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Heart failure with preserved ejection fraction (HFpEF) accounts for around half of
all cases of heart failure and may become the dominant type of heart failure in the
near future. Unlike HF with reduced ejection fraction there are few evidence-
based treatment strategies available. There is a significant unmet need for new
strategies to improve clinical outcomes in HFpEF patients. Inflammation is
widely thought to play a key role in HFpEF pathophysiology and may represent a
viable treatment target. In this review focusing predominantly on clinical studies,
we will summarise the role of inflammation in HFpEF and discuss potential
therapeutic strategies targeting inflammation.
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Introduction

Heart failure with preserved ejection fraction (HFpEF) accounts for half of all cases of

Heart Failure. Broadly speaking, it is defined as symptoms and signs of HF in the

presence of a left ventricular ejection fraction (LVEF) of more than 50%, usually in the

presence of a cardiac structural or functional abnormality such as left ventricular

hypertrophy, left atrial enlargement or diastolic dysfunction (1). At least in part due to

various factors (2) such as increased life expectancy, increasing prevalence of

comorbidities such as metabolic syndrome, obesity, diabetes mellitus and greater clinical

recognition, the prevalence of HFpEF is increasing such that in future it is likely to be the

dominant form of HF worldwide (3).
Lack of evidence based treatment options for HFpEF:
An unmet need

Despite intense research interest in HFpEF, there are few evidence-based treatment

options. Randomized trials targeting neurohormonal and sympathetic nervous system

using angiotensin converting enzyme inhibitors (ACEi), angiotensin II receptor blockers

(ARBs) and beta blockers, which provide clear benefits in HF with reduced ejection

fraction (1) (HFrEF), have failed to meet their primary efficacy outcome in HFpEF. The

TOPCAT (4) (spironolactone) and PARAGON-HF (5) (sacubitril/valsartan) trials also

failed to meet their primary outcomes, though there were perhaps some positive signals
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in specific groups (for example patients recruited in the Americas

(6) in TOPCAT and women or those with mildly reduced ejection

fraction (7) in PARAGON-HF). Until recently, the treatment of

HFpEF was limited to the used of loop diuretics to relieve

congestion and provide symptomatic relief, and optimization of

treatment comorbidities such as hypertension and atrial fibrillation.

A recent breakthrough has been the positive outcome trials

using sodium-glucose cotransporter 2 (SGLT2) inhibitors in

HFpEF. EMPEROR-Preserved (8) and DELIVER (9)

demonstrated reductions in cardiovascular death and heart

failure hospitalization with empagliflozin and dapagliflozin

respectively compared to placebo. Based on these results, SGLT2

inhibitors are likely to play a key role in the management of

HFpEF in future (10). Nevertheless, with HFpEF set to the

dominant form of HF worldwide yet only having one evidence-

based treatment, there is undoubtedly an urgent need for

additional effective therapeutic strategies.
HFpEF: A Complex disease with
Complex pathophysiology

One of the key reasons for our inability to develop successful

HFpEF treatments is its pathophysiological complexity and our

limited understanding of this. This even extends to our definition

of HFpEF. The textbook definition of HFpEF as a form of

diastolic dysfunction leading to impaired left ventricular filling

and reduced cardiac output does not fully capture the complexity

of HFpEF. Various definitions of HFpEF have been used in

guidelines and for inclusion in clinical trials with different
FIGURE 1

Common HFpEF phenotypes.
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profiles of patients consequently included under the HFpEF

umbrella (11). Detailed phenotyping studies have also

consistently identified that even when using one definition of

HFpEF, patients can be clustered into separate groups that have

specific phenotypes and differential clinical outcomes and

responses to treatment (12–14).
Clinical phenotypes in HFpEF

HFpEF involves a complex interplay between comorbidities

such as hypertension, diabetes mellitus, renal failure, COPD,

obesity and atrial fibrillation and cardiac structural and

functional abnormalities such as LV hypertrophy, myocardial

fibrosis, myocardial stiffness, endothelial dysfunction and

oxidative stress (15). Different comorbidities seem to

preferentially lead to different phenotypes of HFpEF although

multimorbidity is common across phenotypes. The four

commonest HFpEF clinical phenotypes (16) are an ageing

phenotype, pulmonary hypertension phenotype, coronary artery

disease phenotype and the obesity-driven cardiometabolic

phenotype (Figure 1).

The cardiometabolic phenotype has been most concisely

identified across various HFpEF cohorts. Patients with this

phenotype usually have a higher prevalence of comorbidities

such as hypertension, obesity, diabetes and insulin resistance and

are usually 10–15 years younger (17) than patients diagnosed

with other phenotypes of HFpEF. In TOPCAT, this phenotype

was found to have more prevalent cardiac structural

abnormalities such as concentric LVH and to have worse clinical
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outcomes compared to other phenotypes (18). This

cardiometabolic HFpEF phenotype is consistently identified in

HFpEF cohorts (12, 13, 19).

