after one month.

However, renal function recovered in these patients at three

months, with an improvement in eGFR at one year compared

with the baseline value. Additionally, early WRF had no impact

on clinical outcomes in the following 650 days (99).

By activating both RAAS and NP inhibition, ARNI

demonstrates a greater blood pressure reduction than ARB alone

(100). In the UK Heart and Renal Protection III (UK HARP III)

and PARADIGM-HF trials, hypotension was observed in patients

receiving ARNI treatment (101, 102). The occurrence of

hypotension is predictable, and only significant symptomatic

hypotension leading to pre-syncope, syncope, or other organ

damage should justify decreasing the dosing of ARNI (103).

Although hyperkalemia was less frequent in the ARNI group

than in the enalapril group, it is recommended to check

creatinine and serum potassium after ARNI administration (102).

The consensus indicates that angioedema is the primary adverse

effect leading to the discontinuation of the drug (104), but the

incidence of angioedema is rare, and more trials are needed for

further investigation. Attention for the risk of Alzheimer’s disease

(AD) is rising because NEP inhibition may decrease degradation

of amyloid-beta (Aβ) protein, which is associated with AD

progression (105, 106). NEP1 inhibition made Drosophila Aβ

detrimental to both middle-term and long-term memory, while

NEP1 overexpression rescued the memory deficits (107). The

aforementioned animal models suggest that ARNI may affect

cognitive function; however, adverse events related to cognition,
Frontiers in Cardiovascular Medicine 07
memory, and dementia were not elevated in the ARNI group in

PARADIGM-HF (108). Further investigation in clinical studies is

required to determine whether ARNI will have an impact on

cognition in patients with HF and/or CKD.
7. Diagnostic tools and monitoring
equipment for PH

Transthoracic echocardiography enables the measurement of

peak tricuspid regurgitation velocity and the calculation of PASP

in assessing RV function (109). Tricuspid annular plane systolic

excursion (TAPSE), RV DTI-derived tricuspid lateral annular

systolic velocity wave (RV S’), and fractional area change

(RV FAC) are recommended echocardiographic parameters for

assessing RV systolic function in clinical studies (110, 111). After

12 months of therapy with ARNI in a real-world registry,

Correale M et al. reported that improvements in PASP and

TAPSE were proportional to baseline levels and independent of

LV function (112). Recently, they further demonstrated that the

baseline RV S’ value is an independent predictor of RV

improvement. Peak longitudinal strain of the RV free wall (RV-

FW-LS), a more accurate and sensitive tool for evaluating RV

function, and RV four-chamber strain (RV-4Ch-LS), a parameter

that includes the analysis of the interventricular septum, were

also improved in this study (85) (Table 2). Forfia et al. found
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that TAPSE predicted survival in 47 patients with PAH but not

mortality in patients with pre-capillary PH combined with RV

dilatation (113). Echocardiography using a multivariable model

based on 2D measurements revealed RV dyssynchrony in

patients with mean PAP between 20 and 25 mmHg, suggesting

that RV deformation can be impaired even in mild/critical PH

(114). Cardiac MRI provides access to the 3D structural RV and

is recommended as the gold standard for assessing RV end-

diastolic and systolic volumes, RV mass, local ventricular wall

motion, and pulmonary artery blood flow (115). RV quality has

been shown to predict PH prognosis, and both stroke volume

index lower than baseline and reduced stroke volume index

during treatment were associated with increased mortality (116).

Patients with end-stage systolic HF are not candidates for heart

transplantation due to irreversible PH. However, it can be reversed

after 6 months of continuous-flow left ventricular assist device

(cfLVAD) implantation (117, 118). CfLVAD reduces PAP and

PVR by unloading the left ventricle and lowering LV end-

diastolic pressure and volume. Although TPG and PVR return to

normal after cfLVAD implantation, histological changes in the

pulmonary vascular bed may be irreversible. Differences in DPG

gradients between set and maximum velocities >3 mm Hg at

baseline cfLVAD levels may indicate persistent capillary PH,

which is positively associated with increased HF hospitalization

and mortality (119).

CardioMEMSTM is an implantable device positioned in the

pulmonary artery to measure cardiac filling pressure in patients
FIGURE 2

Interaction and pathogenesis of PH in LV/RV heart failure. Hypoxia, prec
vasoconstriction, leading to increased PVR and reduced PA compliance. Fu
PVR. Elevated filling pressures cause PH, which is a consequence of systo
pressures and PVR result in dilatation and maladaptive remodeling of right
PAP, pulmonary artery pressure; PVR, pulmonary vascular resistance; PA, p
ventricular.
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with HF, irrespective of LVEF value, which tends to increase

more than 2 weeks before symptomatic clinical congestion (120,

121). Pulmonary pressure-guided therapy represents a novel

strategy to reduce the risk of recurrence in patients with chronic

HF, enabling closer non-invasive in-hospital hemodynamic

monitoring using CardioMEMSTM. After implanting

CardioMEMSTM in a 53-year-old patient with idiopathic dilated

cardiomyopathy, the system detected a decrease in PAP,

accompanied by an increase in LV ejection fraction and a

decrease in NT-pro BNP. This case marks the first reported

instance of ARNI improving PAP and cardiac function in a

patient with HFrEF, as detected by telemetry data (122, 123). In

HFrEF patients with previously implanted CardioMEMSTM

sensors, transitioning from ACEI/ARB to ARNI demonstrated a

rapid decrease in PAP (69). By monitoring PAP, the

CardioMEMSTM system has been shown to balance fluid intake

and output, facilitate personalized medication use, and reduce

hospitalization rates. After PAP adjustment by CardioMEMSTM

to prevent early congestion, ARNI was utilized to decrease the

usage of cyclic diuretics, the risk of neurohormonal activation,

and electrolyte disturbances (79).
8. Conclusions

Elevated left heart filling pressures result in impaired

pulmonary venous reflux obstruction, which is a primary cause
apillary component and increased PAP may trigger pulmonary arterial
nctional mitral regurgitation will further result in elevations of LAP and
lic or diastolic LV dysfunction. The persistent elevations of pulmonary
heart chambers, and ultimately RV failure. PH, pulmonary hypertension;
ulmonary artery; LAP, left atrial pressure; LV, left ventricular; RV, right
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of PH-LHD and ultimately leads to total heart failure (Figure 2).

ARNI has become a research focus in the cardiovascular

field due to its dual inhibition of the RAAS and NPs

systems. In addition to experimental data, evidence from

clinical studies suggests that ARNI may be effective in

delaying the progression of PH in patients with HFrEF,

HFpEF, or RV dysfunction, including those awaiting heart

transplantation. Although no serious adverse events have

been observed, the future efficacy and safety of ARNI for HF

complicated with PH require further large-scale and

multicenter clinical studies.
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