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A major regulator of blood pressure and volume homeostasis in the kidney is the
epithelial sodium channel (ENaC). ENaC is composed of alpha(α)/beta(β)/gamma
(γ) or delta(δ)/beta(β)/gamma(γ) subunits. The δ subunit is functional in the
guinea pig, but not in routinely used experimental rodent models including rat
or mouse, and thus remains the least understood of the four subunits. While the
δ subunit is poorly expressed in the human kidney, we recently found that its
gene variants are associated with blood pressure and kidney function. The δ
subunit is expressed in the human vasculature where it may influence vascular
function. Moreover, we recently found that the δ subunit is also expressed
human antigen presenting cells (APCs). Our studies indicate that extracellular
Na+ enters APCs via ENaC leading to inflammation and salt-induced
hypertension. In this review, we highlight recent findings on the role of extra-
renal ENaC in inflammation, vascular dysfunction, and blood pressure
modulation. Targeting extra-renal ENaC may provide new drug therapies for
salt-induced hypertension.
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Introduction

Hypertension affects more than 1 billion people around the globe. While our

understanding of hypertension and the available treatments has improved vastly over the

decades, blood pressure control remains a challenge in many hypertensive patients (1, 2).

The etiology of hypertension is multifactorial, including environmental, genetic, and

demographic factors (3). High Na+ intake is one of the key environmental risk factors for

elevated blood pressure (4). However, salt sensitivity of blood pressure, which is a

phenotype characterized by changes in blood pressure that correspond to dietary salt

intake, is not uniform in humans (5). Many mechanisms have been described to explain

the variability of salt sensitivity. These include genetic variations related to the renin-

angiotensin-aldosterone system (RAAS), renal Na+ transporters, sympathetic nervous

system and vascular dysfunction (6, 7). Recently, inflammation has been found to be a

key modulator of salt sensitive blood pressure response (8). Indeed, inflammatory

cytokines and reactive oxygen species (ROS) induce vascular endothelial dysfunction and

impair renal Na+ excretion, resulting in blood pressure elevation (9, 10).
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ENaC dependent reabsorption of Na+ in the aldosterone-

sensitive distal nephron (ASDN) has a role in regulating

extracellular fluid volume and blood pressure (11). The channel

also facilitates K+ secretion in the ASDN (12). ENaC is thought

to be composed of αβγ or δβγ subunits, encoded by genes

SCNN1A (α subunit), SCNN1B (β subunit), SCNN1G (γ subunit),

and SCNN1D (δ subunit) respectively, that are members of the

ENaC/Degenerin superfamily (13). Other subunit stoichiometries

have been reported in specific tissues. For example, the channel

in mouse dendritic cells (DCs) has only α and γ subunits (14–16).

In the aldosterone-sensitive distal nephron of human kidney,

ENaC is composed of the α, β, and γ, as the δ subunit is poorly

expressed in this nephron segment (5). Besides its role in renal

Na+ and K+ handling in the kidneys, ENaC affects blood

pressure through its actions in various extrarenal tissues. ENaC

in the lingual epithelium mediates salt taste and influences Na+

ingestion, while ENaC in the distal colon serves as the final site

for absorption of ingested Na+. Neurons in the rostral ventral

medulla of the brain sense increases in [Na+] in an ENaC

dependent manner, leading to increase in sympathetic nerve

activity and high blood pressure (17, 18). In animal models, such

as the mouse and rat, ENaC has been proposed as a key protein

for salt taste, but its contribution to human salt taste is less clear

(19, 20). Recently, we found that extracellular Na+ enters APCs

via ENaC leading to formation of lipid peroxidation products

known as Isolevuglandins (IsoLGs), release of proinflammatory

cytokines and salt-induced hypertension (14, 16, 21). Moreover,

we found that the δ subunit is the most expressed subunit in

human APCs (15). In a recent analysis of phenotypic and whole

genome sequence data within the Trans-Omics in Precision

Medicine project (TOPMED), we found that low frequency and

rare variants of α, β and δ subunits of ENaC are associated with
FIGURE 1

The epithelial Na+ channel. Each subunit (α, β, γ) having the carboxyl and amin
and a large extracellular domain between them.
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blood pressure, and β, δ subunits were associated with estimated

