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Background: Septic shock patients fundamentally require delicate vasoactive 
and inotropic agent administration, which could be quantitatively and objectively 
evaluated by the vasoactive–inotropic score (VIS); however, whether the dynamic 
trends of high-time-resolution VIS alter the clinical outcomes remains unclear. 
Thus, this study proposes the term VIS Reduction Rate (VRR) to generalise the 
tendency of dynamic VIS, to explore the association of VRR and mortality for 
patients with septic shock.

Methods: We applied dynamic and static VIS data to predict ICU mortality by 
two models: the long short-term memory (LSTM) deep learning model, and the 
extreme gradient boosting (XGBoost), respectively. The specific target cohort 
was extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) 
database by the sophisticated structured query language (SQL). Enrolled patients 
were divided into four groups by VRR value: ≥50%, 0 ~ 50%, −50% ~ 0, and < −50%. 
Statistical approaches included pairwise propensity score matching (PSM), Cox 
proportional hazards regression, and two doubly robust estimation models to 
ensure the robustness of the results. The primary and secondary outcomes were 
ICU mortality and in-hospital mortality, respectively.

Results: VRR simplifies the dosing trends of vasoactive and inotropic agents 
represented by dynamic VIS data while requiring fewer data. In total, 8,887 septic 
shock patients were included. Compared with the VRR ≥50% group, the 0 ~ 50%, 
−50% ~ 0, and < −50% groups had significantly higher ICU mortality [hazard ratio 
(HR) 1.32, 95% confidence interval (CI) 1.17–1.50, p < 0.001; HR 1.79, 95% CI 1.44–
2.22, p < 0.001; HR 2.07, 95% CI 1.61–2.66, p < 0.001, respectively] and in-hospital 
mortality [HR 1.43, 95% CI 1.28–1.60, p < 0.001; HR 1.75, 95% CI 1.45–2.11, p < 0.001; 
HR 2.00, 95% CI 1.61–2.49, p < 0.001, respectively]. Similar findings were observed 
in two doubly robust estimation models.
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Conclusion: The trends of dynamic VIS in ICU might help intensivists to stratify 
the prognosis of adult patients with septic shock. A lower decline of VIS was 
remarkably associated with higher ICU and in-hospital mortality among septic 
shock patients receiving vasoactive–inotropic therapy for more than 24 h.
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vasoactive-inotropic score, mortality, septic shock, high-resolution data, VIS reduction 
rate, critical care

Background

Hemodynamic instability is one of the most common characteristics 
of sepsis in clinical practice (1). Specifically, absolute or relative 
insufficiency of blood volume due to systemic vasodilation leads to 
persistent hypotension (2). Simultaneously with early adequate volume 
resuscitation and antibiotic therapy, vasoactive–inotropic treatment is 
a fundamental clinical intervention for septic shock, which aims to 
maintain a mean arterial pressure of at least 65 mmHg to ensure normal 
tissue perfusion and hemodynamic stability (3–5). The temporal trends 
in the utilization of vasoactive–inotropic agents, including the real-time 
dose rate and duration, reflect severity in patients with septic shock (6).

Although vasoactive–inotropic agents have been widely used 
clinically in the treatment of sepsis and septic shock, it is recognized 
that excessive doses of vasoactive medications may be associated with 
several adverse events, such as arrhythmias, myocardial injury, and 
tissue hypoperfusion due to excessive vasoconstriction (7–9). Few 
studies focused on the temporal trends of vasoactive agents’ dosage and 
mortality (10), and we found no publications that specifically reported 
how the tendency of these multiple vasoactive agents’ dosage influence 
mortality in patients with septic shock. Therefore, the relationship 
between the reduction in utilization of multiple vasoactive–inotropic 
agents and septic mortality needs further evaluation.

Multiple vasoactive–inotropic agents are applied to stabilize the 
hemodynamic condition of septic shock, including norepinephrine, 
epinephrine, dopamine, dobutamine, and vasopressin, with enormous 
heterogeneity in clinical practice (6, 11, 12). The vasoactive–inotropic 
score (VIS) is a tool widely deployed to assess the dosage of vasoactive 

agents quantitatively and was proposed by Gaies in 2010 (13). In 
pediatric sepsis, the VIS is independently associated with clinical 
outcomes such as mortality, duration of mechanical ventilation, and 
ICU length of stay and can be used as an early predictor (14, 15). 
Similarly, in cardiac surgery and heart transplantation, the increase in 
VIS can also be  used as a predictor of postoperative mortality, 
suggesting that the increase in the use of vasoactive–inotropic agents 
is related to the increase in mortality (13, 16–20). However, the 
relationship between the clinical outcome of adult patients with septic 
shock and temporal change in VIS has not been studied.

Similar to other continuous data in ICU, the VIS appears as high-
resolution data that changes over time. These 1 h resolution data can 
provide real-time information for judging the patient’s status, and they 
can be  used to estimate the prognosis. Machine learning and deep 
learning algorithms have unique advantages in processing high-resolution 
data. An increasing number of studies have found that machine learning 
and deep learning models perform better in high-resolution data to 
predict disease prognosis than traditional methods (21–23).

This study aimed to describe the correlation between a reduction 
in early vasoactive–inotropic score and mortality in septic shock. To 
verify whether VIS data can predict ICU mortality alone, 
we constructed a long short-term memory (LSTM) deep learning 
model and an extreme gradient boosting (XGBoost) machine learning 
model with dynamic and static VIS data, respectively. We developed 
the term VIS reduction rate (VRR) to evaluate the decrease in 
vasoactive agents quantitatively. Using this definition, we illustrated 
the relationship between a reduction in vasoactive medications within 
48 h and ICU mortality in patients with septic shock.

Methods

Study cohort

The target cohort in this study was obtained from the Medical 
Information Mart for Intensive Care IV (MIMIC-IV) version 2.0 (24), 
which is a freely accessible critical care database that contains detailed 
demographics, laboratory tests, various notes and reports, and real-
time high-resolution hourly data (vital signs, intravenous medications 
infusion rates, etc.) acquired from the hardware devices (monitor, 
infusion pumps, etc.) of over 76,000 patients during ICU admission at 
Beth Israel Deaconess Medical Center. This study aimed to determine 
whether VRR is significantly associated with ICU mortality and 
in-hospital mortality for patients with septic shock. Briefly, we utilized 
the following inclusion criteria in the identification of the study cohort: 
(1) patients with sepsis defined by Sepsis-3 criteria; (2) length of stay 
in ICU over 24 h; (3) age 18 years or older; (4) weight data (if needed) 

Abbreviations: VIS, Vasoactive–inotropic score; ICU, intensive care unit; VRR, VIS 

reduction rate; MIMIC, Medical Information Mart for Intensive Care; SQL, Structured 

query language; LSTM, Long short-term memory; XGBoost, Extreme gradient 

boosting; SHAP, SHapley Additive exPlanations; HR, Hazard ratio; OR, Odds ratio; 

CI, Confidence interval; RNN, Recurrent neural network; PSM, Propensity score 

matching; K-M, Kaplan–Meier; IPW, Inverse probability weighting; AUROC, Area 

under the receiver operating characteristic curve; NPV, Negative predictive value; 

