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with high-resolution imaging and
histology
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Introduction: A reliable and automated method to segment and classify carotid
artery atherosclerotic plaque components is needed to efficiently analyze
multi-weighted magnetic resonance (MR) images to allow their integration
into patient risk assessment for ischemic stroke. Certain plaque components
such as lipid-rich necrotic core (LRNC) with hemorrhage suggest a greater
likelihood of plaque rupture and stroke event. Assessment for presence and
extent of LRNC could assist in directing treatment with impact upon patient
outcomes.
Methods: To address the need to accurately determine the presence and
extent of plaque components on carotid plaque MRI, we proposed a two-
staged deep-learning-based approach that consists of a convolutional neural
network (CNN), followed by a Bayesian neural network (BNN). The rationale
for the two-stage network approach is to account for the class imbalance of
vessel wall and background by providing an attention mask to the BNN. A
unique feature of the network training was to use ground truth defined by
both high-resolution ex vivo MRI data and histopathology. More specifically,
standard resolution 1.5 T in vivo MR image sets with corresponding high
resolution 3.0 T ex vivo MR image sets and histopathology image sets were
used to define ground-truth segmentations. Of these, data from 7 patients
was used for training and from the remaining two was used for testing the
proposed method. Next, to evaluate the generalizability of the method, we
tested the method with an additional standard resolution 3.0 T in vivo data
set of 23 patients obtained from a different scanner.
Results: Our results show that the proposed method yielded accurate
segmentation of carotid atherosclerotic plaque and outperforms not only
manual segmentation by trained readers, who did not have access to the ex
vivo or histopathology data, but also three state-of-the-art deep-learning-
based segmentation methods. Further, the proposed approach outperformed
a strategy where the ground truth was generated without access to the high
resolution ex vivo MRI and histopathology. The accurate performance of this
method was also observed in the additional 23-patient dataset from a
different scanner.
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TABLE 1 Criteria of tissue segmentatio
intensity relative to adjacent muscle.

TOF T

LRNC with
Older hemorrhage +

Fresh hemorrhage +

No hemorrhage O

Calcification −
Fibrous tissue −

+: hyperintense, O: isointense, −: hypointe
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Conclusion: In conclusion, the proposed method provides a mechanism to perform
accurate segmentation of the carotid atherosclerotic plaque in multi-weighted MRI.
Further, our study shows the advantages of using high-resolution imaging and
histology to define ground truth for training deep-learning-based segmentation
methods.
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1. Introduction

Atherosclerosis is the most common cause of death in the

United States and throughout the world (1). Identification of

atherosclerotic plaque composition including high risk features

such as lipid rich necrotic core (LRNC) with hemorrhage has the

potential to allow for event risk assessment and may allow better

selection of patients for intervention (2, 3). High-resolution multi-

weighted magnetic resonance imaging (MRI) has emerged as an

effective tool for visualization and characterization of

atherosclerotic plaque composition (4, 5). The signal characteristics

of major plaque components across MR sequences of various (T1,

T2, proton density) weighting have been well established with

respect to histology (6, 7). Five different atherosclerotic plaque

components have been identified based on signal intensities of

multi-weighted MR images (Table 1). However, the manual

segmentation and classification of plaque components, which

currently depends on offline processing, requires a time

consuming comparison of plaque signal characteristics across at

least four sets of differently contrast-weighted MR images. This is

labor-intensive, and therefore costly, and has the potential to delay

the delivery of medical care. To address these issues, several

automated segmentation algorithms based on multi-weighted MR

images have been developed (8–14). These are typically supervised

segmentation methods that use a data subset as a training set on

which segmentation is performed manually. While these methods

perform voxel-wise segmentation using image properties such as

absolute value of intensities, intensity gradients, and wall distances,

most are highly dependent on manually provided reference values.

These values are error-prone due to two reasons: (1) inter and

intra-reader variability; and (2) training set image quality which,

because of its in vivo acquisition, often has limited resolution, and

suffers from motion and noise-related artifacts. To accurately

segment various plaque components, histopathology is the
n. The symbols describe the signal
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preferred gold standard as the ground truth. However, direct

comparison of histopathology and in vivo MR images with

relatively low spatial resolution is intractable due to the differences

and inconsistences in image characteristics, including shrinking

size of fixed tissue, different orientation and slice thickness.