glomerular filtration rate (22). Although the δ subunit is poorly

expressed in the human kidney, it was the subunit where variants

were associated with all blood pressure parameters analyzed,

including pulse pressure, systolic, diastolic, and mean arterial

pressure as well as kidney function (22). These studies indicate

that extrarenal the δ subunit plays an important role in blood

pressure regulation. In this review, we provide an overview of the

latest findings relating to the roles of extrarenal ENaC, and its δ

subunit in inflammation, vascular dysfunction, and blood

pressure modulation (21, 23).
Basic structure of ENaC

Ion channels are found in all cells of the body serve to

selectively transport ions such as Na+, K+ and Ca2+ across cell

membranes (24). ENaC is an amiloride-sensitive, voltage-

independent, trimeric constitutively-active ion channel formed by

structurally related subunits with two transmembrane-spanning

regions, intracellular COOH and NH2 termini, connected by a

large extracellular domain/loop as shown in Figure 1 (24). The

extracellular loop has a “hand -like” structure, consisting of a

“palm”, “ball”, “finger”, “thumb”, “β-ball” and “knuckle” domain

(25). These extracellular regions interact with various stimuli that

modulate channel activity (26–28). The ENaC structure reveals

that it assembles with a 1:1:1 stoichiometry of α, β, γ subunits

arranged in a counter-clockwise manner (29).

Since its cloning in 1993 and 1994 by Canessa and colleagues

(30), key features regarding ENaC’s structure and regulation have

been described in detail (31, 32). Expressed in the apical plasma

membrane of epithelia, ENaC mediates the first step of
o termini groups intracellular with two (2) transmembrane segments each

frontiersin.org

https://doi.org/10.3389/fcvm.2023.1130148
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Ahmad et al. 10.3389/fcvm.2023.1130148
transepithelial Na+ reabsorption in the ASDN of the kidney, airway

and alveolar cells, distal colon and sweat ducts. It is involved in the

regulation of blood pressure and extracellular [K+], and gene

variants within genes encoding ENaC subunits (SCNN1A,

SCNN1B, SCNN1G and SCNN1D) influence blood pressure (22,

33). ENaC also has crucial roles in the homeostasis of lung

alveolar fluid (34, 35).
The delta subunit of the epithelial sodium
channel

ENaC was initially thought to consist of three subunits: α, β, γ

(36). The fourth subunit, δ, was later identified (37, 38). While

ENaC is formed by the combination of three homologous αβγ

subunits in kidney (36, 39), the δ-subunit may replace α to form

δβγ in other tissues (40). It is generally accepted that for proper

channel function, ENaC must be composed of an α or δ subunit.

Co-expression of β and γ subunits augment channel activity in

heterologous expression systems, contribute to the channel pore

and influence channel properties (38, 41). The α, β and γ

subunits are primarily expressed in epithelial cells of the kidney

and colon. While the δ subunit is expressed in lung, it is also

expressed in non-epithelial tissues including, heart, brain,

vasculature, and immune cells (38). All four subunits (αβγδ) of

ENaC are also expressed in the normal human eye (42).

Interestingly, in human lung epithelial cells the δ subunit may

form multimeric channels with the β and γ subunits that could

account for functional heterogeneity of the channel in this tissue

(43). The biophysical and pharmacological properties of human

αβγ and δβγ differ (44). Human αβγ channels are activated by

proteases and inhibited by extracellular Na+, effects that are

largely absent in δβγ channels. Furthermore, human δβγ

channels have a higher single channel Na+ ion conductance

and a higher amiloride IC50, compared to human αβγ channels

(2, 45).

The δ subunit is expressed at sites, including specific locations

in the brain, APCs and vasculature, where it likely has a role in Na+

sensing rather than transepithelial Na+ transport (38, 46). While

αβγ ENaC has been extensively studied in mice and rats, studies

of δ ENaC have lagged, in large part due to its expression as a

pseudogene in these rodents albeit guinea pigs express functional

δβγ channels (47). Furthermore, studies using humanized rodent

models may provide a solution to understand the role of the δ

subunit in blood pressure regulation.
ENaC in the vasculature

Recent work suggests that δ subunit variants are associated

with vascular function and blood pressure (22, 40, 47–49). ENaC

in endothelial cells influences vascular tone by increasing

intracellular Na+, stabilizing f-actin, and inhibiting endothelial

nitric oxide synthase (eNOS), leading to endothelial stiffening,

and reduced nitric oxide production (12, 50–52). This work has

largely been performed in cultured cells. This regulatory pathway
Frontiers in Cardiovascular Medicine 03
may be relevant in vivo, as mice with an endothelial γ subunit

knockout have increased eNOS levels and eNOS activation (52).