Recently, the term “metainflammation” has been used to

describe the association between metabolic stress caused by

conditions such as diabetes, obesity, insulin resistance and non-

alcoholic fatty liver disease and chronic inflammation (20). This

chronic inflammatory state can predispose to adverse cardiac

remodeling such as left ventricular hypertrophy that can

eventually lead to HFpEF (21). In the RELAX trial, the presence

of an increased number of comorbidities such as obesity,

diabetes, anaemia and chronic kidney disease in HFpEF patients

was associated with higher C-reactive protein (CRP) levels (22).

Further demonstrating the association between adiposity,

inflammation and HFpEF, visceral adipose tissue (VAT) has been

reported as an independent risk factor for hospitalization and

mortality in HFpEF (21, 23), particularly in females (24). This is

thought to be, at least in part, due to proinflammatory cytokines

secreted by VAT that contribute to endothelial dysfunction and

reduced vascular compliance (23) and subsequent concentric LV

remodeling, reduced left ventricular compliance.

Regardless of the underlying phenotype, what has been

consistently identified throughout these studies is that

inflammation is highly prevalent in HFpEF and is associated

with worse symptoms and prognosis (25). Over half of the

patients in a recent HFpEF trial (RELAX) had an elevated C-

reactive protein (22). Studies comparing HFpEF and HFrEF

cohorts have also consistently identified that inflammation

appears to be more prevalent in HFpEF compared to HFrEF,

perhaps suggesting a different pathophysiology. In the BIOSTAT-

CHF study, a biomarker analysis identified that there were

specific biological pathways related to inflammation that were

specific to HFpEF, in contrast to HFrEF (26). This finding was

validated in a second cohort and replicates an earlier analysis

from TIME-CHF that identified that biomarkers related to

inflammation such as IL-6 and hsCRP were significantly

upregulated in HFpEF compared to HFrEF (27). Levels of

biomarkers such as IL-6 and CRP have also been associated with

increased risk of incident HFpEF in community patients (28, 29).

As well inflammation being upregulated in HFpEF compared

to HFrEF, inflammation is also associated with worse cardiac

structural and functional abnormalities in HFpEF patients. A

recent proteomic study of 228 HFpEF patients studied 47

proteins involved in inflammatory pathways and found that

systemic inflammation was associated with an increased number

of comorbidities, diastolic dysfunction and right ventricular

dysfunction. Inflammation was also upregulated compared to

controls (30). This was similar to other biomarker studies that

have identified inflammation mediated by comorbidities as a key

component of HFpEF (25).

Upregulation of inflammation in HFpEF not only leads to

worse cardiac structure and function but is also associated with

worse prognosis, demonstrated using various inflammatory

biomarkers. Several studies have reported an independent

association between elevated C-reactive protein and increased

risk of death or HF hospitalisation in HFpEF patients, including
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after adjustment for natriuretic peptide levels (22, 31–33). An

elevated neutrophil to lymphocyte ratio, a simple measure of

systemic inflammation, is also associated with adverse outcome

in HFpEF (34). High levels of interleukin-6 are common in

HFpEF (35) and were associated with adverse outcome. In the

KaRen study of 86 HFpEF patients, higher levels of inflammation

were associated with worse NYHA class (25). Elevated levels of

inflammatory markers including GDF-15 and TNF receptor 1

have also been found to be independently significantly associated

with a composite outcome of HF hospitalisation or all-cause

mortality.

In summary, there is an abundance of evidence (albeit

predominantly observational) suggesting that inflammation could

play a key role in the pathophysiology and clinical outcomes of

HFpEF.
The innate immune system in HFpEF

The innate immune system has been proposed as a key

mediator of inflammation in heart failure. Oxidative stress and

hypertension cause the recruitment of inflammatory leukocytes,

the most notably being neutrophils which is the most abundant

leukocytes in circulation. In response to endothelial cells

damaged by systemic inflammation, neutrophils secrete MPO.

MPO also reduces NO availability (36). Both of these exaggerate

the inflammatory response. When neutrophils die, they shed IL-6

receptors that triggers surrounding endothelial cells to recruit

more monocytes and macrophage (37), further amplifying the

inflammatory response.

In the context of the innate immune system, inflammasomes

are also activated by tissue damage. The Nod-like receptor pyrin

domain containing 3 (NLRP3) inflammasome is the best

described inflammasome relating to the heart (38). NLRP3 is

found in the cardiomyocytes and cardiac fibroblasts (39). The

NLRP3 inflammasome is summarised in Figure 2.