In this study, we developed a two-stage neural-network-based

method for carotid vessel wall and plaque component segmentation

by utilizing both high resolution ex vivo MR images and

histopathology in the same set of patients as ground truth. Use of

high-resolution ex vivo MR images helps bridge the gap between

standard resolution in vivo MR images and histopathology images

and potentially achieve a more accurate definition of the ground

truth. A 9-patient standard resolution 1.5 T in vivo MRI data set

with corresponding high resolution 3.0 T ex vivo MRI data and

histopathology images was used to define ground-truth

segmentations on the standard-resolution images. Data from 7 of

these patients was used to train the proposed two-stage network,

while the data from the rest of the 2 patients was used for testing.

The first part of the two-stage network was a convolutional neural

network (CNN) for inner and outer vessel wall segmentation. The

second part was a Bayesian deep neural network (BNN) that

allowed for input of aggregated multi-weighted MR image data.

The goal of the BNN was to achieve pixel-level segmentation of

plaque components. We hypothesize that this two-stage neural

network can be used to account for the class imbalance of vessel

wall and background and has the potential to out-perform both

manual segmentation and state-of-the-art single-stage-based

segmentation methods. To evaluate the generalizability of the

method to an external dataset, we tested the method on a separate

data set of 23 patients 3.0 T in vivo-only MR images.
2. Method

2.1. Data acquisition

A total of 9 patients (6 males and 3 females) who were

scheduled for carotid endarterectomy surgery were scanned in

vivo on a 1.5 T Sonata MR Scanner (Siemens Medical Solutions,

Malvern, PA) using bilateral dedicated 4-element carotid surface

coils within one week prior to surgery (Machnet, Netherlands).

MR sequences acquired spin-lattice relaxation time (T1)

weighted, spin-spin transverse relaxation (T2) weighted, proton-

density weighted, and time of flight (TOF) images. At

approximately 2 h after surgery, the dissected carotid plaque

tissue was placed in Phosphate Buffered Saline (PBS) solution
frontiersin.org
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TABLE 2 MR imaging parameters.

(a) MR imaging parameters used in training and test data sets (9 patients)

In vivo MR imaging (1.5 T) Ex vivo MR imaging (3.0 T)

T1-w T2-w PD-w TOF T1-w T2-w PD-w TOF
TR/TE(ms/ms) 600/5.6 2,130/56 2,130/5.6 10/2.9 500/10 2,500/40 2,500/10 15/4.9

FOV (mm2) 120 × 120 120 × 120 120 × 120 120 × 120 25 × 25 25 × 25 25 × 25 25 × 25

Matrix size 256 × 256 256 × 256 256 × 256 256 × 256 256 × 256 256 × 256 256 × 256 256 × 256

Average number 4 2 2 2 3 2 2 4

Slice thickness (mm) 3 3 3 3 1 1 1 1

Slice number 12 12 12 12 24 24 24 24

(b) MR imaging parameters used in additional in vivo test data set (23 patients)

In vivo MR imaging (3.0 T)

T1-w T2-w PD-w TOF
TR/TE(ms/ms) 900/8.7 2,500/56 2,130/11 26/4.7

FOV (mm2) 140 × 140 140 × 140 140 × 140 140 × 140

Matrix size 256 × 256 256 × 256 256 × 256 256 × 256

Average number 4 4 4 2

Slice thickness (mm) 3 3 3 3

Slice number 14 14 14 14
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and then scanned ex vivo on a 3 T Siemens Allegra MR scanner

using a similar but higher resolution multi-weighted MR

protocol (Table 2a). Note that we also included TOF images in

the ex vivo acquisition to keep the consistency of contrast

(gradient-echo contrast) as those used in vivo. A 3.5-cm diameter

volume coil (Nova Medical, Inc, Wilmington, MA) was used as a

transmitter and receiver (15). After the ex vivo MRI examination,

the tissue was fixed and stained with hematoxylin and eosin

(H&E) and Masson’s trichrome stains. The paraffin-embedded

tissue blocks were cut every 1 mm, in an orientation to

approximate the orientation of the vivo and ex vivo MRI slices.