In addition, elevation of intracellular Na+ concentration hindered

the transportation of l-arginine, resulting in impaired generation

of nitric oxide (53, 54). However, the exact role of endothelial

ENaC in the regulation of blood pressure is still unclear. Elevated

expression and increased activity of ENaC can result in vascular

dysfunction in some rodent animal models (40). While there is

limited knowledge on the expression and function of ENaC

channels in human vasculature, the δ-subunit has been reported

to be expressed in human endothelial cells, where functional

αβγ and δβγ channels are been observed at the single channel

level (40, 55). Vascular endothelium is a target for aldosterone,

where it regulates ENaC expression in a mineralocorticoid-

dependent manner (50). ENaC expression affects endothelial cell

stiffness and nitric oxide synthesis in cultured human endothelial

cells (56).

In vitro studies in human endothelial cell lines suggested that

elevated levels of extracellular Na+ results in enhanced Na+ entry

into endothelial cells via ENaC, increasing endothelial stiffness

and reducing nitric oxide generation, potentially altering vascular

tone (Figure 2) (50). However, to date there are no publications

demonstrating that a knockout of ENaC subunits in endothelial

cells affects blood pressure. Recently it was reported that

functional ENaC subunits are expressed in the human aorta and

internal mammary artery and their expression levels are

associated with hypertension (48, 50). Reduced expression of the

γ subunit was observed in the aorta of hypertensives with

controlled blood pressure compared to aorta from normotensive

individuals, while reduced expression of δ subunit was observed

in internal mammary arteries from controlled hypertensives

compared to normotensive individuals (40, 57). While

interesting, the observations are correlative, based on small

numbers and need to be confirmed.
Renal ENaC and hypertension

ENaC gain- and loss-of-function mutations have profound

effects on blood pressure in individuals with Liddle syndrome

and pseudohypoaldosteronism type I, respectively (23, 58–63).

Mutations that result in activation of αβγ channels cause

Liddle syndrome, a hereditary form of hypertension (64). In

contrast, ENaC loss of function mutations are observed in

pseudohypoaldosteronism type 1 and cause salt-wasting and

hypotension. Based on these observations, factors that increase

ENaC activity in the kidney have been suggested to contribute

to the genesis of salt-sensitive hypertension (63, 65–67).

Aldosterone is a major regulator of ENaC activity through the

mineralocorticoid receptor, which tightly controls renal Na+

absorption and K+ secretion in the ASDN, thus regulation both

the extracellular fluid volume (ECFV) and serum [K+]. Primary

hyperaldosteronism, which is due to poorly regulated

aldosterone secretion in the adrenal gland, is a well-known

cause of secondary hypertension. It is estimated that about

10% of hypertensives have primary hyperaldosteronism (68,
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FIGURE 2

Sodium induces an ENaC-dependent transition from endothelial function to dysfunction. High salt diet leads to overexpression of ENaC and reduced
nitric oxide production, increased myogenic tone, vasoconstriction, arterial stiffness resulting in hypertension. Endothelial cells at the bottom have been
enlarged for illustration purposes. NO, nitric oxide; eNOS, endothelial nitric oxide synthase.
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69) and this number increases to 20% in drug-resistant

hypertensives (64, 70). As approximately 90% of the US adult

population consumes significantly more salt than the daily

recommendation of <2,300 mg (71), the vast majority of

patients with primary hyperaldosteronism are estimated to

have high salt intake (72).

Aldosterone also has been associated with proinflammatory

immune effects. Dietary salt and aldosterone also have synergistic

effects on the expression of proinflammatory cytokines (73, 74).

In addition to mineralocorticoid antagonists, pharmacological

blockade of ENaC with amiloride is an important therapeutic

option for patients with refractory hypertension and primary

hyperaldosteronism (75, 76). Interestingly, ENaC inhibition by

amiloride is effective in reducing blood pressure in patients with

hypertension resistant to mineralocorticoid antagonism (77). This

phenomenon may be explained by ENaC’s expression in the

vascular smooth muscle of renal, mesenteric and cerebral arteries

(8, 78, 79) where its inhibition may result into the loss of

myogenic response and pressure-induced vasoconstriction (49).

