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Predicting one-year left
ventricular mass index regression
following transcatheter aortic
valve replacement in patients with
severe aortic stenosis: A new era is
coming
Mohammad Mostafa Asheghan1, Hoda Javadikasgari1,
Taraneh Attary2, Amir Rouhollahi1, Ross Straughan1,
James Noel Willi1, Rabina Awal3, Ashraf Sabe1,
Kim I. de la Cruz1 and Farhad R. Nezami1*
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Aortic stenosis (AS) is the most common valvular heart disease in the western
world, particularly worrisome with an ever-aging population wherein
postoperative outcome for aortic valve replacement is strongly related to the
timing of surgery in the natural course of disease. Yet, guidelines for therapy
planning overlook insightful, quantified measures from medical imaging to
educate clinical decisions. Herein, we leverage statistical shape analysis (SSA)
techniques combined with customized machine learning methods to extract
latent information from segmented left ventricle (LV) shapes. This enabled us to
predict left ventricular mass index (LVMI) regression a year after transcatheter
aortic valve replacement (TAVR). LVMI regression is an expected phenomena in
patients undergone aortic valve replacement reported to be tightly correlated
with survival one and five year after the intervention. In brief, LV geometries
were extracted from medical images of a cohort of AS patients using deep
learning tools, and then analyzed to create a set of statistical shape models
(SSMs). Then, the supervised shape features were extracted to feed a support
vector regression (SVR) model to predict the LVMI regression. The average
accuracy of the predictions was validated against clinical measurements
calculating root mean square error and R2 score which yielded the satisfactory
values of 0.28 and 0.67, respectively, on test data. Our work reveals the
promising capability of advanced mathematical and bioinformatics approaches
such as SSA and machine learning to improve medical output prediction and
treatment planning.
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1. Introduction

With increasing prevalence, Aortic stenosis (AS) is the most

common type of valvular heart disease (1). Severe AS represents

a complex pathology which is not limited only to the aortic valve

but also involves the left ventricular (LV) geometry and function.

Left ventricular hypertrophy (LVH), defined by increased LV

mass index (LVMI), is almost ubiquitous to severe AS and

reflects the necessary myocardial compensation to chronic

afterload elevation in attempt to maintain LV wall stress (2).

This pathological remodeling process results in myocardial

fibrosis leading to LV dysfunction and heart failure (3). Once

even mild symptoms are present, failure to relieve elevated

afterload leads to a mortality as high as 50% over 2 years (4).

Unloading the heart with aortic valve replacement (AVR) tends

to promote a decrease in LVMI and improvement in LV

function, but the time course and degree of regression toward

normality varies across patients (5,6). Long-term survival after

AVR for severe AS is strongly related to the timing of the

intervention in the natural disease course. Left ventricular

ejection fraction (LVEF) and patients’ symptoms remain the

main determinants of the timing of intervention in patients with

severe AS in the guidelines (1). However, they are limited to

global systolic function and fail to capture anatomical

abnormalities, hindering their performance in risk stratification.

It has been demonstrated that among patients with moderate or

severe LVH treated with transcatheter AVR (TAVR), greater

LVMI regression at 1 year is associated with lower mortality and

hospitalization likelihood to 5 years (7). Despite its implications,

these measures are largely absent from current symptom-based

guidelines for the appropriateness of AVR (8,9). In recent years,

several studies have attempted to leverage left ventricle statistical

shape analysis to predict, classify, or analyze associated
FIGURE 1

Schematic of the statistical shape analysis pipeline used for the outcome pred
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phenomena. For instance, left ventricle shape has been used

to predict arrhythmic risk in fibrotic dilated cardiomyopathy (10),

to predict response after cardiac resynchronization therapy (11),

or to detect early signs of heart failure in congenital heart disease

(12). However, left ventricle SSA has never been leveraged towards

prediction of left ventricle mass index regression. In this research,

we sought to evaluate whether three-dimensional (3D) left

ventricular (LV) shape features, extracted from preoperative gated

cardiac computed tomography (CT) scans leveraging statistical

shape modeling (SSM), correlate with larger post-TAVR LVMI

regression and identify a machine learning model to predict 1-year

post-TAVR LVMI regression in patients with severe AS.
2. Materials and methods

The overall study design is illustrated in Figure 1. Briefly, the

process was started with automatic segmentation of the left

ventricles gated CT images as described in Section “Automatic

segmentation.” The segmented 3D shapes then went through a

pipeline of down-sampling, alignment, and order reduction

(Sections “Shapes alignment” and “Left ventricle shape

encoding”). The shape features extracted via order reduction

(also called shape encoding) algorithm fed the Support Vector

Regression (SVR) model which serves as our prediction machine.

The predictor setup and the description of the input and output

can be found in Section “Training the prediction model.”
2.1. Study population

We retrospectively identified all adult patients with severe

AS who underwent TAVR at Brigham and Women’s Hospital
iction.
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(Boston, MA) from 2018 to 2020. Patients younger than 18 years

with mixed aortic regurgitation or other concomitant valvular

disease more than mild, history of ischemic heart disease,

prior valve or coronary artery bypass graft surgery, and poor

quality pre-TAVR gated cardiac CT images were excluded. The

final study population included a cohort of 66 patients and the

CT images were retrospectively collected in Digital Imaging

and Communications in Medicine (DICOM) format with the

approval from the local institutional review board. Table 1

demonstrates the baseline characteristics of these patients. The

raw DICOM data were initially deidentified by an independent

party converting images into a nearly raw raster data (NRRD)
TABLE 1 Patients’ Characteristics for the studied population.