The whole dataset included a total of 84 sets of in vivo MR

images, ex vivo MR images, and corresponding pathological

sections. We used the ex vivo and pathological sections to

establish ground truth.

As per best practices to evaluate deep-learning-based methods

(16) and to evaluate the generalizability of our method to variation

in scanners, we also evaluated our method on an additional

external dataset acquired with 3 T PET-MRI system. More

specifically, an in vivo multi-contrast MR images from 23

patients (12 males and 11 females) scanned on a 3.0 T Siemens

PET-MRI system (Siemens mMR, Siemens Healthineers,

Malvern, PA) were obtained (Table 2b). A pair of 4-element

surface coils (Siemens Healthineers, Malvern, PA) was placed

around the neck area for signal reception. A total of 445 in vivo

MR slices with distinguishable carotid anatomy were selected for

further analysis.
2.2. Data preprocessing and approach to
define ground truth

The acquired images were corrected for coil sensitivity using

contrast-limited adaptive histogram equalization algorithm (17).
Frontiers in Cardiovascular Medicine 03
In addition, to alleviate the issue of low signal-to-noise ratio, a

block-match and 3D filtering algorithm (18) was used to

decrease noise prior to segmentation. Images from different MR

sequences were co-registered based on the distance to the

bifurcation. Following these steps, to generate ground-truth data

from data sets of 9 patients for training the network, three

atherosclerotic plaque components, namely LRNC with older

hemorrhage (late subacute or late chronic hemorrhage >1 week),

calcification, and fibrous tissue were segmented. A reader with

over five years’ experience in MR imaging was employed to

generate ground truth. Intensity-based criteria (Table 1) was

used for tissue classification (7) to perform preliminary

segmentation of these plaque components. First, the lumen and

outer boundary of vessel wall were manually identified. To

minimize the impact of noise and improve the consistency of

manual segmentation, the adjacent sternocleidomastoid muscle

was used as a reference to quantitatively define the threshold and

signal intensity criterion. The preliminary segmentation was then

manually validated with assistance of ex vivo images and

histopathology to establish the ground truth.

The segmentation procedure used to generate ground truth

is delineated in Figure 1. With slice thickness of only 1 mm in

the ex vivo images, we could directly compare the segmented

ex vivo images to the histopathology for a clearer definition of

the generated ground truth. We used the same intensity-based

criteria as used on the in vivo MR images to segment the ex

vivo image. The second row of Figure 1 shows the

histopathological sections with segmentation of their

corresponding ex vivo MR images. To validate the in vivo

segmentation, the trained reader ensured that the locations,

sizes, and shapes of plaque components in segmented in vivo

images were as close as possible to the segmented ex vivo

images. If the in vivo segmentation had an apparent difference

from ex vivo segmentation and pathological sections, the
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FIGURE 1

The strategy to generate ground truth segmentation shown on a representative slice.

Li et al. 10.3389/fcvm.2023.1127653
reference muscle was reselected until the difference was

eliminated. All ground-truth generating steps were performed

using a custom designed tool developed with Matlab. In a total

of 84 2D slices acquired from 9 patients, a subset of 70 slices

from 7 patients was augmented using flipping and rotation of

those images to yield a dataset of 420 slices. This was used as

the training set. Once trained, this method was tested with 14

slices from the other 2 patients, where again, the ground truth

was defined with the assistance of ex vivo MR imaging data

and histopathology.

Further, as mentioned above, the method was also tested with

an additional test dataset of 445 MR slices from 23 patients

obtained from a 3.0 T MR scanner. Ground truth segmentation

of the additional test dataset was obtained using manual

annotation performed by an experienced observer with the same

custom designed tool as described above.
2.3. Proposed segmentation method

The proposed method consists of two networks, namely a CNN

followed by a BNN, referred to as Stage I and Stage II, respectively.

T1W images were used in the CNN algorithm which segmented

the contours of lumen and outer artery wall. The output of the

CNN was grouped with the 4-channel aggregated MR images

and input to the BNN, which then provided segmentation of

plaque components. The details of two networks are provided in

Supplementary Appendix.