Emerging evidence also suggest that systemic ENaC inhibition

may modulate salt-induced immune activation and

inflammation-mediated end-organ damage. However, its unclear

whether amiloride achieves sufficient levels in the systemic

circulation to affect non-renal ENaCs in humans.
Extra-renal ENaC in inflammation and
salt-sensitive hypertension

While the role of ENaC in the pathogenesis of salt-sensitive

hypertension through renal volume and Na+ homeostasis has

been extensively studied, emerging evidence points to a role of

extra-renal ENaC in blood pressure regulation through

inflammatory pathways. Immune activation and inflammation
Frontiers in Cardiovascular Medicine 04
play a well-established role in hypertension. Both innate and

adaptive immunity are fundamental in the development of

hypertensive responses to salt and related vascular and renal

dysfunction, as previously reviewed elsewhere (80, 81). Pro-

hypertensive stimuli first activate APCs, including DCs and

macrophages, which, in turn, activate T-cells through antigen-

MHC receptor interaction (82). Inhibition of this interaction

abolishes deoxycorticosterone acetate (DOCA)-salt induced

hypertension (83). High dietary salt intake results in infiltration

of APCs and T-lymphocytes into the kidneys that cause vascular

remodeling, renal Na+ retention and subsequent hypertension

(8, 84–86).

Importantly, recent evidence suggests that ENaC plays a critical

role in the association between inflammation and salt-sensitive

hypertension. Antigen-presenting DCs and monocytes in humans

express all ENaC subunits, with the δ subunit exhibiting highest

expression levels (21). In contrast, the mouse splenic DCs express

the α and γ subunits of ENaC, but β subunit is absent (12, 16).

We previously found a pathway by which ENaC-mediated Na+

entry into APCs leads to T-cell activation and subsequent elevation

in blood pressure (87). Elevated extracellular Na+ enters APCs via

ENaC (88). Once inside the cell, Na+ is exchanged with Ca2+,

leading to an increase in intracellular Ca2+ and activation of

protein kinase C (PKC). PKC phosphorylates and activates

NADPH oxidase and leads to the formation of isolevuglandins

(IsoLGs; also called Isoketals or γ-ketoaldehydes). IsoLGs are

highly reactive oxidative products of arachidonic acid metabolism

and adduct to proteins through the lysine residues. The resulting

IsoLG-protein adducts are highly immunogenic and are

presented on the MHC-II cell surface receptors that activates T

cells. This salt-induced, ENaC-mediated immune cell activation

leads to the secretion of pro-inflammatory cytokines including

IL-1β and IL-6 from the APCs and IFN-γ and IL-17A from the

T cells. Tissue infiltration by these cells and the release of
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inflammatory cytokines results in vascular and kidney dysfunction

leading to hypertension (Figure 3) (85). Recent evidence indicates

that ENaC-mediated Na+ entry also triggers the NOD [nucleotide-

binding and oligomerization domain]-like receptor family pyrin

domain containing 3 (NLRP3) inflammasome activation in

APCs, another important instigator of hypertensive response (15).

Inflammasomes are intracellular sensors of pathogen-

associated molecular patterns (PAMPs) and endogenous host-

derived damage-associated molecular patterns (DAMPs). The

NLRP3 inflammasome can be activated through the canonical

and non-canonical pathways and results in the release of pro-

inflammatory cytokines IL-1β and IL-18, as well as gasdermin
FIGURE 3

Potential role and proposed blockade mechanisms of ENaC in salt-sensitive h
dependent activation of NLRP3 [NOD (nucleotide-binding and oligomerization
salt-sensitive hypertension. Also shows the proposed blockade of signaling p
role in the regulation of blood pressure in smooth muscle of blood vessel
NADPH, nicotinamide adenine dinucleotide phosphate; P, phosphorylation; P
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D induced pyroptotic cell death (89). The canonical pathway