PPV, Positive predictive value; NLR, Negative likelihood ratio; PLR, Positive likelihood 

ratio; ROC, Receiver operating characteristic; SAPS, Simplified acute physiology 

score; SOFA, Sequential organ failure assessment; AFIB, Atrial fibrillation; CAD, 

Coronary artery disease; CHF, Chronic heart failure; COPD, Chronic obstructive 

pulmonary disease; MAP, mean arterial pressure; WBC, white blood cell; PH, 

potential of hydrogen; PO2, Partial pressure of oxygen; PCO2, Partial pressure of 

carbon dioxide; CVP, Central venous pressure; BNP, B-type natriuretic peptide; 

HIS, Hospital information system; IS, inotropic score; APACHE, Acute physiology 

and chronic health evaluation; AVP, vasopressin; DA, dopamine; DBA, dobutamine; 

EPI, epinephrine; MIL, milrinone; NE, norepinephrine.

https://doi.org/10.3389/fcvm.2023.1126888
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Ning et al. 10.3389/fcvm.2023.1126888

Frontiers in Cardiovascular Medicine 03 frontiersin.org

to calculate particular subsections of the VIS; (5) treatment with at least 
one vasoactive–inotropic agent; (6) therapy with vasoactive–inotropic 
agents within 24 h after ICU admission; and (7) subsequent ICU stay 
greater than 24 h after initiation of vasoactive–inotropic therapy. 
Exclusion criteria: discharge from ICU against medical advice.

Data extraction

The real-time VIS was queried and calculated from the immediate 
infusion rates of dopamine, dobutamine, epinephrine, milrinone, 
vasopressin, and norepinephrine. For multiple infusion rates recorded in 
a given hour for the same vasoactive–inotropic agent, we  took the 
maximum rate as the input value in the specific hour for the dynamic VIS 
data. The dynamic VIS data with 1 h temporal resolution of patients 
contained 7 features: 6 subsections of VIS (VIS of dopamine, dobutamine, 
epinephrine, milrinone, vasopressin, norepinephrine) and the total VIS.

Then, we took the maximum value of each VIS item within 1–24 and 
25–48 h and calculated VRR, thus forming a data matrix with 15 features 
(maximum VIS of dopamine, dobutamine, epinephrine, milrinone, 
vasopressin, norepinephrine, total VIS within 1–24 and 25–48 h, 
respectively, and VRR). We called the data matrix with 15 features “static 
VIS data” by comparison with the high-resolution dynamic VIS data.

Only the data during the first 24 h for each patient after ICU 
admission were used as covariates in this study for further analysis. 
We merged the fields of demographic and admission information, 
severity scores, comorbidities, vital signs, interventions, laboratory 
tests, VRR, and outcome to form the final cohort data matrix.

VIS and VRR

The formula of VIS is defined as follows (13): VIS = dopamine 
dose (μg·kg−1·min−1) + dobutamine dose (μg·kg−1·min−1) + 100 × 
epinephrine dose (μg·kg−1·min−1) + 10 × milrinone dose (μg·kg−1· 
min−1) + 100 × norepinephrine dose (μg·kg−1·min−1) + 10,000 × 
vasopressin dose (U·kg−1·min−1).

VRR is a totally new concept that we proposed to quantify dosage 
reduction for vasoactive–inotropic agents. The formula of VRR is 
defined as follows: (VIS1-24h max – VIS25-48h max)/VIS1-24h max.

Outcome

The primary outcome in this study was ICU mortality, and the 
secondary outcome was in-hospital mortality.

Deep learning and machine learning model 
with VIS data

The data were randomly split into a training dataset (80%) and 
a test dataset (20%) according to the labels of outcome events by the 
caTools package in R version 4.0.2. Constant “stay_id” in the 
training data and validation datasets were used in the deep learning 
model with dynamic data and the machine learning model with 
static data. A schematic illustration of this study is shown in 
Figure 1A.

FIGURE 1

Schematic illustration and flow chart. (A) Raw data were obtained from the MIMIC-IV databases. A survival prediction model was trained using an LSTM 
network, which was updated hourly. Static VIS data were characterized by 15 features, including VRR and VIS features at 1–24 h and 25–48 h, 
respectively, which were extracted based on the dynamic VIS data. Then, according to the results of machine learning, we selected the most 
representative feature, VRR, for further statistical analysis. LSTM, long short-term memory; VIS, vasoactive–inotropic score; VRR, VIS reduction rate; 
AVP, vasopressin; DA, dopamine; DBA, dobutamine; EPI, epinephrine; MIL, milrinone; NE, norepinephrine. (B) The study flow diagram.
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The LSTM is a special modified recurrent neural network (RNN) 
that is widely used for the prediction of time series data in ICU due to 
the property of handling previous information for a relatively long 
period of time. Based on the 1 h high-resolution characteristics of ICU 
data, the prediction performance of LSTM has been fully developed over 
time, making it one of the most state-of-the-art deep learning algorithms 
for dynamic data in ICU. In this study, we processed the dynamic VIS 
data with the LSTM model with PyTorch version 1.8.0 accelerated by 
NVIDIA GeForce RTX 2060 SUPER graphics processing units (ZOTAC, 
Hong Kong). We set 200, 64, 0.0001, 0.25 as parameter “epochs,” “batch 
size,” “learning rate,” “dropout” for LSTM model, respectively. All the 
subjects of time series data needed the same length to train the model in 
batches; however, enrolled patients may have had inconsistent ICU stays 
within 48 h after initiating vasoactive–inotropic therapy. We referred to 
Thorsen-Meyer et al.’s method for processing dynamic time series data 
(21), and patients who did not match the given time point (1–48 h) were 
removed to generate training data with the same length.

The XGBoost is an optimized version of gradient boosted decision 
trees to implement classification and regression predictive modeling 
problems (25). The XGBoost algorithm made the following 
improvements under the gradient boosting framework: regularized 
boosting function to avoid overfitting, handling of missing values 
automatically, cross-validation at each iteration, incremental training, 
and tree pruning. Based on the performance and scalability mentioned 
above, the XGBoost algorithm is becoming increasingly popular in big 
data for critical care. We utilized Python version 3.8.8 to train an 
XGBoost machine learning model to predict ICU mortality with a total 
of 15 features, including the VRR and static maximum data mentioned 
above. We set ‘logloss’ as parameter “eval_metric” for XGBoost model. 
We applied the SHapley Additive exPlanations (SHAP) algorithm (26) 
in our XGBoost model to obtain explanations of the features that 
dominate ICU mortality predictions of patients with septic shock.

Statistical analysis

We divided patients with septic shock into 4 groups according to the 
VRR value: 50% ≤ VRR, 0 ≤ VRR < 50%, −50% ≤ VRR < 0, and VRR < −50%. 
Univariate Cox analysis was first performed to identify candidate variables 
that were considered to be clinically relevant for further multivariate Cox 
analysis, with a value of p < 0.05 as the cut-off value. We performed 
survival analysis with the Kaplan–Meier estimator and multivariate Cox 
proportional hazards regression analysis among these 4 groups. To further 
control the influence of confounding factors, we also conducted pairwise 
propensity score matching (PSM) (27, 28) among these 4 groups to 
handle the missing data and avoid bias. We  set 500 and “pmm” as 
parameter “seed” and “method” in mice function for multiple imputation 
with mice package in R before PSM for pairwise primary cohorts. PSM 
was performed with the MatchIt package, and a total of 6 matched cohorts 
were generated.