2.3.1. Training
The CNN and BNN were trained separately. We randomly

selected 80% of the data out of the whole dataset as the training

set. The CNN was trained with T1-weighted images only, and

the network hyperparameters were optimized on the training set
Frontiers in Cardiovascular Medicine 04
via five-fold cross validation. Subsequently, the BNN was trained

with the same training set but comprised of all multi-weighted

MR images and vessel wall masks. The hyperparameter

combination of BNN was optimized with the same method as

that of CNN. The loss functions of the CNN and BNN were a

combination of cross-entropy loss, Dice loss and K-L divergence

loss, denoted by LossCE, LossDice and LossKLD respectively. These

loss functions are given by:

LossCE ¼ ytrue log(ypred)þ (1–ytrue)log(1–ypred)

LossDice ¼ 1–
2
P

pixel ytrueypredP
pxiel y

2
true

þP
pxiel y

2
pred

LossKLD ¼
X
pxiel

ytrue log
ytrue
ypred

� �

The mixed loss function of CNN, denoted by LossCNN, is given by:

LossCNN ¼ 1
2
(LossCE þ LossDice):

The purpose of the mixed loss function of CNN was to

handle the class imbalance caused by the vessel wall, which

often occupies a considerably smaller volume relative to the

background (19).

The mixed loss function of BNN, denoted by LossBNN, is

given by:

LossBNN ¼ 1
2
(LossCE þ LossKLD):

The LossKLD was added to the LossCE for the posterior distribution

approximation of the BNN (20).
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1127653
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Li et al. 10.3389/fcvm.2023.1127653
2.4. Data analysis

2.4.1. Figures of merit (FOM) for evaluation
In all the experiments, to evaluate the performance, three

FOMs were employed: Dice similarity coefficient (DSC),

precision, and sensitivity, given by

DSC ¼ 2TP
FN þ FP þ 2TP

Sensitivity ¼ TP
FN þ TP

Precision ¼ TP
TP þ FP

where TP, TN, FP, and FN denotes true positive, true negative, false

positive and false negative of prediction of labels based on

normalized signal intensities on multi-weighted MR images

respectively. The mean values and 95% confidence intervals (CIs)

of these FOMs were computed.

2.4.2. Comparison with other deep learning
methods

We compared the performance of the proposed method with

three state-of-the-art deep learning methods, namely a U-Net

(21), ResNet-101 (22), and DeepLabv3 (23). These methods were

chosen as they are widely used in medical image segmentation.

All compared methods were trained with ground truth obtained

with the assistance of the high-resolution images and optimized

via five-fold cross validation.

We also compared the performance of our method to

performance of trained readers. Two trained readers, each with

two years of experience in MR imaging, referred to as Observer I

and Observer II, were asked to segment the 14-slice test data

using the same standard customized software as we mentioned.

These observers were not provided the ex vivo data or the

histopathologic sections for these 14 slices. Each observer was

asked to segment the regions of interest twice to decrease the

intra-observer variability. We then compared the performance of

each observer with the performance of our proposed method.

In all the comparison studies, statistical significance was

assessed via a paired sample t-test, with a p-value <0.05 leading

to the inference of a statistically significant difference.

2.4.3. Impact of using histology and ex vivo images
to define ground truth

To investigate the impact of our high-resolution assisted

ground-truth generation procedure on segmentation

performance, we trained the proposed method using a strategy

where the ground truth was generated without referring to the

high-resolution images. In this strategy, one observer was asked

to manually annotate all 70 slices of the training set three times

to eliminate intra-observer variability. The two-stage neural

network was then trained with 3 sets of manually annotated

ground truth separately. The performance using this strategy was

then evaluated on the test set (14 slices) and compared with the
Frontiers in Cardiovascular Medicine 05
strategy that used high-resolution ex vivo MR images and

histopathology to define the ground truth.

2.4.4. Sensitivity to variations in training data
We assessed the sensitivity of the plaque segmentation to

variations in training data. First, we randomly separated the BNN

training data into two subsets. The BNN was trained and

optimized on these two subsets individually. This process yielded

two versions of the proposed method, each trained with a different

dataset. We then evaluated both versions using the 14-slice test

data set, resulting in two sets of segmentation. The similarity of

these two segmentation sets was quantified using DSC values, with

a high value indicating less sensitivity to variations in the training

data. For comparison, we also evaluated the sensitivity of the

standard U-Net method to this variation in the training data.