Characteristics No. (%) or mean + SD
Female 32 (48)

Age 76:73+ 9:14

NYHA functional class

I/II 48 (73)

III/IV 18 (27)

Left ventricular ejection fraction (%) 61:83+ 8:11

Diabetes 19 (29)

Hypertension 59 (89)

Severe COPD 3 (4.5)

STS Risk Score

Low 23 (35)

Intermediate 39 (59)

High 4 (6)

PreLVMI (kg.m2) 90:40+ 25:18

One-year LVMI 89:51+ 22:96

FIGURE 2

Schematic representation of the U-Net neural network, semi-automatic seg
reconstructed LV geometry (red).
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format. The LVMI regression percentage one year after the

surgery is defined as:

LVMIRegression ¼ postLVMI � preLVMI
preLVMI

(1)

where preLVMI and postLVMI refer to the LVMI before and

after the TAVR, respectively. The pre and postLVMI were

calculated from transthoracic echocardiography as described

before (13)
2.2. Automatic segmentation

To reconstruct the digital twins of studied LV, a convolutional

neural network (CNN) algorithm using a U-Net structure was

trained and validated using LV masks generated by semi-automatic

segmentation of 35 cases with the open-source 3D-Slicer package

(Figure 2). The semi-automatic annotations for training and testing

purposes were done by two independent clinical experts who

annotated randomly selected patients. The annotations were later

revised by an independent operator, blind to the assigned clinical

annotators. Adopting such an approach, we strived to minimize the

operator dependency and bias in our segmentation approach.

Future steps were handled by the trained and tested neural network

which was automated and included no operator interference.

The provided CT scans and the corresponding labels were

initially normalized and then cropped/padded to 512–512 pixels.

The available training data was augmented using scaling and

rotation to generate a sufficient training set. The Keras python

library was used to perform the deep learning powered automatic
mentation of the LV using 3D-Slicer (blue), and a sample AI-predicted
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segmentation due to its competent performance and structure. The

U-Net architecture comprises two major components (Figure 3):

(i) encoder which includes the convolutional and pooling layers

to extract the important features of the input images; (ii) decoder

which consists of convolutional layers and up-sampling to build

the predicted output segmentation (14). In addition to the

network structure, multiple network hyperparameters were tuned

to obtain high accuracy and shorter training time. The CNN

model was trained on a Quadro RTX 6000 GPU including 4,608

Cuda cores and 24 GB GPU memory.

To gain robust performance, the model was trained using five

subsets to provide five variations of the deep learning model. During

the training, fusion of the five candidate labels was obtained using

majority voting (ensemble training) (14). The predicted

segmentations obtained from the deep learning model were stored as

NRRD files, and additional image processing steps were performed.

First, a closing operation, the erosion of the dilation of the label, was

performed with a cubic structuring element of 5 voxels in diameter

to remove small holes within the volume. To smoothen the

generated label, a median filter utilizing a ball shaped footprint of 5
FIGURE 3

CNN architecture used for semantic image segmentation. The input and outpu
layers are shown as green and blue boxes, respectively. The yellow boxes repre
model from raw input image to the binary segmented output image.
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voxels was applied. After the image has been smoothened and small

holes removed, the largest connected component was isolated,

removing any unwanted islands. All models were trained and

evaluated using five-fold cross-validation on the training set. The

average value of dice loss function was 0.96 indicating promising

efficiency, visually validated by comparing the predicted models with

the geometries reconstructed by skilled clinicians. A marching cube

and a subsequent Laplacian smoothing operation is performed on

the labels to create the smooth 3D geometry which is then converted

to an STL file. We experienced that, with sufficient resolution, the

impact of marching cubes operation on the intracavity volume was

minimal. Such characteristics justify the frequent use of this

technique for meshing in platforms such as with the VTK python

API that we also utilized herein. Using the Laplacian smoothing

operation, we controlled, and experimentally optimized, two main

parameters in our process namely the number of iterations and the

relaxation factor. The smoothing operation adjusted the coordinates

of every individual vertex based on the average of the connected

vertices, while the amount of displacement was controlled by the

relaxation factor.
t images are shown as orange boxes. The inputs and outputs of the CNN
sent the copied tensors, and the blue arrow indicates the flow of the CNN
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2.3. Shapes alignment

The produced STL files typically comprise a quarter of

million points. Processing such huge point clouds is

computationally expensive and practically unnecessary.

Moreover, registration algorithms are more likely to

inaccurately align these shapes due to local minimization issues

in the internal iterative optimization process (15). Another

advantage of down-sampling process is denoising and

smoothing the unrealistic spikes of the generated shapes. We

used Open3d package in Python to down-sample and convert

the point clouds into polygon (ply) file format, where each

individual shape consistently contained 5,000 points in the 3d

space building a 15,000-length location vector for each shape.

The down-sampling process is theoretically reported to be

unbiased with guaranteed uniformity. Preliminary tests of

varying down-sampling efforts returned minimal change in the

SSA outcome and mass center locations.

Before starting the alignment process, all the point clouds were

shifted such that the mass center of each shape was transferred to

the origin (x ¼ y ¼ z ¼ 0). This accelerated the iterative

optimization process in the alignment algorithm and can be

compared to the traditional data normalization in pre-processing

input data in machine learning routines. In the next step, the

iterative closest point (ICP) algorithm was applied to align

the shapes (16,17). ICP aligns the shape p with respect to the

reference shape q by applying the scale s, rotation matrix R, and

the translation (shift) transformation T on it. The method aims

to minimize the global error E.

E ¼
Xn
i¼1

keik2 (2)

between the shapes p and q, wherein the residual error ei is defined

as

ei ¼ s:Rpi þ T � qi (3)

in which pi and qi are corresponded points in shapes p and q. In

this study, we set s ¼ 1 to conserve the size of left ventricle as a

clinically important feature. Traditionally in SSA, the reference

shape is randomly selected. Here, we tried to enhance the

approach by selecting the shape with surface and volume closest

to the averages of the whole shapes as the reference shape.