We performed the Anderson–Darling normality test to determine 
whether the data were normally distributed and Bartlett’s test (original 
cohort, 4 groups) or F test (pairwise cohort, 2 groups) to assess the 
equality of variances. If the data among groups followed normal 
distributions and the variances to be compared were homogeneous, 
we utilized one-way ANOVA (original cohort, 4 groups) or t-test 
(pairwise cohort, 2 groups) to test the differences for continuous 
covariates; otherwise, Kruskal–Wallis test (original cohort, 4 groups) 
or Wilcoxon test (pairwise cohort, 2 groups) was applied as 

appropriate. The Chi-square test was used to test the differences for 
categorical covariates. All the statistical approaches mentioned above 
were executed in R version 4.0.2.

Sensitivity analysis

To obtain a robust conclusion, for these 6 matched cohorts, 
we applied a series of sensitivity analyses including the Kaplan–Meier 
(K-M) estimator, multivariate Cox regression analysis, and two 
doubly robust estimation models: the survey-weighted generalized 
linear model with all covariates using the inverse probability-
weighting (IPW) technique calculated from PSM and the survey-
weighted Cox model with all covariates using IPW for ICU mortality 
and in-hospital mortality separately.

Covariates

We referred to a previous well-designed research (29) on sepsis to 
define the covariates in our study: (1) demographic information(age, 
gender, weight); (2) severity scores including simplified acute physiology 
score (SAPS) II, sequential organ failure assessment (SOFA) score, first 
nonzero VIS; (3) comorbidities including atrial fibrillation (AFIB), 
coronary artery disease (CAD); Congestive heart failure (CHF), chronic 
obstructive pulmonary disease (COPD), liver disease, malignant tumor 
and chronic renal disease; (4) vital signs including heart rate, mean 
arterial pressure (MAP), temperature; (5) interventions including 
mechanical ventilation, sedative therapy; and (6) laboratory tests 
including white blood cell (WBC) count, hemoglobin, platelet count, 
sodium, potassium, bicarbonate, partial pressure of oxygen (PO2), partial 
pressure of carbon dioxide(PCO2); central venous pressure (CVP), etc.

Results

A total of 34,677 patients were identified as having sepsis by the 
Sepsis-3 criteria. To perform a precise definition of patients who were 
transferred to ICU due to septic shock, we included the initiation of 
vasoactive agents therapy within 24 h after ICU admission as one of the 
inclusion criteria. Furthermore, to ensure VIS data for 1–24 and 25–48 h 
were available, we limited the subsequent ICU stay of included patients 
to more than 24 h after treatment with vasoactive agents. In addition, 
patients who were on the mend were normally transferred from ICU to 
the general ward as a transition. To avoid bias in ICU mortality and 
in-hospital mortality of discharge contributed to by nonmedical factors 
such as medical insurance, we defined subjects with the same ICU 
transfer time and discharge time as patients who were discharged from 
ICU against medical advice and excluded them from the target cohort. 
The specific inclusion and exclusion process is shown in a flow chart 
(Figure 1B). Ultimately, we acquired a final cohort of 8,887 patients.

Association between VIS data and ICU 
mortality

To clarify whether early VIS data could predict patient prognosis, 
we extracted the first 48 h VIS data after initiating vasoactive–inotropic 
therapy into dynamic and static VIS data. As the schematic illustration 
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shows (Figure 1A), dynamic VIS data are a real-time, 1 h-resolution 
data matrix containing 7 features: the VIS of dopamine, dobutamine, 
epinephrine, milrinone, vasopressin, and norepinephrine, and the 
total VIS. Static VIS data were characterized with 15 features, 
including VRR and VIS features at 1–24 h and 25–48 h, respectively, 
which were extracted based on the dynamic VIS data.

We applied dynamic and static VIS data to train the LSTM deep 
learning model and XGBoost machine learning model to predict ICU 
mortality, respectively. The LSTM model was trained with temporal 
data, which was capable of updating the prediction of ICU mortality 
based on learning hourly VIS characteristics accumulated over time. 
Unsurprisingly, the prediction accuracy of mortality by the LSTM 
model trained with 7 VIS features was increasingly improved to some 

extent with the extension of the time dimension of the VIS data 
(Figure 2A). In addition, the improvement of prediction accuracy has 
reached a bottleneck to a certain extent over time, which may 
be related to too few features being included. Compared with the 
LSTM model, which requires extensive and high-resolution temporal 
data, the XGBoost model trained with less static VIS data had a similar 
model performance for the prediction of ICU mortality (Figure 2B). 
VRR simplifies the dosing trends of vasoactive and inotropic agents 
represented by dynamic VIS data while using less data. Although 
we  converted dynamic data to static data, VRR represented a 
significant relationship with patient mortality in terms of model 
predictive performance. Since the VRR is calculated by the VIS data 
in two consecutive time periods, it still represents the dynamic trend 

FIGURE 2

Association between VIS data and ICU mortality. (A) The performance of LSTM deep learning models were trained with dynamic VIS data during 0–1 h, 
1–2 h, 1–3 h, 1–4 h, 1–5 h, 1–6 h and so on, constant increase for 1 h until 1–48 h. Model performance increasingly improved with the accumulation 
of the dynamic VIS data after ICU admission. The metrics for each timepoint in the graphs are displayed in the tables below with a 95% CI in 
parentheses. AUROC, area under the receiver operating characteristic; NPV, negative predictive value; PPV, positive predictive value; NLR, negative 
likelihood ratio; PLR, positive likelihood ratio. (B) Receiver operating characteristic (ROC) curves of the LSTM model and XGBoost model trained with 
the dynamic and the static VIS data, respectively. (C) The impact of the static VIS features on predictions.
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of the dose of vasoactive drugs to some extent. Through the prediction 
model established by our work above, we were able to predict ICU 
mortality to some extent by relying solely on VIS data, which led us to 
wonder which VIS feature made an essential contribution to the 
predictive output of the model. Next, we applied the SHAP algorithm 
quantitatively and visually explained the XGBoost model (Figure 2C).