2.4.5. Studying the efficacy of using two networks
in the proposed method

To study the impact of using two networks in our approach, we

compared our method with an approach that just used the BNN

(i.e., did not contain the Stage I). Our proposed two-stage

method vs. the BNN were trained on the same training set

separately and optimized via five-fold cross validation.

2.4.6. Evaluation with dataset from different
scanner

To evaluate the generalizability of our method to variations in

scanners, the proposed method was tested using a test set

consisting of 445 3.0 T MR slices described above. An

experienced reader with over four years of experience in MR

imaging manually annotated 445 multi-weighted MR images

using a customized software. Next the trained reader reviewed

each preliminary label of the tissue-types and manually corrected

inaccurate labels. We also compared the performance of the

proposed method on the additional test set with the Standard U-

Net, DeepLab v3, and ResNet-101.
3. Results

3.1. Performance in segmenting plaque
components

The performance of the proposed method in segmenting each

tissue type is shown in Table 3. The proposed method outperformed

(p < 0.05) all other methods on DSCs of all tissue types, yielding

DSCs of 0.78 [95% confidence interval (CI): 0.75, 0.8], 0.62 (95% CI:

0.6, 0.65), and 0.74 (95% CI: 0.73, 0.76) for LRNC with older

hemorrhage, calcification, and fibrous tissue, respectively. Two

representative results of plaque segmentation are shown in Figure 2.

It was observed that the proposed method generally

outperformed Observer I and Observer II over a range of tissue

types and FOMs (Table 3), yielding 10%–28% higher DSCs in

segmenting LRNC with older hemorrhage, calcification, and fibrous

tissue, except that Observer II yielded better sensitivity for

segmenting calcification. This demonstrates the higher accuracy of
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TABLE 3 Performance in segmenting plaque components (95% confidence interval) in 2/9 patients scanned at 1.5 T MRI.

(a) DSC

LR/NC with OH Calcification Fibrous tissue
Observer I 0.71 (0.69, 0.72) 0.52 (0.45, 0.58) 0.58 (0.55, 0.6)

Observer II 0.61 (0.59, 0.63) 0.53 (0.52, 0.53) 0.56 (0.5, 0.62)

Standard U-Net 0.7 (0.68, 0.73) 0.49 (0.46, 0.53) 0.67 (0.6, 0.73)

DeepLab V3 0.71 (0.69, 0.73) 0.58 (0.55, 0.61) 0.69 (0.67, 0.71)

ResNet-101 0.75 (0.73, 0.77) 0.56 (0.53, 0.6) 0.65 (0.61, 0.67)

The proposed 2-stage CNN without high-resolution reference 0.76 (0.73, 0.78) 0.56 (0.55, 0.58) 0.64 (0.61, 0.69)

The proposed method 0.78 (0.75, 0.8) 0.62 (0.6, 0.65) 0.74 (0.73, 0.76)

(b) Precision

LR/NC with OH Calcification Fibrous tissue
Observer I 0.8 (0.79, 0.8) 0.44 (0.43, 0.45) 0.56 (0.51, 0.6)

Observer II 0.77 (0.75, 0.78) 0.38 (0.39, 0.37) 0.54 (0.46, 0.61)

Standard U-Net 0.78 (0.76, 0.8) 0.7 (0.67, 0.74) 0.58 (0.51, 0.65)

DeepLab V3 0.8 (0.78, 0.82) 0.63 (0.6, 0.66) 0.71 (0.69, 0.73)

ResNet-101 0.83 (0.81, 0.85) 0.64 (0.61, 0.68) 0.63 (0.59, 0.65)

The proposed 2-stage CNN without high-resolution reference 0.68 (0.65, 0.7) 0.76 (0.75, 0.78) 0.75 (0.7, 0.82)

The proposed method 0.76 (0.71, 0.8) 0.55 (0.53, 0.58) 0.72 (0.71, 0.74)