When tissue is damaged, molecules such as adenosine

triphosphate, angiotensin II, fatty acids and glucose are

released. The presence of these molecules activates NLRP3 in a

2-step manner (40). In the first step, there is a priming signal

that leads to the transcription of IL-1 beta and NLRP3

precursors. NLRP3 precursors then undergo post translation

modification via phosphorylation and ubiquitination to remain

in a stable form until the second signal is activated. In the

second step, the second activating signal such as ATP and urate

crystal reduces in intracellular potassium and increase ROS

while assembling the inflammasome. A large amount of IL-

1beta is also produced by inflammatory cells such as

macrophages and cardiac fibroblast (41) in response to NLRP3

activation. IL-1 beta then initiates several downstream

inflammatory pathways by inducing other cytokines such as

TNF, IL-6 and IL-8 (42). Activation of NLRP3 in the

cardiomyocytes leads to cell death rather than IL-1beta release

(43). NLRP3 activation causes IL-1 beta release by cardiac

fibroblasts and cardiomyocytes death. Inhibition of NLRP3 has

been shown to prevent inflammasome activation and cardiac
frontiersin.org
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FIGURE 2

The innate immune system and HFpEF.
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cell death, hence reducing damage (43) and therefore may

represent a potential treatment target in HFpEF.
The adaptive immune system in HFpEF

Although much research has been focused on the innate

immune system in HF, there is increasing recognition of the role

of the adaptive immune system in HF pathophysiology. It is

hypothesised that the adaptive immune system may play and

important role in the remodeling process in response to chronic

myocardial injury (44, 45). Endomyocardial biopsies of HFpEF

patients show the presence of inflammatory cells and CD3+,

CD11a+ and CD45+ cells, indicating underlying cardiac

inflammation involving the adaptive immune system (46).

Histopathological samples from HFpEF patients also demonstrate

the presence of increased expression of adhesion molecules that

control extravasation of T cells (46, 47). T cells may also play a

role in cardiac ageing including diastolic dysfunction that is a

precursor to HFpEF (48). Many of the comorbidities that are

often present in HFpEF are associated with increases in

circulating T cells. The metabolic changes seen in HFpEF

promote pro-inflammatory T cell differentiation and lead to T

cell recruitment in the heart and vasculature (49, 50). The

presence of B cells may worsen cardiac injury via a few

mechanisms such as the activation of T cells or the innate

immune system, production of inflammatory cytokines such as

IL-6, IL-1β and TNF-α or recruitment of the innate immune

cells through chemokine production (51). Each of these

mechanisms then further worsens the inflammatory state in the

heart.
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Role of nitrosative stress in the
mechanisms behind inflammatory
cardiac damage

There is a large amount of evidence suggesting the role

obesity and metabolic stress play in the inflammatory state of

HFpEF, particularly relating to inflammation-dependent

oxidative and nitrosative stress (52–56). The presence of these

comorbidities increases reactive oxidative species (ROS) in the

cardiac endothelial cells which further contributes to the

decrease in endothelial nitric oxide (NO) (56). This results in a

reduction in soluble guanylate cyclase (sGC), cyclic guanosine

monophosphate (cGMP)) and cGMP protein kinase activity in

cardiomyocytes which exerts a cardioprotective (57, 58) effect.

The result of this is the remodeling of the left ventricle,

impairing relaxation. An observation made in HFpEF is the

accumulation of misfolded protein in the myocardium (59),

suggesting that the unfolded protein response that mitigates

stress in protein quality control is downregulated (60). In

HFpEF, the pro-inflammatory molecule inducible nitric oxide

synthase (iNOS) is upregulated as seen in both murine models

and clinical HFpEF (20, 55).
Clinical strategies to target
inflammation in HFpEF

With the burgeoning observational evidence and mechanistic

studies supporting the role of inflammation in HFpEF, there has

been intense interest in clinical trials of anti-inflammatory
frontiersin.org
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therapies in HFpEF. In this section we will summarise previously

tested and potential future strategies targeting inflammation in

HFpEF.
Established HF therapies

RAAS blockers

The renin-angiotensin-aldosterone system (RAAS) is central in

the development of heart failure (61). When the RAAS is activated

there is a reduction in blood flow to the kidney and through a

cascade of different neurohormones and eventually aldosterone

acts on multiple system to increase cardiac output. While initially

compensatory, eventually, it acts to exacerbate heart failure. It is

also involved in the inflammatory pathways of heart failure.

Aldosterone encourages the expansion of adipose tissue and its

transition to a proinflammatory state (62) which increases the

release of proinflammatory cytokines (63). Other than mediating

microvascular dysfunction and fibrosis (64), aldosterone is also

found to contribute to the development of experiment HFpEF

(65). Levels of aldosterone correlate to LV hypertrophy that is

frequently found in HFpEF (66) and high level of aldosterone

usually precede the development of metabolic syndrome (67) that

also contributes to systemic inflammation. In hypertensive

patients RAAS blockers do reduce inflammation (68). Hence it

would seem intuitive that inhibition of the RAAS would help in

the treatment of HF.

Unlike in HFrEF however, RAAS blockade in HFpEF does not

improve clinical outcomes to anywhere near the same extent (69).