The SHAP summary plot displayed how the top features of VIS 
data impact our XGBoost model output for ICU mortality. Order on 
the y-axis represented the magnitude of the average impact of VIS 
features on our model (Figure  2C; Supplementary Figure  1). The 
colorful dots from blue to red indicated the value of continuous VIS 
data from low to high (Figure 2C), and the position on the left or right 
side of the x-axis implied whether the prediction toward ICU survival 
(right side: favor to ICU survival, left side: favor to ICU non-survival). 
The top  6 impactful VIS features of the XGBoost model for ICU 
mortality were VIS25-48h max, VIS25-48h max of vasopressin, VRR, VIS1-24h 

max of norepinephrine, and VIS25-48h max of norepinephrine.
Unsurprisingly, VIS25-48h max had the most significant role in our 

trained model, implying that the higher the VIS during 25–48 h is, the 
higher the tendency toward non-survival. However, the contribution 
of VIS1-24h max to the model output was slightly more complex but also 
made sense: there are some individuals on the left side with higher 
VIS1-24h max values, but the prediction still favors survival, and a similar 
paradox exists on the right side of VIS1-24h max. The seemingly 
contradictory predictions can be explained by some clinically common 
phenomena, such as patients in ICU with higher VIS at the beginning 
of ICU admission but whose hemodynamics improve the next day as 
the treatment progresses so that the dose rate of their vasoactive agents 
is markedly reduced. Therefore, the dynamic change in VIS highlights 
the predictive role in the model; it is hardly accidental that the higher 
the VRR is, the greater the tendency toward survival in ICU will be. 
The important role of VIS (norepinephrine) at 1–24 h and 25–48 h in 
the model was also confirmed: norepinephrine is the first choice in 
hemodynamic support therapy for patients with septic shock, and the 
effects of the VIS (norepinephrine) were similar to those of VIS25-48h max 
and VIS1-24h max. In addition to norepinephrine, the max dose rate of 
vasopressin during 25–48 h also had impactful features of model 
output, which conformed to the recommendations for vasoactive 
agents in the latest Surviving Sepsis Campaign Guidelines from 2021 
on the one hand, but also indicates that a large dose of vasopressin in 
late stage is not conducive to the prognosis of ICU outcome.

In general, we  successfully illustrated a significant association 
between VIS data and ICU mortality with a machine learning 
algorithm with small amounts of static VIS data and a deep learning 
algorithm with large amounts of dynamic data. We quantified and 
visualized the dynamic change in VIS data represented by VRR, which 
is an important indicator of patient prognosis in ICU.

Study cohort and patient characteristics

In view of VIS unified 6 widely used vasoactive agents in ICU 
under one metric, and its spatiotemporal dynamic change was 
significantly associated with the prognosis of ICU patients, we divided 
the patients of the cohort into four groups according to the VRR value 
(Figure  1B): 50% ≤ VRR (n = 5,743), 0 ≤ VRR < 50% (n = 2084), 
−50% ≤ VRR < 0 (n = 593), and VRR < −50% (n = 476). The basic 
demographic characteristics of the original cohort are shown in 

Supplementary Table 1. As shown, the baseline values of some pivotal 
variables, such as the SAPS II, SOFA score, and first nonzero VIS were 
significantly imbalanced. Then, we combined the four cohorts for each 
pairwise comparison, resulting in six new sets of cohorts (cohorts 
1–6). To avoid baseline imbalances between groups and the bias 
caused by missing data, we performed multiple imputation for missing 
data and matched the imputed cohorts with 1:1 pairwise PSM. Table 1 
shows the baseline characteristics of the six cohorts after 1:1 pairwise 
PSM: cohort 1 (50% ≤ VRR versus 0 ≤ VRR < 50%, 2046 pairs), cohort 
2 (50% ≤ VRR versus −50% ≤ VRR < 0, 592 pairs), cohort 3 
(50% ≤ VRR versus VRR < − 50%, 475 pairs), cohort 4 (0 ≤ VRR < 50% 
versus −50% ≤ VRR < 0, 592 pairs), cohort 5 (0 ≤ VRR < 50% versus 
VRR < −50%, 473 pairs), and cohort 6 (−50% ≤ VRR < 0 versus 
VRR < −50%, 452 pairs). The covariate characteristics of each cohort 
before and after PSM are shown in Supplementary Tables 2–7. As 
shown there, the covariates with standardized mean differences 
(SMDs) less than 0.1  in the most matched cohorts increased 
significantly compared with those before matching, indicating that the 
baseline of the matched cohort was better balanced.

Primary outcome

As vital signs, laboratory tests, severity scores, complications, and 
other covariates were greatly influenced, adjustments were made for 
these variables in the multivariate Cox regression. The K-M curve and 
multivariate Cox regression analysis showed a significant beneficial 
effect in the original cohort with increased VRR in ICU mortality 
(Supplementary Tables 8, 9; Supplementary Figure 2). In the 6 pairwise 
matched cohorts after multiple imputation and PSM, multivariate Cox 
regression analysis revealed patients in group 0 ≤ VRR < 50% [hazard 
ratio (HR) = 1.32, 95% confidence interval (CI) 1.17–1.50, p < 0.001], 
−50% ≤ VRR < 0 (HR = 1.79, 95% CI 1.44–2.22, p < 0.001), and 
VRR < −50% (HR = 2.07, 95% CI 1.61–2.66, p < 0.001) had a higher risk 
of mortality compared with 50% ≤ VRR (Figures  3A–C; 
Supplementary Tables 10, 11); patients in group −50% ≤ VRR < 0 
(HR = 1.41, 95% CI 1.17–1.70, p < 0.001), and VRR < −50% (HR = 1.66, 
95% CI 1.34–2.06, p < 0.001) had a higher risk of mortality compared 
with 0 ≤ VRR < 50% (Figures  3D,E; Supplementary Tables 13, 14); 
patients in group VRR < −50% (HR = 1.23, 95% CI 1.01–1.50, p < 0.05) 
had a higher risk of mortality compared with −50% ≤ VRR < 0 
(Figure 3F; Supplementary Table 15). The K-M estimator of the matched 
cohorts showed same results (Figures  4A–F). In summary, ICU 
mortality was increased with decreased VRR values.

Secondary outcome

The results for matched cohorts of in-hospital mortality were similar 
to ICU mortality. Survival analysis indicated patients in group 50% ≤ VRR 
showed the lowest in-hospital mortality in the original cohort 
(Supplementary Tables 16, 17; Supplementary Figure  3). For the 6 
matched cohorts, multivariate Cox regression analysis revealed significant 
differences (p < 0.001) in pairwise comparisons between any of the groups 
(Figures 5A–E; Supplementary Tables 18–22), except for VRR < −50% 
versus −50% ≤ VRR < 0 (Figure 5F; Supplementary Table 23), which had 
no statistically significant difference for in-hospital mortality (HR 1.16, 
95% CI 0.96–1.39, p = 0.12). The K-M estimator of the matched cohorts 
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TABLE 1 Basic demographic of matched 6 cohorts after multiple imputation.

Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Cohort 6

50% ≤ VRR 
(N = 2,046)

0 ≤ VRR < 50% 
(N = 2,046)

50% ≤ VRR 
(N = 592)

−50% ≤ VRR < 0 
(N = 592)

50% ≤ VRR 
(N = 475)

VRR < −50% 
(N = 475)

0 ≤ VRR < 50% 
(N = 592)

−50% ≤ VRR < 0 
(N = 592)

0 ≤ VRR < 50% 
(N = 473)

VRR < −50% 
(N = 473)

−50% ≤ VRR < 0 
(N = 452)

VRR < −50% 
(N = 452)

Age

Mean (SD) 67.10 (15.06) 67.01 (15.17) 66.99 (14.78) 66.43 (14.95) 66.91 (14.51) 66.63 (14.63) 66.42 (15.72) 66.45 (14.94) 66.89 (15.79) 66.72 (14.57) 66.83 (14.70) 66.69 (14.56)

Gender

Female 888 (43.40%) 868 (42.42%) 270 (45.61%) 254 (42.91%) 212 (44.63%) 199 (41.89%) 255 (43.07%) 254 (42.91%) 202 (42.71%) 198 (41.86%) 196 (43.36%) 189 (41.81%)

