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Mechanisms by which statins
protect endothelial cells from
radiation-induced injury in the
carotid artery
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1Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of Medicine,
University of Iowa, Iowa City, IA, United States, 2Department of Biomedical Sciences, Dental College of
Medicine, Lincoln Memorial University, Knoxville, TN, United States, 3Free Radical and Radiation Biology
Program, Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City,
IA, United States, 4Iowa City VA Healthcare System, Iowa, IA, United States

Background: The incidental use of statins during radiation therapy has been
associated with a reduced long-term risk of developing atherosclerotic
cardiovascular disease. However, the mechanisms by which statins protect the
vasculature from irradiation injury remain poorly understood.
Objectives: Identify the mechanisms by which the hydrophilic and lipophilic statins
pravastatin and atorvastatin preserve endothelial function after irradiation.
Methods: Cultured human coronary and umbilical vein endothelial cells irradiated
with 4 Gy and mice subjected to 12 Gy head-and-neck irradiation were pretreated
with statins and tested for endothelial dysfunction, nitric oxide production, oxidative
stress, and various mitochondrial phenotypes at 24 and 240 h after irradiation.
Results: Both pravastatin (hydrophilic) and atorvastatin (lipophilic) were sufficient to
prevent the loss of endothelium-dependent relaxation of arteries after head-and-
neck irradiation, preserve the production of nitric oxide by endothelial cells, and
suppress the cytosolic reactive oxidative stress associated with irradiation. However,
only pravastatin inhibited irradiation-induced production of mitochondrial
superoxide; damage to the mitochondrial DNA; loss of electron transport chain
activity; and expression of inflammatory markers.
Conclusions: Our findings reveal some mechanistic underpinnings of the
vasoprotective effects of statins after irradiation. Whereas both pravastatin and
atorvastatin can shield from endothelial dysfunction after irradiation, pravastatin
additionally suppresses mitochondrial injury and inflammatory responses involving
mitochondria. Clinical follow-up studies will be necessary to determine whether
hydrophilic statins are more effective than their lipophilic counterparts in reducing
the risk of cardiovascular disease in patients undergoing radiation therapy.
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Abbreviations

Δψmito, mitochondrial membrane potential; Ach, acetylcholine; Ator, atorvastatin; AUC, area under the curve;
DAF2-DA, diaminofluorescein diacetate; EC, endothelial cell; ECM, endothelial cell medium; ETC, electron
transport chain; HAECs, human aortic endothelial cells; HCAECs, human coronary artery endothelial cells;
HMG-CoA, hydroxymethyl-glutaryl coenzyme A; HUVECs, human umbilical endothelial cells; IR,
irradiation; L-NNA, nomega-nitro-L-arginine; MCU, mitochondrial Ca2+ uniporter; MRAs, mesenteric
resistance arteries; mtDNA, mitochondrial DNA; mtROS, mitochondrial reactive oxygen species; MTT,
mitochondrial TEMPO; NO, nitric oxide; nucDNA, nuclear DNA; PE, phenylephrine; Prava, pravastatin; RT,
radiation therapy; SARRP, small animal radiation research platform; SNP, sodium nitroprusside; TEMPO,
4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl; TMRM, tetramethylrhodamine methyl ester.
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GRAPHICAL ABSTRACT

Central Illustration: The effects of pravastatin and atorvastatin pretreatment in radiation-induced mitochondrial and endothelial damage. While pravastatin
treatment prevents short- and long-term cytosolic andmitochondrial oxidative stress, inflammation and endothelial injury, atorvastatin treatment does only
protect against the cytosolic oxidative stress at short-term and does not counteract radiation-induced mitochondrial damage leading to inflammation.
Introduction

Radiation therapy (RT) strongly increases the risk of developing

atherosclerotic vascular disease in coronary and peripheral arteries

(1–4). In head-and-neck cancers, RT is an important and

potentially curative modality and the preferred treatment in

localized disease. For more advanced disease, it is combined with

chemotherapy as a definitive organ function-preserving approach,

or after surgery as an adjuvant therapy. Because of the proximity of

the carotid artery to the lymphatic structures that are targeted by

RT, the risk of developing significant carotid stenosis is elevated in

this population (5–8). The rate of progression of carotid artery

stenosis to >50% was 15.4% per year in patients who had

undergone RT vs. 4.8% (an ∼3-fold difference) in patients who had

not received RT but were matched for the baseline severity of

carotid artery stenosis (9). This discrepancy increased with

progression to more severe stenosis, with the risk of progression to

>70% stenosis reported to be 7-fold higher in patients who had

undergone RT for head-and-neck cancer vs. those who had not

(10). The incidence of stroke was also higher in patients who had

even limited neck RT vs. patients treated with surgery alone (11–13).