In the TOPCAT (4) trial, spironolactone did not significantly

reduce the incidence of mortality and hospitalization rates,

though there were some subgroups of patients who may have

benefited. Nevertheless, in a post-hoc analysis of the trial

spironolactone did not cause any reduction hsCRP compared to

placebo (70). Sacubitril/valsartan may be beneficial in HF with

mildly reduced EF (71) and may reduce systemic inflammation

in HFrEF (72), however there is no evidence as to whether this is

also the case in HFpEF. Given the overall, at best neutral results

of RAAS inhibitors in HFpEF it is unlikely that any anti-

inflammatory effect exerted would improve clinical outcomes.
Beta-blockers

Beta-blockers reverse the neurohormonal effects of the

sympathetic nervous system, improving symptoms and outcomes

in HFrEF (73, 74). Beta-blockers also appear to reduce

inflammation in HF. Hs-CRP concentration and oxidative stress in

patient with chronic heart failure has been shown to be reduced by

beta blocker such as bisoprolol and carvedilol (4), and in dilated

cardiomyopathy, use of beta blockers is associated with a reduction

in inflammatory markers such as IL-10 and TNF alpha (75).

The evidence for beta-blockers in HFpEF is weaker however

(76) though there may be some reductions in mortality (77).

Beta-blockers are often prescribed for other indications in
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patients with HFpEF such as atrial fibrillation and coronary

artery disease (78). Again however, there are very few studies

investigating inflammation in response to beta-blockers in HFpEF.
SGLT2 inhibitors

Sodium-Glucose co-Transporter 2 (SGLT2) Inhibitors have

recently become an established part of HF care, following their

initial development as type 2 diabetes treatments. They act by

blocking SGLT2, a protein in the kidney that promotes the

reabsorption of glomerular filtrated glucose back into the

systemic circulation, contributing to about 90% of glucose

reabsorption (79), causing a significant diuresis that is beneficial

in HF (80). SGLT2 inhibitors cause significant reductions in HF

hospitalisations and mortality in HFrEF patients with or without

type 2 diabetes (81–83), and also improve outcomes in HFpEF

(8, 9), meaning that for the first time we have a treatment for

HFpEF that improves clinical outcomes.

The mechanisms of benefit of SGLT2 inhibitors in HF are still

unclear and are a subject of intense ongoing research interest (84–

86). SGLT2 inhibitors also appear to help in lowering systemic

inflammation. A systematic review and meta-analysis of studies

(87) in rodents showed that the use of SGLT2 inhibitors resulted

in a decrease in IL-6, CRP, TNF alpha and MCP-1. SGLT2

inhibitors were also shown to significantly suppress NLRP3

inflammasome activation and in turn IL-1 beta secretion in

human macrophages (88). SGLT2 inhibitors reduce epicardial fat,

a source of pro-inflammatory cytokines, independently of their

glycaemic effects (89, 90). In a recent trial of dapagliflozin vs.

placebo in diabetic individuals with LVH, 12 months of

treatment with dapagliflozin caused a significant reduction in

hsCRP (91). Though is likely that the mechanisms of benefit of

SGLT2 inhibitors in HF are likely to be multi-factorial,

reductions in systemic inflammation may well be contributory.
Exercise

Exercise Training can be a potential means of reducing

systemic inflammation. Reduced exercise capacity is a significant

part of the problem in patients with HFpEF, leading to reduced

quality of life and worse prognosis (92). The current ESC

guidelines (1) recommend exercise to improve exercise capacity,

QoL and reduce HF hospitalization. The bulk of the evidence for

exercise training applies to HFrEF, though there may be some

benefit in HFpEF patients (93, 94).

Regular exercise helps to exert antioxidant and anti-

inflammatory effects by targeting the cardiovascular system,

adipose tissues and immune system (95). Upon muscle

contraction, IL-6 is released by the skeletal muscle into the

bloodstream. This release of IL-6 does not come with a similar

release of TNF-alpha and IL-1beta, resulting in an overall anti-

inflammatory effect (96). IL-6 also increases anti-inflammatory

markers such as IL-1 receptor antagonist and IL-10 (97) which

further exerts an inhibitory effect on TNF alpha and IL-1beta
frontiersin.org
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(98). Adipose tissue which serves as a source for TNF-alpha is also

reduced by regular exercise (99). Lastly, NLRP3 inflammasome

activation is also inhibited (100). eNOS is also upregulated by

exercise resulting in increased bioavailability of NO leading to

improved vascular function and reduced oxidative stress (101).

Few clinical studies have as yet evaluated the effects of exercise

training on markers of inflammation. It is possible that systemic

inflammation may also modify the effects of exercise in HFrEF

(102). There are ongoing large studies of exercise in HFpEF

(103) that will shed more light on the effects of exercise and

could provide an avenue for exploring mechanisms of action.
Systemic anti-inflammatory therapy

Methotrexate

Methotrexate is an anti-inflammatory commonly used in

conditions such as rheumatoid arthritis (RA). Methotrexate use

was associated with a reduction in cardiovascular events in

patients with rheumatological conditions (104). A recent

retrospective study (105) of 9,889 patients with RA and matched

controls from the Vanderbilt University Medical center electronic

health record, treatment with methotrexate was associated with

lower risk of incident HFpEF. There may be a role for

methotrexate in the management of inflammation in HFpEF,

particularly in patients with a high inflammatory profile.