Specifically, the reference shape was selected to be the one which

minimizes

s��s
2

þ v � �v
2

(4)

where s is the surface area for each shape, v is the volume, and

overlines indicate the mean value. After aligning all the shapes

with the reference shape, the location vectors need to be
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reordered. A point cloud noted as X(k) can be represented by its

5000� 3 location matrix defined as

X(k) ¼ [x(k)1 , . . . , x(k)n , . . . , x(k)N ]T [ R5000�3 (5)

assembled from the coordinates of point k defined by a 3� 1 size

vector x(k)n with a total number of N (5000) points. The rows of the

location matrix were reordered such that the ith row

(i ¼ 1, . . . , 5000) in the location matrix of each individual shape

was matched with the point addressed in the same (i.e., ith) row

of the location matrix for the average point cloud. The average

shape was then simply calculated as

�X ¼ [�x1, . . . , �xn, . . . , �xN ], where �xn ¼ 1
K

XK
k¼1

x(k)n (6)

in which �xn is a point on the mean shape and K is the number of

the shapes. Once the mean shape was computed, the shapes were

realigned to this new mean shape to arrange them along the

newly defined reference. The last step before order reduction

(also called encoding) is calculating the deviation vector of ith

shape with respect to the average shape by subtracting the ith

location vector from the average shape location vector. By that

we aimed to remove the common information among the

individual clouds and facilitate the machine steps.
2.4. Left ventricle shape encoding

Shape encoding (See Figure 1 for a schematic view) aims to

represent a shape by a small number of scalar values far less

than the order of the location matrix, which contains 15,000

entries in our case. High dimensional regression problems suffer

multicollinearity, and the encoding methods are employed to

alleviate it. There are several methods available for shape

encoding, including principal component analysis (PCA), partial

least squares (PLS), autoencoding, and sparse coding (18).

Notably, PLS is the only supervised order reduction method

among all mentioned approaches including the popular method

PCA. In particular, while the PLS components are chosen so as

to describe most possible of the covariance between the input

and output datasets, PCA and other unsupervised order

reduction methods only concentrate on the variance of the input.

More specifically, PLS aims to incorporate information on both

input and output in the definition of the extracted components.

While PCA is highly popular and extensively used, we tried both

PLS and PCA in the current study to compare their accuracy in

the outcome prediction to one another.

At the first step of order reduction, the 5000� 3 location

matrix was reshaped into a 15, 000� 1 location vector. In this

structure, the shapes are defined as

X(k) ¼ [x(k)T1 , . . . , x(k)Tn , . . . , x(k)TN ]T [ R15,000�1 (7)
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FIGURE 4

Some of 66 patient-specific left ventricle shapes after processing and preliminary operations. The template shape is indicated in the bottom right of the
figure.
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Shape X(k) can be approximated by the summation of the mean

shape and a linear combination of the first m shape modes,

given by

X(k) ffi �X þ
Xm
k¼1

akmUm (8)

where akm is the mth shape score of X(k) and Um is mth shape

mode. Herein, the input matrix X is of size 66� 15, 000 in

which the ith row contains the location vector of the ith patient’s

LV point cloud, and output Y is a 66-length vector containing

the LVMI regression of the patients.
Frontiers in Cardiovascular Medicine 06
2.5. Training the prediction model

While classifiers can simply divide the patients into groups

with relatively higher or lower level of LVMI regression,

prediction of the LVMI regression will be of more clinical value.

Thus, we here focus on leveraging regression models to map

extracted shape features directly to the LVMI regression. Since

the PLS built-in predictor machine uses the simple linear

regression algorithm, we extracted the principal components of

PLS and employed a more powerful prediction method called

support vector regression (SVR) (19). Such a superior predictor

provides advanced tools such as cross-over validation and

nonlinear regression functions to enhance the prediction

accuracy. SVR is a regressor variant of support vector machine
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(SVM) which describes nonlinear relationships between input and

output. We measured the regression accuracy by calculating the

root-mean-square error (RMSE) and R2 score. RMSE is

calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ky(i)� ŷ(i)k2
n

s
(9)

where n is the number of data points, y(i) is the ith measurement,

and ŷ(i) is its corresponding prediction. Since RMSE is not scale

invariant, it is commonly used over normalized data as we did

through this paper. R2 score is a statistical measure that is used

to assess how much variation of an outcome is explained by the

independent variables in a predictor model. It can be defined as

R2 ¼ 1� Unexplained Variation
Total Variation

(10)

or, in a more mathematical presentation, as

R2 ¼ 1�
Pn

i¼1 (yi � ŷi)
2Pn

i¼1 (yi � �yi)
2 (11)

in which n is the number of predicted values, yi is the ith output

real value, ŷi is the estimated value of yi, and �yi is the average

value over the outcomes. Values of R2 score closer to 1 reflects

higher accuracy in predicting outcomes, while lower score

indicates that the accuracy of the prediction model is simply

estimating all outputs by merely using the total average, ignoring

any input data. A negative R2 score however would indicate that

the model’s prediction accuracy is even worse than an estimating

by average.
3. Results

3.1. Statistical shape model (SSM)

We successfully developed CT-image based SSMs to perform

the prediction task based on extracted shape features. LV shapes

were generated after denoising, down-sampling, and alignment

along the average shape (Figure 4). Moreover, SSMs allowed us

to analyze LV shapes by visualizing the most important modes

identified by the PLS, as followingly described.
FIGURE 5

Percentage of variance explained in the outcome as a function of the
number of shape components.
3.2. Shape encoding and features extraction

PLS regression was employed to extract the shape scores for

each case along with the global shape modes. The variance

explained in the response was captured by each of the first 10

PLS modes, and their cumulative accounted variance was

quantified (Figure 5). Though the first three modes together

capture more than half of the output variation, we decided to
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predict the outcome using the first five modes which contain

nearly 95% of the output variance explained by the shape

components.