(c) Sensitivity

LR/NC with OH Calcification Fibrous tissue
Observer I 0.64 (0.61, 0.66) 0.68 (0.5, 0.8) 0.58 (0.56, 0.6)

Observer II 0.51 (0.55, 0.64) 0.83 (0.8, 0.85) 0.58 (0.53, 0.62)

Standard U-Net 0.64 (0.62, 0.66) 0.38 (0.35, 0.41) 0.79 (0.75, 0.83)

DeepLab V3 0.64 (0.62, 0.66) 0.54 (0.51, 0.57) 0.67 (0.65, 0.69)

ResNet-101 0.68 (0.66, 0.7) 0.5 (0.47, 0.54) 0.67 (0.63, 0.69)

The proposed 2-stage CNN without high-resolution reference 0.86 (0.83, 0.88) 0.44 (0.43, 0.46) 0.56 (0.53, 0.61)

The proposed method 0.8 (0.79, 0.81) 0.71 (0.69,0.74) 0.76 (0.7, 0.82)
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our model in comparison to human observers who did not have

access to the ex vivo or histopathology data. In comparison to

those of the BNN trained with manually annotated ground truth,

the proposed method obtained significantly better DSCs with 11%

and 16% improvement of calcification and fibrous tissue (Table 3).
3.2. Sensitivity to variations in training data

Table 4 shows the DSC between the segmentations yielded by

the proposed method when the method was trained with two

different training datasets. We observe that the DSC between the

segmentations obtained with the two training datasets was

greater than 0.8 for all three plaque components with the

proposed method. Further, the corresponding DSC values

obtained with the U-net-based method were typically lower

compared to the proposed method. This provides evidence that

the proposed method is relatively insensitive to variations in the

training data and more robust than U-Net.
3.3. Studying the efficacy of using two
networks in the proposed method

The comparison of the proposed method vs. just using a BNN

is shown in Table 5. The proposed method significantly

outperformed just using a BNN, yielding 15%, 40%, and 19%
Frontiers in Cardiovascular Medicine 06
improvement of DSCs corresponding to LRNC with older

hemorrhage, calcification, and fibrous tissue, respectively.
3.4. Evaluation with dataset from a different
scanner

The performance of the proposed method in the dataset from a

3 T MR scanner (23 patients) is shown in Table 6. The proposed

method outperformed Standard U-Net, DeepLab v3, and ResNet-

101 methods. In addition, two representative results are shown in

Figure 3. In these results, we observe that the proposed method

provided segmentation results similar to manual segmentation

for both LRNC with older hemorrhage and calcification. We do

note that manual labeling classified more tissue as LRNC with

older hemorrhage in comparison to our proposed method.

However, overall, when assessed upon the same 23-patient MRI

data set, our proposed method was more accurate compared to

the other three deep-learning-based methods.
4. Discussion

In this manuscript, based on the hypothesis that a two-stage

neural network will account for the class imbalance of vessel wall

and background, we implemented a two-stage neural network
frontiersin.org
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FIGURE 2

Two representative examples of multi-weighted MR images (acquired at 1.5 T) in the top two rows. The bottom two rows show the segmented LRNC with
older hemorrhage (shown in red) and calcification (shown in blue) using the proposed method and three other deep learning-based segmentation
algorithms, as compared to the ground truth. We observe that visually, the segmentation predicted by the proposed method is close to the ground truth.

TABLE 4 Sensitivity to variations in training data.

(a) DSC

LR/NC with OH Calcification Fibrous tissue
Standard U-Net 0.83 0.73 0.76

The proposed method 0.84 0.81 0.85

(b) Precision

LR/NC with OH Calcification Fibrous tissue
Standard U-Net 0.87 0.77 0.67

The proposed method 0.87 0.85 0.82

(c) Sensitivity

LR/NC with OH Calcification Fibrous tissue
Standard U-Net 0.80 0.70 0.87

The proposed method 0.87 0.85 0.82
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model with a CNN followed by a BNN to segment carotid

atherosclerotic plaque components on multi-weighted MR

images. Our major findings are: (1) the ground truth defined

with the assistance of histopathology and ex vivo MR images

improves segmentation performance of deep learning-based

method; (2) the performance of the proposed method is superior

to other state-of-the-art deep learning methods and manual

segmentation by trained readers in segmenting atherosclerotic

plaque components on multi-weighted MR images.