There have been no specific trials of methotrexate in HFpEF as

yet. In the CIRT (106) (Cardiovascular inflammation Reduction

Trial) trial, in which individuals with a history of MI or

coronary artery disease who had either type 2 diabetes or

metabolic syndrome were randomized to low-dose methotrexate

(up to 20 mg daily) or placebo. Around 13% of participants had

a history of HF. After a median of follow up of 2.3 years

methotrexate did not reduce levels of IL6, Il1beta and CRP, nor

did it reduce incidence of the primary endpoint of cardiovascular

death, myocardial infarction or stroke. In a small randomized

trial in 71 HFrEF patients 12 weeks of methotrexate treatment

did cause a reduction in inflammatory markers and improved

NYHA class, quality of life and increased 6-minute walk

distance, without any change in LV ejection fraction.
Colchicine

Colchicine is an anti-inflammatory agent more commonly used

to treat conditions such as gout, pericarditis and Behcet’s

syndrome. It exerts its anti-inflammatory effect by blocking the

activation of NLRP3 inflammasome which in turn reduces the

production of IL-1 beta and IL-18, inhibiting tubulin

polymerization and microtubule development and thus impairing

neutrophil migration. This inhibits IL-1 production by activated

neutrophils and down regulates TNF alpha receptors in

macrophages and endothelial cells (107).

The concept of using colchicine for chronic cardiovascular

disease was tested in the COLCOT (108) trial. In this study of
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4,745 individuals post-myocardial infarction randomized to

colchicine or placebo there was a 23% relative risk reduction in

the primary CV endpoint. Only 2% of the study population had

a history of heart failure however. One small trial of colchicine

in HFrEF patients found that although colchicine caused a

reduction in inflammatory markers (CRP and IL-6) it did not

cause any improvements in exercise capacity, symptoms or

reductions in HF hospitalisation or mortality (109).

There is no clinical trial data as yet in HFpEF. A recent animal

study using a murine hypertensive HFpEF model found that

treatment with colchicine results reduced cardiac diastolic

dysfunction, oxidative stress and fibrosis and improved exercise

capacity (110). The ongoing COLpEF trial (NCT04857931) is an

ongoing randomized clinical trial testing the efficacy of colchicine

in reducing inflammation and improvement in left ventricular

diastolic function and functional status and symptoms of patients

with HFpEF and will provide further data on the role of

colchicine in HFpEF.
Statins

In addition to their cholesterol-lowering properties, statins

have many pleiotropic effects. These include anti-inflammatory

properties—statins reduce CRP levels by 15%–30% (111). They

act by inducing eNOS which improves endothelial function,

inhibit adhesion molecules such as VCAM-1 and ICAM-1,

reduce the effect of NFKB and disrupt T cell activation (111).

Observational studies and post-hoc subgroup analyses had

suggested that statins might improve outcomes in HF patients

(112–114) however large clinical randomized trials involving

statins use in HFrEF failed to show any benefit (115–118). Many

HFpEF patients are likely to be prescribed statins (for example for

coronary artery disease)—as an example, almost 70% of patients

in EMPEROR-Preserved were taking statins at baseline. Given the

negative results of statins in HFrEF trials, and the widespread use

of statins in HFpEF for other indications, it is unlikely that there

will be a randomized trial of statin vs. placebo in HFpEF.

Other potential treatment approaches involve modulating part

of the immune system in patients with heart failure to bring about

a net anti-inflammatory effect. This includes the use of

Prednisolone, Xanthine Oxidase Inhibitor, Pentoxifylline, IVIG

or Thalidomide. Table 1 summaries some of the trials involving

their use the outcomes from their use. However, most of the

trials involve patients with HFrEF and outcomes have been

mixed at best. Further research and trials are needed to

investigate their relevancy and effect in HFpEF.
Targeted anti-inflammatory therapies

TNF alpha

As discussed, TNF alpha is one of the more prominent

cytokines involved in inflammatory pathway of HF, associated

with impaired systolic and diastolic function and adverse cardiac
frontiersin.org
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TABLE 1 Summary of completed and ongoing clinical trials targeting inflammation in heart failure.

Agent Trial LVEF (%) NYHA
Class

Type of
Study

Patients
(n)

Comparison Main Clinical Outcomes

Methotrexate METIS (119) <45% II–IV Randomised,
double-blinded,
placebo-
controlled

50 7.5 mg methotrexate, vs.
placebo, +5 mg folic acid

Improved NYHA class.

Duration: 12 weeks No change in 6 MWT distance.

Gong et al.,
2006 (120)

<45% II–IV Randomised,
single-blinded,
placebo-
controlled

71 7.5 mg methotrexate, vs.
placebo, once a week

Improvement in NYHA, QoL (SF-
36) and 6 MWT distance.