Visualizing the effects of variation in the first three principal

scores allows to coarsely connect the mathematical measures of

SSA analysis to the anatomical presentation and morphological

features (Figure 6). Building such an analogy reveals how shape

analysis comprehensively embodies the anatomical characteristics

of clinical cases as a whole and outfitted for outcome prediction

without being explicitly limited to first-hand, 2D measurements

(such as diameter) that might not necessarily bear any predicting

power. Accordingly, comparing the visual presentation of

principal shape variation speculates that the first component

mainly describes the volumetric size of the LV, the second

seemingly explains the variations of the chamber’s volume, and

the third addresses spherical to ovoidal conversion (otherwise

called aspect ratio metric in some studies).
3.3. Prediction

The predictor model is an SVR regressor with linear kernel

function. We randomly selected 15% of cases as the test data and

used the remaining samples (85%) to train the predictor model.

The random splitting of the original data is essential for

providing an unbiased train and test data set especially for this

small cohort. Our initial analysis of bootstrapping the training

and test data also demonstrated minimal changes in prediction

performance. The developed model successfully performs to

predict the output with great accuracy (RMSE ¼ 0:2819,

R2 score ¼ 0:68), confirming the great load of latent information

existed in the medical images and generated shapes (Figure 7).

We report that predictions based on PLS components exhibit

higher accuracy than PCA-based predictions (RMSE ¼ 0:37,

R2 score ¼ 0:57) as expected.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1130152
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 8

Applying linear regression surface to estimate post-LVMI based on
clinically measured LVEF and pre-LVMI.

FIGURE 6

The first three shape modes which together convey 74% of the total covariance between the input and output. Along each row from left to right the
shapes are ordered by increasing shape score as �2si , �si, 0, si and 2si, respectively. The template shape (s ¼ 0 along each mode) is indicated by
the dashed box.

FIGURE 7

Predicted outcomes (vertical axis) vs clinically reported outcomes
(horizontal axis) for train data (blue circles) and test data (red crosses).
LVMI: Left ventricle mass index.
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To further exhibit the superiority of the proposed shape-based

method over currently available clinical decision making

algorithms, we have also fit a multivariate regression model to

estimate post-TAVR LVMI regression percentage at one year

based on two key-factor values which are routinely reported in
Frontiers in Cardiovascular Medicine 08
clinics; namely the pre-operation LVMI (preLVMI) and left

ventricle ejection fraction (LVEF). While the prediction power of

linear regression provided here is not expected to be even close

to the performance of an AI-based advanced method like SSA,

the comparison here aims to quantitively highlight the

superiority of modern methods over the traditional approaches
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which are currently common in clinics. The regressor equation

assumes the following form

y(t1, t2) ¼ p0 þ p1t1 þ p2t2 (12)

in which y is the estimated LVMI regression, t1 and t2 are preLVMI

and LVEF respectively, and p0 , p1 and p2 are the regressor

parameters to be found such that the summation of the squares

of the estimation error be minimized. The regression result is

shown in Figure 8, and the parameters are found as

p0 ¼ 113, p1 ¼ 0:32, p2 ¼ �0:82 (13)

While the role of p0 is to simply move the outcomes’ center of mass

from the origin to the mean of LVMI regression, the absolute

values of p1 and p2 reflect the impact and power of their

associated clinical values in the outcome prediction. In this case,

we observed that the role of LVEF in estimation of LVMI

regression is more than double that of preLVMI emphasizing the

importance of LV function in predicting post-TAVR cardiac

reverse remodeling. The prediction assessment values

(RMSE ¼ 0:42, R2 score ¼ 0:1) however reveals that the

proposed linear regression is inferior in the performance

compared to the results achieved by the proposed SSA. We

additionally investigated whether adding this pair of data to the

shape scores vector may improve the prediction accuracy;

however, no significant improvements were observed.

Another hypothesis that we explored was whether different

time-points of the cardiac cycle become a superior instance to

collect data in terms of predicting utility for the LVMI.

Performing three independent sets of SSAs with LV shapes

generated from image sets at systolic, end-systolic, and end-

diastolic of the cardiac cycle (defined as 25%, 35% and 75% of

the cardiac cycle, respectively), we observed negligible differences

in the prediction performance (RMSE values of 0.28, 0.26 and

0.29 for systolic, End-systolic and End-diastolic sets, respectively).
4. Discussion

Machine learning tools and advanced mathematical models are

increasingly being leveraged to improve diagnosis, inform therapy

planning, and enhance clinical care. A plethora of image-based

tools and reduced order models have recently been offered to

extract insightful measures from clinical images. Herein, we offer

a fully automatic ML-SSA approach to accurately predict the

LVMI regression following TAVR in patients with severe AS

leveraging the baseline geometry of the left ventricle.

The current evaluation of patients with aortic stenosis accounts

for changes in valve size and function and recommends

intervention when the patient becomes symptomatic, or the LV

function deteriorates (1). However, multiple studies have

demonstrated that LV remodeling from longstanding elevated

afterload as well as ischemia-induced myocardial fibrosis and LV

diastolic dysfunction are risk factors for inferior survival after
Frontiers in Cardiovascular Medicine 09
aortic valve replacement (9,20). Yet, their contribution to the risk

stratification algorithms and timing of intervention is a matter of

controversy. In the current practice, LV remodeling is defined by

preLVMI which is an estimate from 2D transthoracic

echocardiography and perhaps would not efficiently represents

the effects of chronicity and severity on the left ventricle.

To properly characterize the LV shape and predict the cardiac

remodeling, we developed a machine learning model with a novel

structure that consists of several modules including digital twin

generation (automatic segmentation using deep learning and

geometry reconstruction), shape analysis (down-sampling and

denoising, shape alignment, matching points pairs, and order

reduction), and the prediction model. Our promising results

reveals that an abundance of hidden information is buried within

the clinical images and geometrical shapes of LVs which are not

readily available nor are captured in the current clinical and

imaging assessments.