includes a priming and an activation signal. The priming

signal, which is provided by Toll-like receptors (TLRs), the

nucleotide-binding oligomerization domain (NOD) 1 and 2 or

cytokine receptors, activates the nuclear factor kappa B (NF-

κB), which results in the expression of NLRP3 and pro-IL-1β

(90). After priming, various signals including pathogen

components, microbial toxins, and cellular signals such as ion

influx, reactive oxygen species (ROS), mitochondrial and

lysosomal damage, can serve as the second signal for activation

of NLRP3 (91). Patients with hypertension are characterized by

high plasma levels of IL-1β and IL-18, the main end-products
ypertension. ENaC (epithelial sodium channel) and IsoLG (isolevuglandins)
domain)-like receptor family pyrin domain containing 3] inflammasome in
athway of ENaC (θ; blockade icon), and epithelial sodium channel (ENaC)
. APC, antigen presenting cell; IsoLG, Isolevuglandins; NO, nitric oxide;
KC, protein kinase C; ROS, reactive oxygen species.
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of NLRP3 inflammasome activation (92–94), which also

associates with end-organ damage (95).

Further evidence suggesting a link between NLRP3

inflammasome and hypertension has been provided by genetic

studies showing an association between high blood pressure and

single nucleotide polymorphism in NLRP3 gene, rs7512998 (96)

as well as tandem repeat polymorphism in NLRP3 gene CIAS1

(97, 98).

In animal models of salt sensitive hypertension, absence, or

inhibition of NLRP3 inflammasome has been found to prevent

the development of hypertension and associated renal damage

(99, 100). Similarly, NLRP3 inflammasome, IL-1 receptor and

inflammasome-mediated immune cell activation were shown to

be essential in the development of aldosterone-induced vascular

damage (101). Inhibition of NF-κB, an essential component of

canonical pathway for inflammasome activation, induces

vasodilation (102), decreases blood pressure and protects against

hypertensive end-organ damage (103, 104).

Recent studies in our laboratory have also shown a crucial role

of NLRP3 inflammasome in ENaC- and IsoLG-dependent APCs

activation and subsequent inflammation in salt-sensitive

hypertension (105). Using cell hashing, and cellular indexing of

transcriptomes and epitopes of peripheral blood mononuclear

cells, we found that NLRP3 inflammasome expression and IL-1β

echo changes in blood pressure induced by salt depletion. In

vitro exposure of human monocytes to high Na+ increases the

expression of caspase-1, IL-1β and IL-18. In further studies using

mouse models of salt-sensitive hypertension, we found that APCs

from salt-sensitive mice have higher salt-induced intracellular IL-

1β production. Following 4-weeks of high salt diet, DCs and

monocytes exhibited increased accumulation of NLRP3, IL-1β

along with IsoLG-protein adducts. Pharmacological inhibition of

NLRP3 inflammasome attenuates salt-induced increase in APC

NLRP3, IL-1β and IsoLG-adducts as well as salt-sensitive blood

pressure elevation. These findings show that ENaC mediated Na+

entry in the APCs induce immune cell activation and

inflammation through IsoLG-formation, NLRP3 inflammasome

activation and release of pro-inflammatory cytokines that

orchestrate vascular and renal dysfunction and ensuing salt-

sensitive hypertension (21, 85). These new insights imply that

ENaC may play a pivotal role in the regulation of blood pressure

through its actions in immune cells in addition to its well-

recognized function in the nephron (106). So, the recent pivotal

discoveries related to the presence and functioning of extra-renal

ENaC in immune cells may illuminate additional therapeutic

targets for ENaC in salt-induced blood pressure (8).
Conclusion

Recent evidence from human and animal studies has expanded

our understanding of ENaC and its subunit δ in relation to its

functional roles in non-epithelial tissues and blood pressure
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regulation. It is now well-recognized that the immune system

plays an active role in the development and progression of

hypertension, and high salt intake not only drives hemodynamic

changes but is also associated with inflammation. Thus,

inhibition of extra-renal ENaC, including the δ subunit, or an

intermediate step in this signaling pathway (as shown in

Figure 3), may improve blood pressure control in patients with

salt-sensitive hypertension (107). A major side effect of ENaC

inhibitors is hyperkalemia (108). The development of drugs that

selectively target δβγ channels, while not blocking αβγ channels

in the human kidney should prevent drug-induced hyperkalemia.

Furthermore, future studies should investigate potential novel

drugs specifically targeting APCs, ENaC, NLRP3, PKC or

oxidative stress for safety and efficacy (as shown in Figure 3).

Lastly, as high salt intake is consistently associated with a rise in

blood pressure (109) and has a more pronounced influence on

salt-sensitive populations, reductions in dietary salt could provide

a cost effective approach to decrease the risk of hypertension and

related cardiovascular disease (110).
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