Duration: 12 weeks

Colchicine Deftereos et al.,
2014 (109)

<40% I–III Randomised,
double-blinded,
placebo-
controlled

279 Colchicine 0.5 mg TDS, vs.
placebo

Reduction in inflammatory
biomarker levels.

Duration: 6 months No change in NYHA or exercise
treadmill time.

COLpEF,
NCT04857931

>45% II–IV Randomised,
double-blinded,
placebo-
controlled

426 Colchicine 0.5 mg OD,
0.5 mg BD, vs. placebo

Still ongoing.

Duration: 6 months Primary outcome is change in hs-
CRP.

Secondary outcomes include
change in NT-proBNP, hs-Tn, LV
diastolic function and NYHA class.

MPO Inhibition SATELLITE
(121)

>40% II–IV Randomised,
double-blinded,
placebo-
controlled

41 2.5 mg AZ4832 OD
(escalated to 5 mg after 10
days) vs. placebo

No change in 6 MWT distance,
NT-proBNP or QoL (KCCQ).

Duration: 90 days

TNFα ATTACH (122) <35% III–IV Randomised,
double-blinded,
placebo-
controlled

150 Infliximab 5 mg/kg,
infliximab 10 mg/kg or
placebo at 0, 2 or 6 weeks

No improvement in NYHA class or
QoL (MLwHF).

Duration 28 weeks More adverse events (death/HF
hospitalisation) in high-dose
infliximab group.

RENEWAL
(123)

<30% II–IV Randomised,
double-blinded,
placebo-
controlled

2,048 RECOVER: SC Etanercept
25 mg weekly or bi-weekly;
vs. placebo

No difference in primary
composite outcome (death, HF
hospitalisation, NYHA class and
patient global assessment).RENAISSANCE: SC

Etanercept 25 mg bi-weekly
or trii-weekly; vs. placebo

Duration: 24 weeks

Deswal et al.,
1999 (124)

<35% III Randomised,
double-blinded,
placebo-
controlled

18 Escalating dose (1, 4, or
10 mg/m2) of etanercept
(single IV infusion), vs.
placebo

Improvement in QoL (VAS),
LVEF, 6 MWT at higher doses.

Duration: 14 days

Bozkurt et al.,
2001 (125)

<35% III–IV Randomised,
double-blinded,
placebo-
controlled

47 Bi-weekly SC Etanercept
5 mg/m2, 12 mg/m2, or
placebo.

Increase in LVEF in a dose-
dependent manner.

Duration: 3 months

Interleukin-1 D-HART (126) > 50% II–III Randomised,
double-blinded,
placebo-
controlled

12 Anakinra 100 mg vs.
placebo

Improved peak VO2.

Duration: 14 days +
additional 14 days of
alternate treatment

D-HART2
(127)

>50% II–III Randomised,
double-blinded,
placebo-
controlled

31 Anakinra 100 mg OD vs.
placebo

No improvement in peak VO2 and
VE/VO2 slope.

Duration: 12 weeks Reduced NTproBNP and improved
QoL.

REDHART
(128)

<50% II–III Randomised,
double-blinded,
placebo-
controlled

60 Anakinra 100 mg SC OD
for 2 weeks, 12 weeks, vs.
placebo

No improvement in peak VO2 or
VE/VCO2 slope at 2 weeks,
improved peak VO2 at 12 weeks
from baseline but no difference
between groups.

No change in LVEF.

Improvement in QoL in those
treated for 12 weeks.
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TABLE 1 Continued

Agent Trial LVEF (%) NYHA
Class

Type of
Study

Patients
(n)

Comparison Main Clinical Outcomes

Steroids COPE- ADHF
(129)

<45% N/A Randomised,
non-blinded

102 IV Dexamethasone 20 mg
daily and oral Prednisolone
1 mg/kg daily vs. standard
of care

Reduction in cardiovascular death
at 30 days.

Duration: 7 days, then
steroid tapered off within 3
days.

Improvement in dyspnoea and
physician-assessed clinical status.

Parrillo
et al.,1989 (130)

<35% N/A Randomised,
controlled,
prospective

102 Daily dose of 60 mg of
prednisolone for 3 months

Small increase in LVEF after 3
months but not significantly
different to control group. The
increase was not sustained after 9
months.

Xanthane Oxidase
Inhibition

EXACT-HF
Study (131)

<40% II–IV Randomised,
double-blinded,
placebo-
controlled

253 Allopurinol 300- 600 mg
OD, vs. placebo

No significant difference in
primary outcome (clinical
composite of death, HF
hospitalisation, urgent HF visit,
medication change orpatient global
assessment) compared to placebo.

Duration: 24 weeks No change in KCCQ or 6 MWT
distance.

OPT-CHF
(132)

<40% III–IV Randomised,
double-blinded,
placebo-
controlled

405 Oxypurinol 600 mg OD, vs.
placebo

No significant improvement in
composite clinical outcome (CV
death, HF hospitalisation/
worsening HF, medication change,
change in NYHA class or patient
clinical status).