SSA is a mathematical technique that enables identification of

shape features that correlate strongly with an outcome of interest.

Particularly, cardiovascular disorders have been an insightful

focus of SSA by revealing close correlation between

cardiovascular function and geometry and variations thereof. SSA

methods are generally employed to provide clinical insight in two

major ways. The most popular application of SSA is

classification, in which shape features are leveraged to organize

the subjects into two or more groups. For instance, the

differences in the first bunch of PCA components have been

used to distinguish aneurysmatic and non-aneurysmatic LV

shapes (21). We have also previously studied hemodynamics in

patients with ascending aortic aneurysm using SSA routines (22)

and disclosed that shape numbers, in contrast to first-hand

geometrical metrics such as maximum aortic diameter, are better

predictors for the thoracic ascending aortic dissection risk.

Moreover, SSA could also serve to estimate a continuous value

outcome rather than a binary classification, so called a regression

problem. As a case in point, a model has recently been

developed to estimate the stress distribution in aortic arch via the

aortic segmented 3d shapes (14). While the input set of the

predictor model in this type of work is the aorta shapes’

extracted features, the output is also a set of algorithms to

reconstruct the outcome of interest, there the 2d-image of stress

heat map. Thus, order reduction in regression models is not only

being used to summarize the predictor model input (e.g., aorta

shape in (14)), it is also leveraged to estimate the quantified

measure of interest (e.g., heatmap of the stress distribution over

the aorta in (14)). These methods have been leveraged to address

different problems based on CT, echocardiography and MRI

images (23,24). Notably, the models originated from CT were

found to exhibit a steady quality with respect to spatial

resolution while being free of user bias in terms of image quality.

A literature survey on LV segmentation reveals that most of

published image processing attempts and SSMs generate and

later employ a rather smooth ventricular inner wall neglecting

the details of papillary muscles and trabeculae (25). Papillary

muscles morphologically create some swelling zones at the site of

their connection to the LV wall, while the trabeculae, conversely,
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manifests as bundles or pieces of muscle that extend into the

ventricular chamber. We originally hypothesized that inner site

of LV may play a key role in the estimation of LVMI regression

which would render our approach more sensitive to and

inclusive of the details of the geometry of the left ventricle and

its inner wall. We posited that even those minor changes to the

morphology of inner wall may embed some latent information

worthy of prediction power and contributing to the shape

analysis. Thus, we decided to train and develop our segmentation

tool with utmost fidelity to the inner wall geometry and

minimized the aggressive smoothening attempts that were

otherwise practiced.

Another important utility of PLS method is providing variable

importance in projection (VIP) scores. VIP scores estimate the

importance of each variable in the projection used in a PLS

model and is often used for variable selection. Traditionally, a

variable with a VIP score close to or greater than 1 can be

deemed important in a given model, while the variables with

VIP scores significantly less than 1 are strong candidates for

exclusion from the model. VIP scores can be interpreted simply

as “the higher, the more important.” It might be clinically

insightful if the mathematical approach also highlights the spatial

location within the anatomy with more contribution to the

outcome. Such an input could be properly extracted by

identifying the points in the average LV point cloud possessing

the highest VIP scores (Figure 9). Remarkably, these points for

our study, with VIP values above 2.6, all lie on the inner wall of

the left ventricle chamber. We observed that majority of these

points, i.e. half of them, were located near the aortic valves while

two were positioned near mid-anterolateral zone and the

remaining critical point was located near the LV apex. This

observation, from one side, is in agreement with the fact that the

internal wall of the LV is more involved in remodeling rather

than the left ventricle external surface which is limited by the

pericardium. In addition, this preliminary remark suggests

further focusing on selected spatial zones in the anatomy that

manifest major contribution to LVMI opening doors for future
FIGURE 9

Critical points of heart contributing to the cardiac remodeling captured by the
internal wall of the left ventricle.
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research. Such an observation as well justifies our decision to

include even small details of the LV inner surface and avoid the

traditional, aggressive smoothening of the geometry that might

otherwise have affected the shape analysis.

Our results demonstrated that adding preLVMI and LVEF

would not improve the accuracy of the SVM model. Although

the independent association of LV function and remodeling with

post-AVR survival has been evaluated in the previous studies,

our findings may suggest that the information related to LVMI

regression provided by this pair is either poor and/or already

conveyed in the geometry of the LV. In other words, these

observations reveal that adding those components do not provide

any additional information more than those provided by LV

shape to enhance the prediction accuracy. Furthermore, the

independency of the results from the time points of cardiac cycle

can be readily interpreted by considering the fact that order

reduction and prediction are based on the deviation vectors of

the shape calculated by subtracting the coordination of each

point in a particular shape from its matched pair in the mean

shape. In other words, the reformation of left ventricle at each

time point of cardiac cycle than another time point can be seen

as a change in the mean shape and therefore is eliminated in

producing the deviation vectors.

Discussing different clinical components of LV remodeling

analysis, there exists a number of anatomical features such as

wall thickness that are measured via follow-up imaging and

recruited to assess remodeling occurrence and severity. Another

benefit for using SSMs is the ease of quantifying those clinically

utilized components at baseline from digitized cases allowing the

study team to assess their evolution as well as predicting power

for outcome. Though considering the shape in entirety would

inherently include the information for geometrical features such

as wall thickness, it is still feasible to add any anatomical feature

of choice exclusively to the analysis pool. Once the geometrical

feature is properly quantified, PLS would capture those

properties of the anatomy and implement them for clinical

prediction.
variable importance in projection (VIP) score which are all located on the
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When a prediction task is performed by components extracted

via order reduction methods such as PCA or PLS, one hyper-

parameter that needs to be set is the number of first components

to which the model is fed. Picking a small set of the first

components can result in missing a non-ignorable piece of

information in the original data. On the other hand, selecting a

large number of components will result in an unnecessary

complexity (note that most of the information are captured in

the first components and in most cases, including ours, the first

10% of the components convey nearly 98% of the shape data)

and, more importantly it may cause overfitting problems when

the size of available dataset is not large enough. To find the best

value of this hyper-parameter, we performed the prediction in

different scenarios of nc ¼ 3, 4, 5 and 6 when nc denotes the

number of picked components. As a rule of thumb, a reliable

method to check if a predictor machine is working well in the

sense of overfitting is comparing the R2scores for training data

and test data. In a properly-fit model, these two values are

presumed to be close, often with a R2score of training set slightly

higher than that of the testing set. Based on this strategy, we

found that nc ¼ 4 is the best value for the current study

(R2score ¼ 0:68 for test data set, R2 score ¼ 0:72 for training

dataset). Leveraging more data and applying advanced prediction

methods, we expect to see an increase in this number in our

future work).