Male 1,158 (56.60%) 1,178 (57.58%) 322 (54.39%) 338 (57.09%) 263 (55.37%) 276 (58.11%) 337 (56.93%) 338 (57.09%) 271 (57.29%) 275 (58.14%) 256 (56.64%) 263 (58.19%)

Weight

Mean (SD) 83.34 (24.17) 83.30 (24.87) 82.92 (24.80) 83.09 (25.21) 83.28 (24.60) 83.25 (26.18) 83.31 (24.30) 83.14 (25.24) 82.92 (23.92) 83.40 (26.19) 82.19 (22.35) 83.16 (26.17)

SAPS II

Mean (SD) 49.40 (14.68) 49.58 (15.01) 51.37 (15.85) 51.71 (14.82) 49.29 (15.59) 49.56 (14.62) 50.56 (16.22) 51.77 (14.90) 48.55 (15.48) 49.62 (14.81) 50.05 (14.54) 50.12 (14.86)

SOFA score

Mean (SD) 10.78 (3.64) 10.82 (3.67) 11.48 (3.70) 11.64 (3.91) 11.05 (3.82) 11.11 (3.76) 11.43 (3.97) 11.65 (3.93) 10.88 (3.88) 11.09 (3.76) 11.10 (3.73) 11.22 (3.81)

First nonzero VIS

Mean (SD) 15.80 (17.21) 15.61 (15.15) 13.59 (13.11) 13.18 (12.23) 11.67 (12.67) 10.73 (11.93) 12.45 (11.75) 13.15 (12.24) 10.71 (11.08) 10.48 (10.59) 11.22 (9.87) 10.70 (10.76)

Mechanical ventilation

NO 828 (40.47%) 827 (40.42%) 235 (39.70%) 232 (39.19%) 219 (46.11%) 217 (45.68%) 250 (42.23%) 233 (39.36%) 235 (49.68%) 215 (45.45%) 199 (44.03%) 201 (44.47%)

YES 1,218 (59.53%) 1,219 (59.58%) 357 (60.30%) 360 (60.81%) 256 (53.89%) 258 (54.32%) 342 (57.77%) 359 (60.64%) 238 (50.32%) 258 (54.55%) 253 (55.97%) 251 (55.53%)

Sedative

NO 549 (26.83%) 558 (27.27%) 139 (23.48%) 148 (25.00%) 135 (28.42%) 145 (30.53%) 154 (26.01%) 148 (25.00%) 150 (31.71%) 145 (30.66%) 136 (30.09%) 134 (29.65%)

YES 1,497 (73.17%) 1,488 (72.73%) 453 (76.52%) 444 (75.00%) 340 (71.58%) 330 (69.47%) 438 (73.99%) 444 (75.00%) 323 (68.29%) 328 (69.34%) 316 (69.91%) 318 (70.35%)

AFIB

NO 1,641 (80.21%) 1,644 (80.35%) 477 (80.57%) 474 (80.07%) 376 (79.16%) 368 (77.47%) 480 (81.08%) 474 (80.07%) 369 (78.01%) 365 (77.17%) 351 (77.65%) 352 (77.88%)

YES 405 (19.79%) 402 (19.65%) 115 (19.43%) 118 (19.93%) 99 (20.84%) 107 (22.53%) 112 (18.92%) 118 (19.93%) 104 (21.99%) 108 (22.83%) 101 (22.35%) 100 (22.12%)

CAD

NO 1,346 (65.79%) 1,340 (65.49%) 371 (62.67%) 379 (64.02%) 285 (60.00%) 295 (62.11%) 382 (64.53%) 379 (64.02%) 278 (58.77%) 293 (61.95%) 276 (61.06%) 282 (62.39%)

YES 700 (34.21%) 706 (34.51%) 221 (37.33%) 213 (35.98%) 190 (40.00%) 180 (37.89%) 210 (35.47%) 213 (35.98%) 195 (41.23%) 180 (38.05%) 176 (38.94%) 170 (37.61%)

CHF

NO 1,169 (57.14%) 1,190 (58.16%) 351 (59.29%) 361 (60.98%) 271 (57.05%) 274 (57.68%) 345 (58.28%) 361 (60.98%) 260 (54.97%) 273 (57.72%) 264 (58.41%) 263 (58.19%)

YES 877 (42.86%) 856 (41.84%) 241 (40.71%) 231 (39.02%) 204 (42.95%) 201 (42.32%) 247 (41.72%) 231 (39.02%) 213 (45.03%) 200 (42.28%) 188 (41.59%) 189 (41.81%)

COPD

NO 1707 (83.43%) 1705 (83.33%) 485 (81.93%) 476 (80.41%) 403 (84.84%) 393 (82.74%) 466 (78.72%) 476 (80.41%) 389 (82.24%) 391 (82.66%) 377 (83.41%) 371 (82.08%)

YES 339 (16.57%) 341 (16.67%) 107 (18.07%) 116 (19.59%) 72 (15.16%) 82 (17.26%) 126 (21.28%) 116 (19.59%) 84 (17.76%) 82 (17.34%) 75 (16.59%) 81 (17.92%)

Liver

NO 1804 (88.17%) 1807 (88.32%) 513 (86.66%) 509 (85.98%) 419 (88.21%) 419 (88.21%) 493 (83.28%) 510 (86.15%) 404 (85.41%) 417 (88.16%) 404 (89.38%) 396 (87.61%)

YES 242 (11.83%) 239 (11.68%) 79 (13.34%) 83 (14.02%) 56 (11.79%) 56 (11.79%) 99 (16.72%) 82 (13.85%) 69 (14.59%) 56 (11.84%) 48 (10.62%) 56 (12.39%)

(Continued)
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TABLE 1 (Continued)

Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Cohort 6

50% ≤ VRR 
(N = 2,046)

0 ≤ VRR < 50% 
(N = 2,046)

50% ≤ VRR 
(N = 592)

−50% ≤ VRR < 0 
(N = 592)

50% ≤ VRR 
(N = 475)

VRR < −50% 
(N = 475)

0 ≤ VRR < 50% 
(N = 592)

−50% ≤ VRR < 0 
(N = 592)

0 ≤ VRR < 50% 
(N = 473)

VRR < −50% 
(N = 473)

−50% ≤ VRR < 0 
(N = 452)

VRR < −50% 
(N = 452)

Malignancy

NO 1,655 (80.89%) 1,647 (80.50%) 477 (80.57%) 477 (80.57%) 385 (81.05%) 379 (79.79%) 482 (81.42%) 477 (80.57%) 390 (82.45%) 377 (79.70%) 364 (80.53%) 358 (79.20%)

YES 391 (19.11%) 399 (19.50%) 115 (19.43%) 115 (19.43%) 90 (18.95%) 96 (20.21%) 110 (18.58%) 115 (19.43%) 83 (17.55%) 96 (20.30%) 88 (19.47%) 94 (20.80%)

Renal

NO 1,379 (67.40%) 1,402 (68.52%) 368 (62.16%) 396 (66.89%) 290 (61.05%) 312 (65.68%) 404 (68.24%) 396 (66.89%) 314 (66.38%) 311 (65.75%) 300 (66.37%) 298 (65.93%)