Duration: 24 weeks No change in QoL (MLWHF) or
6 MWT distance.

Statin GISSI-HF (117) Any II–IV Randomised,
double-blinded,
placebo-
controlled

4,463 Rosuvastatin 10 mg OD, vs.
placebo

No effect on primary outcome
(death/CV hospitalisation).

CORONA (116) <40% II–IV Randomised,
single-blinded,
placebo-
controlled

5,011 Rosuvastatin 10 mg ODS
daily, vs. placebo

No effect on primary outcome (CV
death/non-fatal MI/non-fatal
stroke).

Reduction in all-cause and CV
hospitalisation.

UNIVERSE
(115)

<40% II–IV Randomised,
double-blinded,
placebo-
controlled

85 Rosuvastatin 10 mg OD for
6 weeks, then 20 mg OD 6
weeks then 40 mg OD for
14 weeks vs. placebo

No significant change in LVEF,
BNP or patient global assessment.

Duration: 26 weeks

Pentoxifylline Skudicky et al.,
2001 (133)

<40% II–III Randomised,
double-blinded,
placebo-
controlled

39 Pentoxifylline 400 mg TDS
vs placebo

Improvement in LVEF, NYHA
class and exercise time.

Duration: 6 months

Sliwa et al.,
1998 (134)

<40% (dilated
cardiomyopathy)

II–III Randomised,
double-blinded,
placebo-
controlled

28 Pentoxifylline 400 mg TDS,
vs. placebo

Improvement in LVEF, NYHA
class.

Duration: 6 months

Sliwa et al.,
2002 (135)

<40% (peripartum
cardiomyopathy)

IV Randomised,
double-blinded,
placebo-
controlled

18 Pentoxifylline 400 mg TDS,
vs. placebo

Improvement in LVEF.

Sliwa et al.,
2004 (136)

<40% (ischaemic) II–III Randomised,
double-blinded,
placebo-
controlled

38 Pentoxifylline 400 mg TDS,
vs placebo.

Improvement in LVEF.

Duration: 6 months

Bahrmann
et al., 2004
(137)

<40% II–III Randomised,
double-blinded,
placebo-
controlled

47 Pentoxifylline 600 mg BD,
vs placebo.

No change in LVEF, NYHA class
or symptoms.

Duration: 6 months

Immunoglobulins Gullestad et al.,
2001 (138)

<40% II–III Randomised,
double-blinded,
placebo-
controlled

40 IVIG vs. placebo Increase in LVEF.

Duration: 26 weeks
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TABLE 1 Continued

Agent Trial LVEF (%) NYHA
Class

Type of
Study

Patients
(n)

Comparison Main Clinical Outcomes

Mcnamara
et al., 2001
(139)

<40% I–IV Randomised,
double-blinded,
placebo-
controlled

62 2 g/kg IVIG vs. placebo No significant change in LVEF
compared to placebo.

Thalidomide Gullestad et al.,
2005 (140)

<40% II–III Randomised,
double-blinded,
placebo-
controlled

56 25 mg QD thalidomide
(increasing to 200 mg) vs.
placebo

Increase in LVEF, with decrease in
LVEDV.

Duration: 12 weeks
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remodeling, and therefore has been well-studied in HF. This was

supported by a small early trial that reported that TNF alpha

inhibition using etanercept improved LV function at 3 months in

HFrEF patients (125). Unfortunately these results were not borne

out in large outcome trials. In the RENEWAL trial, etanercept, a

TNF alpha receptor inhibitor did not reduce the incidence of

primary outcomes of mortality or hospitalization for HF (123),

while in ATTACH (122), TNF Inhibitor infliximab actually

caused an increased risk of hospitalization and mortality at high

doses.

These results may be partly explained by the inhibition of

NFKB, a transcription regulator that is activated by TNF alpha

and acts as a key effector of it. NFKB has cardioprotective effect

such as reducing mitochondrial dysfunction and mitophagy,

inhibiting cell death and inducing antioxidant effects (141). With

the inhibiting of TNF alpha and consequently NFKB, these

beneficial effects may be lost, causing HF to worsen.

Furthermore, infliximab has been shown to induce apoptosis and

complement mediated cell lysis (141), further contributing to cell

death in the failing heart.

These trials have limited enthusiasm for targeting TNF alpha in

HF, although they have only included HFrEF patients. Similar

studies involving HFpEF have not been performed. There is

preliminary data suggesting that anti-inflammatory therapy may

be beneficial in certain subgroup of HFpEF. Unlike HFrEF where

prevention of cell death in the myocardium is relevant, HFpEF is

characterized by myocardial hypertrophy (142). It is conceivable

that anti-TNF alpha therapy might have different effects in

HFpEF. In an observational study involving the effect of anti-

TNF therapy on cardiac function in rheumatoid arthritis (where

HFpEF is more prevalent), it was found that anti-TNF alpha

therapy was not associated with a worsening of cardiac function

and in fact was associated with a 23% decrease in NT-proBNP

after 6 months (143). In a Swedish registry on HF in patients

with RA, patients treated with corticosteroids had a higher

incidence of non-ischemic heart failure compared to patients

which used biologics (144). There may still be a role for anti-

TNF strategies to be tested in HFpEF.
Interleukin-1

IL-1 plays an important role in the development of systolic and

diastolic dysfunction. In the context of diastolic dysfunction, IL-1
Frontiers in Cardiovascular Medicine 09
reduces calcium reuptake by sarcoplasmic reticulum through

down regulation of phospholamban and SERCA, in turn

affecting the initiation of cardiomyocytes relaxation (145, 146).