Despite the majority of published works that use PCA routines

for SSA, we used PLS as a supervised order reduction tool to

guarantee the maximum correlation between the extracted

features and the output. The key difference between PCA and

PLS is that the former is unsupervised, meaning that it is applied

without the consideration of the correlation between the inputs

and outcome, but aims to maximize the variance among the

input data to make them as much separatable as possible. On the

other hand, PLS reduces the order by considering both input and

output (Figure 1) and is based on maximizing the correlation

between the extracted components and the output. As a

clarifying example, consider a cohort of 1,000 individuals for

which a set of information is given, that includes several tens of

features for each subject, including the average number of

smokes and average minutes of exercise per day. Assume we

wish to apply an order reduction to feed a prediction model

which aims to predict lung cancer in the next 10 years for each

individual. If these persons have higher variety in their other

features (likely unrelated to cancer), applying PCA will not assign

heavy weights to smoke and exercise, but to features which

exhibit higher varieties in their values’ distribution. However,

applying PLS will probably consider much higher weights for

these two values, due to the high correlation that likely will be

observed between them and the output, that is the lung cancer

occurrence.
4.1. Limitations and future directions

Although our novel approach promises insightful information

for potential utility in clinical practice, it bears a number of
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limitations. The received R2 score is 0.68, indicating that

nonnegligible variability in the outcome data cannot be explained

merely by this model. This score can be improved through two

different strategies. While it should be noted that there is a

limitation for the anatomy driven, latent information within the

shapes to single-handedly explain the complex biological

phenomenon of remodeling, using more advanced shape

processing, encoding, and prediction algorithms may refine and

enhance the information and improve the prediction

performance. For instance, the prediction score may be improved

by applying more advanced order reduction methods such as

L-PLS. L-PLS is an extension of PLS regression, which aims to

improve prediction by focusing not only on the covariance

between the input and output, but also capturing the additional

background information on the interdependence of the

predictor variables (26). The predictor model could also be

upgraded if the rather simple predictor engine used herein (i.e.,

SVR) could be replaced by deep neural networks capable of

discovering more complicated relationships between the inputs

and outputs (14,27).

Another approach to improve the prediction results is to

include additional factors that contribute to the LV shape. The

most important feature that merits inclusion in this and any

physiological shape-based prediction is sex. In particular, it has

been shown that left ventricle average shape varies in males and

females (28) and distinguishing the shape categorization based

on sex would refine our analysis. Thus, an idea for future

extension of this work is to improve the prediction results by

either introducing a new binary input to the predictor model to

determine the sex or developing two independent SSM pipelines

for male and female patients. The latter is expected to

outperform the former since it provides two different average

shapes for studied male and female cases and therefore defines a

more meaningful average shape for each group. We postponed

such an attempt in this work due to the small population of

studied patients and lack of sufficient data for each sex. In a

more comprehensive study, should a larger cohort of AS patients

be available, other key-factors including diastolic disfunction,

race, and comorbidities can also be incorporated to further

improve the model outcome. It is worthy to mention that an

alternative method to tackle shape features caused by race, sex,

and other non-anatomical factors is by applying methods which

aim to identify and eliminate confounding factors (29).

At the end, it is worthy to note that in any machine-learning-

based approach the results will gain more reliability if the number

of available samples increases. However, it can be mathematically

explained that this is not a major concern in our case. While the

size of the samples in our study is relatively small, we have

extracted only five components out of the shapes, which is much

smaller than the total number of samples. Moreover, we have as

well used a prediction method with a very few tunable

parameters which demands smaller sample size to achieve a

satisfactory outcome. This is in contrast to artificial neural

networks with several hidden layers each containing multiple

nodes that, having multi-tens of parameters to tune, may require

a sample size of over thousands to be accurately trained.
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Conclusion

With daily development of advanced mathematical models and

machine learning algorithms in addition to augmented

computational power and data analysis capabilities, it is expected

that novel modeling approaches will be leveraged to serve clinical

research and improve therapy especially for recent surgical

methods like TAVR. We developed an SSA approach to estimate

LVMI regression one year after TAVR based on patient-specific

clinical images at the baseline. The LV geometry automatically

generated by our developed deep learning platform is all our

trained model requires to offer the desired outcome with

compelling accuracy. Our validated platform with its novel

reduced order approach enables real-time one-year LVMI

regression estimation and promises a great potential to update

the risk stratification and surgery planning guidelines based on

predicted clinical outcomes.
Data availability statement

The datasets presented in this article are not readily available

because medical images and follow up data are restricted by the

IRB. Requests to access the datasets should be directed to

frikhtegarnezami@bwh.harvard.edu.
Ethics Statement

Ethical review and approval was not required for the study of

human participants in accordance with the local legislation and

institutional requirements. Written informed consent from the
Frontiers in Cardiovascular Medicine 12
patients/participants legal guardian/next of kin was not required

to participate in this study in accordance with the national

legislation and the institutional requirements.
Author contributions

MA, HJ, and FN conceptualized the study. MA, TA, and AR

developed the pipeline. MA, HJ, and FN edited the manuscript

for intellectual content. RS, JW and RA contributed to analyze

data and improved the codes’ efficiency. HJ and AR collected

images and clinical data. AS, and KC commented on medical

interpretation and translation. All authors contributed to drafting

the manuscript and gave approval for the final version of the

manuscript to be published.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Members WC, Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin III JP,
et al. 2020 ACC/AHA guideline for the management of patients with valvular heart
disease: a report of the American college of cardiology/american heart association
joint committee on clinical practice guidelines. J Am Coll Cardiol. (2021)
77:25–197. doi: 10.1161/CIR.0000000000000923