Several supervised algorithms for segmenting in vivo carotid

plaque components in multi-weighted MRI have been developed

to facilitate accurate assessment of plaque composition. However,

these methods are dependent on manually annotated ground

truth through visual comparison between relatively low

resolution in vivo MRI data and external high resolution
frontiersin.org
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TABLE 5 Comparison of the proposed approach with just using a BNN.

(a) DSC

LR/NC with OH Calcification Fibrous
tissue

One-stage BNN 0.68 (0.65, 0.71) 0.45 (0.41, 0.5) 0.62 (0.58, 0.66)

The proposed
method

0.78 (0.75, 0.8) 0.63 (0.6, 0.65) 0.74 (0.73, 0.76)

(b) Precision

LR/NC with OH Calcification Fibrous
tissue

One-stage BNN 0.69 (0.64, 0.73) 0.42 (0.36, 0.48) 0.54 (0.49, 0.58)

The proposed
method

0.76 (0.71, 0.8) 0.55 (0.53, 0.58) 0.72 (0.71, 0.74)

(c) Sensitivity

LR/NC with OH Calcification Fibrous
tissue

One-stage BNN 0.68 (0.62, 0.74) 0.48 (0.42, 0.53) 0.72 (0.68, 0.76)

The proposed
method

0.8 (0.79, 0.8) 0.71 (0.69, 0.74) 0.76 (0.7, 0.82)

TABLE 6 Evaluation with additional test dataset (23 patients scanned on a
3 T MRI).

(a) DSC

LR/NC with OH Calcification Fibrous tissue
Standard U-Net 0.61 0.54 0.69

DeepLab v3 0.65 0.54 0.67

ResNet-101 0.60 0.53 0.66

The proposed method 0.70 0.6 0.73

(b) Precision

LR/NC with OH Calcification Fibrous tissue
Standard U-Net 0.79 0.45 0.72

DeepLab v3 0.88 0.42 0.61

ResNet-101 0.76 0.6 0.60

The proposed method 0.78 0.65 0.65

(c) Sensitivity

LR/NC with OH Calcification Fibrous tissue
Standard U-Net 0.50 0.69 0.67

DeepLab v3 0.52 0.75 0.75

ResNet-101 0.49 0.47 0.74

The proposed method 0.82 0.78 0.88
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histopathological images. This approach may introduce

segmentation errors due to the differences in resolution and

orientation of MRI and histopathological images. To improve the

quality of ground truth, we proposed a strategy where ground

truth was generated with the assistance of high-resolution ex vivo

MR images that were obtained from both non-fixed carotid

specimens within 2–3 h after the endarterectomy and

histopathology from the then later fixed specimens. As shown in

Table 3, this strategy yields superior performance (p < 0.05) in

the segmentation of LRNC with older hemorrhage, calcification

and fibrous tissue compared to an approach that uses only the

manually labeled ground truth for training. The method also
Frontiers in Cardiovascular Medicine 08
provided superior performance (p < 0.05) compared to trained

readers who were not provided the high-resolution images.

Furthermore, the proposed method outperformed (p < 0.05) all

compared deep-learning methods. This improved performance of

our proposed method shows the advantages of using ground

truth obtained with high-resolution imaging and histology.

We observe in Table 3 that, among all three plaque

components, the proposed method yielded the best performance

in segmenting LRNC with older hemorrhage. This may be

attributed to relatively high sample size of LRNC with older

hemorrhage in our data set, providing an abundance of training

samples. Moreover, the relatively high contrast of LRNC with

older hemorrhage on all 4 contrast-weighted images also

contribute to this performance. The fibrous tissue is as common

as LRNC with older hemorrhage. However, the lower contrast of

fibrosis contributes to a lower segmentation performance

compared to LRNC with older hemorrhage. Calcification is

hypointense on all four contrast-weighted images, which would

make calcification easy to be segmented by our model. In our

dataset, calcification was less frequently present compared to

LRNC tissue and fibrous tissue. Thus, less accurate performance

was observed for segmenting the calcification.