In the DHART trial, 2 weeks treatment with anakinra, an IL-1

receptor antagonist, reduced systemic inflammation, increased

aerobic exercise tolerance and peak VO2 in patients with HFpEF

(126).

Unfortunately, in the larger follow-on study DHART2 (127),

despite again finding a reduction in CRP, NTproBNP and an

improvement in exercise tolerance with anakinra, there was no

improvement in the primary endpoint of peak VO2. The

discordant results could be at least in part due to the fact that in

DHART2, most of the participants were obese which in turns

affects their cardiorespiratory fitness regardless of their cardiac

function.

Further interest in IL-1 beta blockade as a therapeutic strategy

in HF was raised by an analysis of the CANTOS (147) trial. In

CANTOS, the anti-IL-1 beta monoclonal antibody canakinumab

was studied in patients with a history of MI and evidence of

systemic inflammation (measured by elevated hs-CRP).

Participants were treated with 150 mg canakinumab or placebo

every 3 months with an optimized statin regimen. Canakinumab

caused a 15% decreased risk in mortality and non-fatal stroke

and MI (147). In a prespecified sub analysis of the trial,

canakinumab was found to reduce heart failure-related

hospitalization in a dose dependent manner (148). In CANTOS,

HFrEF and HFpEF was not discriminated. However, considering

that many patients were older and has a history of obesity,

diabetes and hypertension, this hypothesis generating result raises

the possibility that IL-1 beta blockade with canakinumab might

have benefit in patients with HFpEF. Further studies of IL-1 beta

blockade in HFpEF are warranted.
Myeloperoxidase

Myeloperoxidase (MPO) is a heme containing peroxidase that

is expressed mainly in neutrophils. They play a role in the

development of acute and chronic vascular inflammation which

is proposed as an underlying mechanism in the development of

HFpEF (149). In the SATELLITE (121) (Safety and Tolerability

Study of AZD4831 in Patients with Heart Failure) trail, MPO

inhibitor (AZD4831) was investigated. This trial was stopped

prematurely after it achieved its original aim of target
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engagement and satisfactory safety profile. From the trial, it showed

a 69% decrease in MPO activity within the 30 days trial period and

an increase in exercise capacity and wellness score, highlighting its

role as a potential treatment for HFpEF. However, MPO-inhibition

is a novel approach in treating HFpEF, hence further studies and

trials are needed into to further out understanding and

investigate the efficacy of this potential treatment.
Future research and therapy

There remain few evidence-based treatment options for HFpEF

and there is an urgent need for novel therapeutic strategies. As

described in Table 1 there are a number of ongoing clinical trials

evaluating anti-inflammatory strategies for HFpEF. Given the

heterogeneity of HFpEF, a targeted approach with detailed

patient phenotyping is likely to be the most fruitful strategy.

Using such an approach, patients with high levels of

inflammation could be selected for anti-inflammatory therapy

and could have more chance of deriving clinical benefit. This

could lead to a “precision” approach where a specific cytokine is

targeted. An alternative approach would be to use interventional

strategies that might have multiple effects, of which an anti-

inflammatory action is one. Such strategies include exercise and

drugs inducing weight loss (150).
Conclusions

There is a plethora of observational and trial evidence

supporting the role of inflammation as an important part of the

pathophysiology of HF. Although the CANTOS trial showed the

merit of an anti-inflammatory approach in cardiovascular

disease, most other trials of anti-inflammatory therapy in HF

have been neutral at best, though these have predominantly been

in HFrEF. Very few clinical trials of anti-inflammatory strategies

have been conducted in HFpEF populations however, and it is

possible that inflammation may play a differential role in HFpEF

to HFrEF. It may also be that patients could be selected for trials

based on baseline levels of inflammation—those with higher

levels of systemic inflammation might be more likely to benefit
Frontiers in Cardiovascular Medicine 10
from anti-inflammatory therapy. Such a strategy needs to be

refined as there are many potential inflammatory markers that

could be used however we do not know which might translate to

clinical benefit. The most widely-used is high-sensitivity C-

reactive protein—in the CANTOS trial patients were eligible if

their hsCRP level was ≥2 mg/l (147). Optimal levels still need to

be defined. Despite the recent breakthrough of SGLT2 inhibitors

in treatment of HFpEF, there is a need for further therapeutic

options. Inflammation remains a viable treatment target in

HFpEF and further well-designed trials are warranted.
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