2. Grossman W. Cardiac hypertrophy: useful adaptation or pathologic process? Am
J Med. (1980) 69:576–84. doi: 10.1016/0002-9343(80)90471-4

3. Fairbairn TA, Steadman CD, Mather AN, Motwani M, Blackman DJ, Plein S,
et al. Assessment of valve haemodynamics, reverse ventricular remodelling,
myocardial fibrosis following transcatheter aortic valve implantation compared to
surgical aortic valve replacement: a cardiovascular magnetic resonance study. Heart.
(2013) 99:1185–91. doi: 10.1136/heartjnl-2013-303927

4. Kodali SK, Williams MR, Smith CR, Svensson LG, Webb JG, Makkar RR, et al.
Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J
Med. (2012) 366:1686–95. doi: 10.1056/NEJMoa1200384

5. Lund O, Emmertsen K, Dørup I, Jensen FT, Flø C. Regression of left ventricular
hypertrophy during 10 years after valve replacement for aortic stenosis is related to the
preoperative risk profile. Eur Heart J. (2003) 24:1437–46. doi: 10.1016/S0195-668X(03)
00316-6

6. Treibel TA, Kozor R, Schofield R, Benedetti G, Fontana M, Bhuva AN, et al.
Reverse myocardial remodeling following valve replacement in patients with aortic
stenosis. J Am Coll Cardiol. (2018) 71:860–71. doi: 10.1016/j.jacc.2017.12.035

7. Chau KH, Douglas PS, Pibarot P, Hahn RT, Khalique OK, Jaber WA, et al.
Regression of left ventricular mass after transcatheter aortic valve replacement: the
partner trials, registries. J Am Coll Cardiol. (2020) 75:2446–58. doi: 10.1016/j.jacc.
2020.03.042

8. Gjertsson P, Caidahl K, Bech-Hanssen O. Left ventricular diastolic dysfunction
late after aortic valve replacement in patients with aortic stenosis. Am J Cardiol.
(2005) 96:722–7. doi: 10.1016/j.amjcard.2005.04.052

9. Mihaljevic T, Nowicki ER, Rajeswaran J, Blackstone EH, Lagazzi L, Thomas J,
et al. Survival after valve replacement for aortic stenosis: implications for
decision making. J Thorac Cardiovasc Surg. (2008) 135:1270–9. doi: 10.1016/j.jtcvs.
2007.12.042

10. Balaban G, Halliday BP, Hammersley D, Rinaldi CA, Prasad SK, Bishop MJ,
et al. Left ventricular shape predicts arrhythmic risk in fibrotic dilated
cardiomyopathy. EP Europace. (2022) 24:1137–47. doi: 10.1093/europace/euab306

11. Warriner DR, Jackson T, Zacur E, Sammut E, Sheridan P, Hose DR, et al. An
asymmetric wall-thickening pattern predicts response to cardiac resynchronization
therapy. JACC: Cardiovasc Imaging. (2018) 11:1545–6. doi: 10.1016/j.jcmg.2018.
01.022

12. Gilbert K, Forsch N, Hegde S, Mauger C, Omens JH, Perry JC, et al. Atlas-
based computational analysis of heart shape and function in congenital
heart disease. J Cardiovasc Transl Res. (2018) 11:123–32. doi: 10.1007/s12265-017-
9778-5

13. Mizukoshi K, Takeuchi M, Nagata Y, Addetia K, Lang RM, Akashi YJ, et al.
Normal values of left ventricular mass index assessed by transthoracic three-
dimensional echocardiography. J Am Soc Echocardiogr. (2016) 29:51–61. doi: 10.
1016/j.echo.2015.09.009
frontiersin.org

frikhtegarnezami@bwh.harvard.edu
https://doi.org/10.1161/CIR.0000000000000923
https://doi.org/10.1016/0002-9343(80)90471-4
https://doi.org/10.1136/heartjnl-2013-303927
https://doi.org/10.1056/NEJMoa1200384
https://doi.org/10.1016/S0195-668X(03)00316-6
https://doi.org/10.1016/S0195-668X(03)00316-6
https://doi.org/10.1016/j.jacc.2017.12.035
https://doi.org/10.1016/j.jacc.2020.03.042
https://doi.org/10.1016/j.jacc.2020.03.042
https://doi.org/10.1016/j.amjcard.2005.04.052
https://doi.org/10.1016/j.jtcvs.2007.12.042
https://doi.org/10.1016/j.jtcvs.2007.12.042
https://doi.org/10.1093/europace/euab306
https://doi.org/10.1016/j.jcmg.2018.01.022
https://doi.org/10.1016/j.jcmg.2018.01.022
https://doi.org/10.1007/s12265-017-9778-5
https://doi.org/10.1007/s12265-017-9778-5
https://doi.org/10.1016/j.echo.2015.09.009
https://doi.org/10.1016/j.echo.2015.09.009
https://doi.org/10.3389/fcvm.2023.1130152
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Asheghan et al. 10.3389/fcvm.2023.1130152
14. Mehrtash A, Ghafoorian M, Pernelle G, Ziaei A, Heslinga FG, Tuncali K, et al.
Automatic needle segmentation and localization in MRI with 3-D convolutional
neural networks: application to MRI-targeted prostate biopsy. IEEE Trans Med
Imaging. (2018) 38:1026–36. doi: 10.1109/TMI.2018.2876796

15. Kong F, Wilson N, Shadden S. A deep-learning approach for direct whole-heart
mesh reconstruction. Med Image Anal. (2021) 74:102222. doi: 10.1016/j.media.2021.
102222

16. Horn BK. Closed-form solution of absolute orientation using unit quaternions.
JOSA A. (1987) 4:629–42. doi: 10.1364/JOSAA.4.000629

17. Besl PJ, McKay ND. Method for registration of 3-d shapes. In: Sensor fusion IV:
control paradigms and data structures. Vol. 1611. SPIE (1992). p. 586–606.