YES 667 (32.60%) 644 (31.48%) 224 (37.84%) 196 (33.11%) 185 (38.95%) 163 (34.32%) 188 (31.76%) 196 (33.11%) 159 (33.62%) 162 (34.25%) 152 (33.63%) 154 (34.07%)

Stroke

NO 1889 (92.33%) 1885 (92.13%) 551 (93.07%) 546 (92.23%) 429 (90.32%) 428 (90.11%) 540 (91.22%) 546 (92.23%) 419 (88.58%) 426 (90.06%) 410 (90.71%) 410 (90.71%)

YES 157 (7.67%) 161 (7.87%) 41 (6.93%) 46 (7.77%) 46 (9.68%) 47 (9.89%) 52 (8.78%) 46 (7.77%) 54 (11.42%) 47 (9.94%) 42 (9.29%) 42 (9.29%)

Heart rate

Mean (SD) 94.11 (22.25) 94.18 (21.58) 93.15 (22.16) 93.64 (20.70) 92.69 (22.02) 93.01 (21.09) 92.10 (22.08) 93.66 (20.70) 90.29 (21.70) 92.94 (21.07) 92.70 (20.82) 92.81 (21.33)

MAP

Mean (SD) 76.56 (18.73) 76.46 (19.27) 76.51 (18.61) 75.77 (19.10) 77.69 (19.62) 77.56 (19.32) 74.89 (18.50) 75.82 (19.23) 76.34 (19.73) 77.39 (19.18) 77.16 (19.63) 77.22 (18.89)

Temperature

Mean (SD) 36.58 (1.10) 36.61 (1.13) 36.45 (1.21) 36.52 (1.29) 36.51 (1.11) 36.55 (1.12) 36.50 (1.20) 36.51 (1.30) 36.53 (1.16) 36.55 (1.12) 36.52 (1.22) 36.54 (1.20)

WBC

Mean (SD) 15.14 (9.92) 14.95 (10.68) 14.98 (9.31) 14.77 (9.28) 14.58 (8.89) 14.70 (8.90) 14.26 (12.20) 14.78 (9.27) 14.32 (13.07) 14.78 (8.93) 14.86 (9.34) 14.77 (8.95)

Hemoglobin

Mean (SD) 10.28 (2.40) 10.26 (2.32) 10.16 (2.40) 10.25 (2.23) 10.13 (2.36) 10.26 (2.36) 10.17 (2.32) 10.24 (2.23) 10.23 (2.35) 10.27 (2.38) 10.29 (2.18) 10.27 (2.38)

Platelet

Mean (SD) 201.98 (123.26) 203.76 (123.74) 192.17 (127.70) 191.41 (120.29) 191.14 (123.64) 188.64 (105.97) 188.93 (125.11) 191.18 (120.45) 178.27 (103.43) 189.30 (106.26) 189.33 (115.72) 188.77 (107.77)

Sodium

Mean (SD) 137.01 (6.12) 136.96 (5.93) 136.90 (6.28) 137.09 (6.17) 136.59 (6.09) 136.61 (5.82) 137.07 (6.35) 137.06 (6.17) 136.66 (6.00) 136.63 (5.80) 136.69 (6.07) 136.68 (5.87)

Potassium

Mean (SD) 4.33 (0.91) 4.32 (0.91) 4.42 (0.94) 4.44 (0.92) 4.35 (0.88) 4.38 (0.90) 4.43 (0.93) 4.43 (0.92) 4.36 (0.89) 4.37 (0.90) 4.37 (0.85) 4.39 (0.88)

Chloride

Mean (SD) 103.22 (7.64) 103.08 (7.72) 103.09 (8.09) 102.85 (7.99) 102.65 (7.97) 102.50 (8.08) 103.02 (8.11) 102.85 (7.98) 102.83 (7.91) 102.49 (8.07) 102.60 (8.01) 102.51 (8.05)

Bun

Mean (SD) 37.42 (27.32) 37.12 (26.53) 41.72 (31.10) 40.21 (28.69) 41.60 (31.89) 39.96 (28.92) 40.36 (30.02) 40.29 (28.67) 40.25 (29.35) 40.29 (29.56) 41.20 (30.10) 40.08 (29.40)

Creatinine

Mean (SD) 2.07 (1.84) 2.05 (1.82) 2.32 (2.09) 2.26 (1.96) 2.37 (2.16) 2.28 (1.94) 2.22 (1.89) 2.26 (1.96) 2.22 (1.90) 2.29 (1.94) 2.27 (2.01) 2.26 (1.86)

PH

Mean (SD) 7.32 (0.11) 7.32 (0.12) 7.31 (0.12) 7.31 (0.12) 7.31 (0.12) 7.32 (0.12) 7.32 (0.12) 7.31 (0.12) 7.33 (0.11) 7.32 (0.12) 7.32 (0.12) 7.32 (0.12)

(Continued)
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TABLE 1 (Continued)

Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Cohort 6

50% ≤ VRR 
(N = 2,046)

0 ≤ VRR < 50% 
(N = 2,046)

50% ≤ VRR 
(N = 592)

−50% ≤ VRR < 0 
(N = 592)

50% ≤ VRR 
(N = 475)

VRR < −50% 
(N = 475)

0 ≤ VRR < 50% 
(N = 592)

−50% ≤ VRR < 0 
(N = 592)

0 ≤ VRR < 50% 
(N = 473)

VRR < −50% 
(N = 473)

−50% ≤ VRR < 0 
(N = 452)

VRR < −50% 
(N = 452)

PO2

Mean (SD) 132.99 (115.77) 131.90 (113.91) 129.24 (114.75) 129.64 (111.48) 135.09 (117.90) 134.53 (119.34) 131.53 (113.59) 129.95 (112.35) 136.35 (114.73) 132.71 (117.21) 130.68 (113.74) 132.32 (117.53)

PCO2

Mean (SD) 43.23 (13.09) 43.39 (13.07) 42.04 (12.78) 42.88 (13.88) 41.48 (12.71) 41.99 (13.02) 42.47 (12.79) 42.85 (13.85) 41.14 (11.30) 41.99 (12.82) 42.10 (13.38) 42.23 (13.02)

Lactate

Mean (SD) 3.14 (2.70) 3.14 (2.69) 3.40 (3.02) 3.38 (2.91) 3.39 (3.10) 3.36 (2.88) 3.20 (2.74) 3.39 (2.82) 3.14 (2.63) 3.26 (2.76) 3.29 (2.66) 3.33 (2.83)

Bicarbonate

Mean (SD) 20.60 (5.40) 20.62 (5.40) 19.81 (5.86) 20.14 (5.44) 20.05 (5.69) 20.34 (5.10) 20.33 (5.16) 20.15 (5.43) 20.42 (4.89) 20.41 (5.07) 20.26 (5.24) 20.36 (5.07)

CVP (tested)

NO 1,054 (51.52%) 1,037 (50.68%) 345 (58.28%) 332 (56.08%) 277 (58.32%) 269 (56.63%) 331 (55.91%) 332 (56.08%) 270 (57.08%) 268 (56.66%) 254 (56.19%) 254 (56.19%)