In Table 4, we observe that the method was relatively

insensitive to changes in training data samples. This may be

attributed to reliable ground truth in the training data sets. More

specifically, it is likely that access to high resolution data reduces

variability in ground-truth generation, and thus makes the

method less sensitive to changes in training data. Another reason

may be the probabilistic parameters in BNN, application of

ensemble predictors, and resistance of the BNN to overfitting

(24). This result also has important practical implications since it

implies that the method could be trained at different centers, and

still may yield similar performance. Overall, these results provide

evidence of the generalizability of the proposed method to

additional dataset and to variations in training data.

To assess the generalizability of the proposed method to

differences in scanners, we performed additional testing on a

separate dataset of 23 patients acquired from a third MRI

scanner, which was part of a PET-MRI system. Although this

scanner was from the same vendor, the use of a different system

and imaging parameters helped evaluate the generalizability of

our method. In these 23 patients, the proposed method yielded

strong performance (DSC = 0.7) in segmenting LRNC with older

hemorrhage (Table 6) demonstrating feasibility of its use in

clinical practice.

Recently proposed best practices for evaluation of AI

algorithms have recommended that the evaluation of an AI

algorithm should yield a descriptive claim that quantifies the

performance of the AI algorithm (16). We outline the following

claim for the proposed algorithm: “A two-stage neural network-

based approach for carotid atherosclerotic plaque segmentation

in multi-weighted MRI, that was trained with the assistance of

high-resolution imaging and histopathology images,

outperformed (p < 0.05) state-of-the-art segmentation methods,

yielded DSC of 0.78 (95% CI: 0.75, 0.8) in segmenting LRNC

with hemorrhage using an independent test set, and
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FIGURE 3

Examples of additional test of the proposed method on the data acquired from the 3 T scanner. The segmented LRNC with older hemorrhage is shown in
red, and the calcification in blue, using both the manual annotation and the proposed method. We see that the manual annotations are close to the
output obtained with the proposed method.

Li et al. 10.3389/fcvm.2023.1127653
outperformed (p < 0.05) a strategy where the method was trained

without the assistance of these high-resolution images.”

Our study had several limitations. The study was performed

with data from a single center. To assess for generalizability,

evaluation of the method on datasets from different institutions

is desirable. Next, our sample size for training the method was

limited. To address this issue, we performed data augmentation

using flipping and rotation, but other approaches, such as using

simulation-based studies (25, 26) may be explored. Next, we note

that the proposed method classifies each image pixel as

belonging to only one region. However, given the access to high-

resolution data, the method could be advanced to compute the

volume that a given region occupies in each voxel. A Bayesian

partial-volume estimation procedure was recently proposed

towards achieving this goal in positron emission tomography (27)

and single-photon emission computed tomography (28), and can

be advanced for this application. A limitation of the evaluation

study with the patient data is that manual segmentation was used

as ground truth. However, as mentioned earlier, this segmentation,

itself, may be erroneous. Finally, the figures of merit used for

evaluation included precision, sensitivity, and DSC, but

performance of these metrics may not translate to superior clinical

performance (29). In carotid plaque imaging, the clinical goal is to

assess vulnerability of the plaque (plaque with a high risk to
Frontiers in Cardiovascular Medicine 09
rupture). Thus, preferably, the method should be evaluated based

on this task (30). One challenge in performing this type of

evaluation is the lack of ground truth, quantitative values of

vulnerability, and lack of correlation to potential patient outcome.

To address these issues, no-gold-standard evaluation techniques

are being developed that evaluate the performance of segmentation

methods on quantitative tasks in the absence of ground truth (31,

32). This research is currently under investigation.
5. Conclusion

In conclusion, our proposed deep-learning method trained on

ground truth obtained with the assistance of high-resolution ex

vivo and histopathology data yielded accurate performance of

segmentation of carotid plaque components on MR images,

outperformed other state-of-the-art segmentation methods, and

yielded superior performance compared to trained readers.

Additionally, the two-stage neural network model with CNN and

BNN architecture was observed to be relatively insensitive to

variations in training data and yielded reliable segmentation over

other clinical datasets. These promising results motivate further

evaluation of the proposed method using larger patient data sets

for the accurate assessment of plaque vulnerability.
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