18. Zhang S, Zhan Y, Metaxas DN. Deformable segmentation via sparse
representation and dictionary learning. Med Image Anal. (2012) 16:1385–96.
doi: 10.1016/j.media.2012.07.007

19. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans
Intell Syst Technol. (2011) 2:1–27. doi: 10.1145/1961189.1961199

20. Beach JM, Mihaljevic T, Rajeswaran J, Marwick T, Edwards ST, Nowicki ER,
et al. Ventricular hypertrophy and left atrial dilatation persist and are associated
with reduced survival after valve replacement for aortic stenosis. J Thorac
Cardiovasc Surg. (2014) 147:362–9. doi: 10.1016/j.jtcvs.2012.12.016

21. Goubergrits L, Vellguth K, Obermeier L, Schlief A, Tautz L, Bruening J, et al.
CT-based analysis of left ventricular hemodynamics using statistical shape modeling
and computational fluid dynamics. Front Cardiovasc Med. (2022) 9. doi: 10.3389/
fcvm.2022.901902

22. Williams JG, Marlevi D, Bruse JL, Nezami FR, Moradi H, Fortunato RN, et al.
Aortic dissection is determined by specific shape, hemodynamic interactions. Ann
Biomed Eng. (2022) 50:1781–86. doi: 10.1007/s10439-022-02979-0
Frontiers in Cardiovascular Medicine 13
23. Gilbert K, Mauger C, Young AA, Suinesiaputra A. Artificial intelligence in
cardiac imaging with statistical atlases of cardiac anatomy. Front Cardiovasc Med.
(2020) 7:102. doi: 10.3389/fcvm.2020.00102

24. Bai W, Shi W, de Marvao A, Dawes TJ, O’Regan DP, Cook SA, et al. A bi-
ventricular cardiac atlas built from 1000+ high resolution MR images of healthy
subjects and an analysis of shape and motion. Med Image Anal. (2015) 26:133–45.
doi: 10.1016/j.media.2015.08.009

25. Habijan M, Babin D, Galić I, Leventić H, Romić K, Velicki L, et al. Overview of
the whole heart and heart chamber segmentation methods. Cardiovasc Eng Technol.
(2020) 11:725–47. doi: 10.1007/s13239-020-00494-8

26. Sæbø S, Almøy T, Flatberg A, Aastveit AH, Martens H. LPLS-regression: a
method for prediction and classification under the influence of background
information on predictor variables. Chemometr Intell Lab Syst. (2008) 91:121–32.
doi: 10.1016/j.chemolab.2007.10.006

27. van Hamersvelt RW, Zreik M, Voskuil M, Viergever MA, Išgum I, Leiner T.
Deep learning analysis of left ventricular myocardium in CT angiographic
intermediate-degree coronary stenosis improves the diagnostic accuracy for
identification of functionally significant stenosis. Eur Radiol. (2019) 29:2350–9.
doi: 10.1007/s00330-018-5822-3

28. Gerdts E, Okin PM, De Simone G, Cramariuc D, Wachtell K, Boman K, et al.
Gender differences in left ventricular structure and function during
antihypertensive treatment: the losartan intervention for endpoint reduction in
hypertension study. Hypertension. (2008) 51:1109–14. doi: 10.1161/
HYPERTENSIONAHA.107.107474

29. Bernardino G, Benkarim O, Sanz-de la Garza M, Prat-Gonzàlez S, Sepulveda-
Martinez A, Crispi F, et al. Handling confounding variables in statistical shape
analysis-application to cardiac remodelling. Med Image Anal. (2020) 65:101792.
doi: 10.1016/j.media.2020.101792
frontiersin.org

https://doi.org/10.1109/TMI.2018.2876796
https://doi.org/10.1016/j.media.2021.102222
https://doi.org/10.1016/j.media.2021.102222
https://doi.org/10.1364/JOSAA.4.000629
https://doi.org/10.1016/j.media.2012.07.007
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.jtcvs.2012.12.016
https://doi.org/10.3389/fcvm.2022.901902
https://doi.org/10.3389/fcvm.2022.901902
https://doi.org/10.1007/s10439-022-02979-0
https://doi.org/10.3389/fcvm.2020.00102
https://doi.org/10.1016/j.media.2015.08.009
https://doi.org/10.1007/s13239-020-00494-8
https://doi.org/10.1016/j.chemolab.2007.10.006
https://doi.org/10.1007/s00330-018-5822-3
https://doi.org/10.1161/HYPERTENSIONAHA.107.107474
https://doi.org/10.1161/HYPERTENSIONAHA.107.107474
https://doi.org/10.1016/j.media.2020.101792
https://doi.org/10.3389/fcvm.2023.1130152
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

	Predicting one-year left ventricular mass index regression following transcatheter aortic valve replacement in patients with severe aortic stenosis: A new era is coming
	Introduction
	Materials and methods
	Study population
	Automatic segmentation
	Shapes alignment
	Left ventricle shape encoding
	Training the prediction model

	Results
	Statistical shape model (SSM)
	Shape encoding and features extraction
	Prediction

	Discussion
	Limitations and future directions

	Conclusion
	Data availability statement
	Ethics Statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