YES 992 (48.48%) 1,009 (49.32%) 247 (41.72%) 260 (43.92%) 198 (41.68%) 206 (43.37%) 261 (44.09%) 260 (43.92%) 203 (42.92%) 205 (43.34%) 198 (43.81%) 198 (43.81%)

BNP (tested)

NO 1918 (93.74%) 1922 (93.94%) 544 (91.89%) 548 (92.57%) 437 (92.00%) 435 (91.58%) 542 (91.55%) 548 (92.57%) 431 (91.12%) 434 (91.75%) 416 (92.04%) 417 (92.26%)

YES 128 (6.26%) 124 (6.06%) 48 (8.11%) 44 (7.43%) 38 (8.00%) 40 (8.42%) 50 (8.45%) 44 (7.43%) 42 (8.88%) 39 (8.25%) 36 (7.96%) 35 (7.74%)

Troponin (tested)

NO 1,206 (58.94%) 1,188 (58.06%) 312 (52.70%) 318 (53.72%) 248 (52.21%) 251 (52.84%) 326 (55.07%) 319 (53.89%) 260 (54.97%) 251 (53.07%) 235 (51.99%) 242 (53.54%)

YES 840 (41.06%) 858 (41.94%) 280 (47.30%) 274 (46.28%) 227 (47.79%) 224 (47.16%) 266 (44.93%) 273 (46.11%) 213 (45.03%) 222 (46.93%) 217 (48.01%) 210 (46.46%)

Creatinine kinase (tested)

NO 1,127 (55.08%) 1,121 (54.79%) 301 (50.84%) 301 (50.84%) 247 (52.00%) 249 (52.42%) 304 (51.35%) 302 (51.01%) 257 (54.33%) 249 (52.64%) 228 (50.44%) 236 (52.21%)

YES 919 (44.92%) 925 (45.21%) 291 (49.16%) 291 (49.16%) 228 (48.00%) 226 (47.58%) 288 (48.65%) 290 (48.99%) 216 (45.67%) 224 (47.36%) 224 (49.56%) 216 (47.79%)
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FIGURE 3

Forest plot of multivariate Cox regression analysis for ICU mortality in each cohort (A–F) after pairwise PSM. The differences for each matched cohort 
were significant.

showed similar trends (Figures 6A–F). Although in-hospital mortality 
was significant non-difference in matched cohort 6, it should be noted 
that VRR values of both two groups in cohort 6 were negative, implying 
that once the intensity of hemodynamic support therapy quantified by 
VIS decreased during 25–48 h compared with 1–24 h (namely VRR > 0), 
it was inclined to be in lower in-hospital mortality.

Two doubly robust estimation models for 
primary and secondary outcomes

To ensure the robustness of the results, as shown in Table 2, two 
doubly robust estimation models: the survey-weighted generalized 
linear model and survey-weighted Cox model with all covariates using 

IPW, were also conducted for ICU and in-hospital mortality in each 
matched cohort. These findings indicated that an increase in VRR had 
a significant beneficial effect on survival in ICU or hospital. In terms 
of ICU mortality and in-hospital mortality, the results of two doubly 
robust estimation models were similar to those of multivariate Cox 
regression for in-hospital mortality. Except for matched cohort 6 
(VRR < −50% versus −50% ≤ VRR < 0), there were statistically 
significant differences (p < 0.05, Table  2) for ICU mortality and 
in-hospital mortality between any other groups in the survey-
weighted generalized linear model [odds ratio (OR) 1.24, 95% CI 
0.94–1.65, p = 0.13; OR 1.06, 95% CI 0.80–1.41, p = 0.7, respectively. 
Only for cohort 6] and survey-weighted Cox model [OR 1.16, 95% CI 
0.96–1.42, p = 0.13; OR 1.06, 95% CI 0.89–1.28, p = 0.5, respectively. 
Only for cohort 6]. This result may be due to the higher mortality of 
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the two groups in cohort 6. Multivariate Cox regression models for the 
six matched cohorts mentioned above are also presented in Table 2. 
All the three models for matched cohort 1 to cohort 5 came to the 
same conclusion: patients with a higher positive VRR value were 
highly associated with lower ICU mortality and in-hospital mortality.

Discussion

In clinical practice, without the state-of-the-art hospital 
information system (HIS) to collect information and the dose rate of 
vasoactive agents from infusion pumps, it would be a formidable 

FIGURE 4

Kaplan–Meier curve for ICU mortality in each cohort (A–F) after pairwise PSM. The differences for each matched cohort were significant.
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FIGURE 5

Forest plot of multivariate Cox regression analysis for in-hospital mortality in each cohort after pairwise PSM. Except for matched cohort 6 (F, 
VRR < −50% versus −50% ≤ VRR < 0), there were statistically significant differences between any other groups (A–E).

challenge to obtain real-time VIS data with high accuracy. This means 
that extensive, quick, and easy assessment of the prognosis of patients 
with VIS data is a daunting task for ICU medical staff, although 
compared with dynamic VIS data, we have simplified the richness of 
data in our XGBoost model with static VIS data obtained within 
1–24 h and 25–48 h. Especially in small- and medium-sized ICUs in 
less developed areas, the phenomenon of information silos between 
ICU hardware devices and HISs is quite widespread. It should 
be  noted that a sophisticated and well-designed bedside ICU 
observation chart will help to solve this problem.

Open-source critical care databases such as the MIMIC and eICU 
databases have made it possible for data science to implement big data 
in critical care. In recent years, there has been a growing number of 

studies on prognostic models with supervised learning and deep 
learning algorithms. In this retrospective, observational evaluation of 
more than 8,000 patients with septic shock, we first proposed the term 
VRR to describe the dynamic changes in VIS, which can be used to 
evaluate the intensity of hemodynamic support. Then, we applied deep 
learning and machine learning algorithms to process a large amount of 
dynamic VIS data and fewer static VIS data separately, which objectively 
and quantitatively proved for the first time that temporal changes in VIS 
data represented by VRR were highly correlated with ICU mortality of 
patients with septic shock. To examine VRR as an independent 
predictor of ICU and in-hospital mortality, we used multivariate Cox 
regression in different groups of enrolled patients divided by VRR 
value, and multivariate Cox regression, and two doubly robust 
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estimation models were conducted among subgroups after pairwise 
PSM. There is no doubt that our extensive data support the empirical 
conclusion most commonly known by experienced ICU staff that 
dynamic changes in the dose rates of vasoactive agents in ICU patients 
with septic shock can be used to assess ICU and in-hospital mortality.

Septic shock is the most severe complication of sepsis and has a 
high mortality. Vasoactive agents therapy is an essential treatment in 
hemodynamic support for patients with septic shock, which has 
become a widespread clinical consensus. Norepinephrine, a powerful 
α-1 and β-1 adrenergic receptor agonist, can constrict the blood 

FIGURE 6

Kaplan–Meier curve for in-hospital mortality in each cohort after pairwise PSM. Except for matched cohort 6 (F, VRR < −50% versus −50% ≤ VRR < 0), 
there were statistically significant differences between any other groups (A–E).
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TABLE 2 Primary and secondary outcome analysis with three different models: (1) Multivariate Cox regression analysis model, (2) Survey-weighted 
generalized linear model of with all covariates using IPW; (3) Survey-weighted Cox model with all covariates using IPW.

Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Cohort 6

ICU mortality

Multivariate Cox regression [HR (95% CI)] 1.32 (1.17, 1.50) 1.79 (1.44, 2.22) 2.07 (1.61, 2.66) 1.41 (1.17, 1.70) 1.66 (1.34, 2.06) 1.23 (1.01, 1.50)

Survey-weighted generalized linear models [OR 

(95% CI)]

2.23 (1.91, 2.60) 4.06 (3.09, 5.35) 4.58 (3.36, 6.25) 1.81 (1.44, 2.27) 2.48 (1.91, 3.22) 1.24 (0.94, 1.65)

Survey-weighted Cox models [OR (95% CI)] 1.33 (1.17, 1.51) 1.82 (1.46, 2.26) 1.59 (1.17, 2.16) 1.50 (1.28, 1.76) 1.68 (1.37, 2.05) 1.16 (0.96, 1.42)

In-hospital mortality

Multivariate Cox regression [HR (95% CI)] 1.43 (1.28, 1.60) 1.75 (1.45, 2.11) 2.00 (1.61, 2.49) 1.48 (1.24, 1.75) 1.67 (1.37, 2.03) 1.16 (0.96, 1.39)

Survey-weighted generalized linear models [OR 

(95% CI)]

2.08 (1.80, 2.41) 3.77 (2.89, 4.93) 3.54 (2.59, 4.83) 1.78 (1.42, 2.23) 2.14 (1.65, 2.77) 1.06 (0.80, 1.41)

Survey-weighted Cox models [OR (95% CI)] 1.50 (1.30, 1.64) 2.03 (1.65, 2.51) 1.95 (1.53, 2.49) 1.45 (1.25, 1.68) 1.67 (1.41, 1.99) 1.06 (0.89, 1.28)

HR, Hazard Ratio; CI, Confidence Interval; OR, Odds Ratio. For each cohort, statistical results of different models in bold have p values < 0.05. OR/HR represents risk of mortality in low VRR 
group relative to high VRR group in each cohort.

vessels and elevate MAP with minimal impact on heart rate, and it is 
strongly recommended as the first-line agent over other vasopressors 
for adults with septic shock. However, excessively high doses of 
norepinephrine may still increase splanchnic vascular resistance and 
cause circulatory impairment (30). Dopamine, vasopressin, and 
epinephrine are typically alternatives or add-on vasoactive agents to 
norepinephrine in septic shock when MAP levels are inadequate, or 
whenever the norepinephrine is not available. Dopamine and 
epinephrine may increase heart rate or induce tachyarrhythmias, 
while vasopressin may increase the risk of digital ischemia (31). 
Dobutamine and milrinone were used for cardiac output augmentation 
by enhancing cardiac contractility and rate in septic shock with 
myocardial dysfunction to maintain organ perfusion, though it may 
cause hypotension and tachyarrhythmias. There is increasing 
discussion regarding the possible benefit of a tailored vasopressor 
treatment strategy for individual patients (5), and the rational use of 
vasoactive agents should be  emphasized. Collectively, vasoactive 
agents featuring a narrow therapeutic spectrum could lead to 
potentially lethal complications. Hence, these drugs need precise 
therapeutic targets, close monitoring with titration to the minimal 
efficacious dose, and ought to be weaned as promptly as possible. 
Additionally, administering vasoactive agents in septic shock requires 
an individualized approach.

In a multi-center prospective cohort trial involving 1,639 patients, 
Robert et al. found that an increase in the initial 24 h vasoactive agents 
dosage of septic shock was associated with an increase in mortality 
(10). Gaies et al. released the VIS in 2010, which was an updated 
version of the inotropic score (IS), that included more commonly used 
vasopressors (adding norepinephrine, vasopressin, and milrinone) 
compared to the original version (13), thus more comprehensively 
quantitatively assessing the dosage of vasoactive agents. In clinical 
practice, multiple vasoactive agents are used in patients with septic 
shock, and the VIS is undoubtedly a valuable scoring system for 
hemodynamic management. Vasoactive agents can reveal the severity 
of septic shock. Many clinical trials have found that early higher VIS 
was significantly associated with increased mortality among patients 
with septic shock (14, 32), cardiac surgery (16, 17), and cardiac 
mechanical circulatory support (33). A single-center retrospective 
study including 910 adult patients with sepsis suggested that VISmax 
during the first 6 h of emergency department admission was 

remarkably associated with 30-day mortality (32). Moreover, VISmax 
was superior to the cardiovascular component of the SOFA score and 
initial lactate levels and nearly equivalent to the acute physiology and 
chronic health evaluation (APACHE) II score (32). Previous studies 
on the VIS were limited to a single measurement to assess the 
correlation with mortality. Our research focuses on the effect of 
changes in the VIS, that is, the reduction in the dose rate of vasoactive 
agents, on the mortality of patients with septic shock. In this study, 
using the sophisticated LSTM deep learning algorithm with 
1 h-resolution real-time VIS data, we found that temporal changes in 
the dose rates of vasoactive agents were able to provide clinicians with 
reliable and up-to-date prognostic information, which may serve as 
new evidence and be helpful in early and reliable prognostication for 
septic shock. Through the XGBoost machine learning algorithm, 
we  evaluated fewer VIS data from the static perspective. Overall, 
we found that the dynamic changes of VIS in the first 48 h after ICU 
admission, which is a type of point-of-care data and blood-free 
indicator with no additional financial cost, can be applied to assess 
patient prognosis.

To the best of our knowledge, this is the first study to quantitatively 
evaluate the correlation between the reduction intensity of 
hemodynamic support and mortality among patients with septic 
shock using VRR, a completely new notion calculated based on the 
VIS proposed by us. Our study explored high-resolution data for 
analysis on the large sample size, and confirmed that early vasoactive 
dose reductions were associated with improved clinical outcomes. In 
this study, mortality was lowest when VRR was greater than 50%. But 
there are also some limitations, an important point is that future 
studies are needed to standardize the protocol further to assess the 
interaction between fluid volume and reduction of vasoactive agents 
dosage. In addition, although the VIS is a comprehensive and 
quantitative evaluation tool for the use of vasoactive agents, the 
correction factors of these drugs may not strictly conform to the 
pharmacological effect. Furthermore, patients’ response to different 
vasopressors is neither uniform nor predictable. Which may impact 
the outcome remarkably (34). But nevertheless, this is also an effective 
way to describe the extensive heterogeneity of vasoactive agents 
therapy. Although all analyses were adjusted for known and possible 
confounders, it was still possible that there are unknown and residual 
confounders that our existing models cannot explain.
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Conclusion

In conclusion, VRR is an important indicator affecting the prognosis 
of the patients among VIS data. Increased VRR value was remarkably 
associated with lower ICU and in-hospital mortality among patients with 
septic shock receiving vasoactive–inotropic therapy for more than 24 h. 
The complexity and severity of the ICU patient’s condition determine the 
diversity of administration of the vasoactive–inotropic agents. In 
contrast, the temporal dynamic change of the intensity of hemodynamic 
support with multiple vasoactive agents has been ignored to some extent 
due to the past time. They are now quite feasible and free to access, it is 
absolutely necessary to be evaluated in the clinical practice for optimal 
clinical care and decision-making.
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