It may be possible to prevent irradiation-induced carotid artery

stenosis by administering specific mitigators during RT. However,

this would require a more complete understanding of the

pathogenesis of irradiation-induced vascular injury. In the absence

of these data, the efficacy of other medications known to lower the

risk of atherosclerotic cardiovascular disease and used incidentally

in cancer survivors has been assessed. These medications include

aspirin, colchicine, and statins [hydroxymethyl-glutaryl coenzyme

A (HMG-CoA) reductase inhibitors] (14). The studies revealed that

the incidental use of statins at the time of, or after, RT for head-

and-neck cancer is associated with a lower risk of stroke (15, 16).

Although it is commonly accepted that statins (17) have

antioxidant effects, the specific molecular pathways that account for

the protection from radiation injury remain to be established.

Mitochondria are a major source of intracellular ROS production
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and damaged by RT (18–21). One major cause of RT-induced

vascular disease is the injury of endothelial cells (ECs), which are

highly sensitive to radiation (22). Such injury leads to significant

impairment of endothelium-dependent dilation of human carotid

arteries at 4–6 weeks after RT (23). Thus, endothelial dysfunction,

defined as impaired endothelium-dependent dilation in response to

nitric oxide (NO), can be regarded as a clinically relevant early

indicator of carotid injury after RT (24).

The aim of this study was to ascertain whether statins protect

from endothelial dysfunction after RT by preventing the

production of mitochondrial reactive oxygen species (ROS) and its

downstream sequelae, loss of mitochondrial membrane potential

and DNA damage. We also hypothesized that two statins with

distinct chemical properties, pravastatin (hydrophilic) and

atorvastatin (lipophilic) have similar effects. For this purpose, we

tested C57B/6 mice at 24 and 240 h after RT and dissected the

underlying molecular mechanisms in cultured human coronary

artery and umbilical vein endothelial cells at the same time points.
Materials and methods

Mice

All experimental procedures were approved by the Institutional

Animal Care and Use Committees of both the University of Iowa

and the Iowa City VA Health Care System and complied with

the standards of the Institute of Laboratory Animal Resources,

National Academy of Sciences. Fifteen males and 15 females

C57BL/6J mice were obtained from Jackson Laboratories

(#000664). All mice were between 12 and 16 weeks of age at the

time of treatment (5 mice per group of treatment).

Statin treatment of mice
Pravastatin (n = 10) and atorvastatin (n = 10) were given orally

in drinking water to provide doses of 30 and 3 mg/kg/day,
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respectively (25, 26). The treatment started 72 h before RT and was

continued for up to 10 days after RT. Mice in the control group

(n = 10) received vehicle only (filtered tap water) according to the

same schedule. The doses and the treatment regimen were

chosen based on the range reported as exerting effects on

vascular function in animal models (27, 28).

Radiation exposure of mice
Anesthetized mice were irradiated using the XStrahl Small

Animal Radiation Research Platform (SARRP) with a single

anterior–posterior beam and a beam quality of 0.67 mm Cu.

The dose rate used was 3.6 Gy/min and was calibrated at 2 cm

depth in water, in accordance with the AAPM TG-61 protocol.

A dose of 12 Gy x-rays, which equates to EQD2 dose of 36 Gy

(α/β of 3), was delivered to the whole brain in a single session.

Simulation was performed with computed tomography. The

accuracy of dosimetry by the SARRP was ensured by quarterly

measurements of the ion chamber by a medical physicist (29).
Measurement of vascular reactivity

Arterial rings were prepared from the carotid and second-branch

mesenteric resistance arteries (MRAs) and their isometric tension

was measured after they were mounted in a small vessel dual

chamber myograph. MRAs were used as control arteries (from a

vascular bed outside the radiation field). Following equilibration

in Krebs solution bubbled with CO2 at 37°C and at pH 7.4 for

30 min, the rings were stretched to their optimal physiological lumen

diameter for 1 h to develop active tension. The rings were then pre-

constricted with phenylephrine (PE, 3 × 10−5 M), after which they

were treated with acetylcholine (ACh, 10−8–3 × 10−5 M) and sodium

nitroprusside (SNP, 10−8–3 × 10−5 M) and cumulative concentration-

response curves were generated. Data from male and female mice

were initially analyzed separately. The results reported in this

manuscript were combined because no difference was seen between

the two groups.
Endothelial-cell cultures and treatments

Primary HCAECs and HUVECs were grown in endothelial cell

medium (ECM, #1001, ScienCell) supplemented with 5% fetal

bovine serum (FBS), 1% endothelial growth supplements, and 1%

penicillin/streptomycin at 37°C and 5% CO2 and used at

passages 3–5.

Statin treatment
ECs were treated with 10 μM pravastatin or 5 μM atorvastatin

in DMSO for 18 h before irradiation. Control cells were treated

with DMSO only.

Irradiation of cultured ECs
Once ECs were 80% confluent, they were exposed to γ-rays

(4 Gy). Ionizing radiation was delivered at 1.29 Gy/min using a

cesium-137 γ-ray source in the Radiation and Free Radical
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Research Core of the University of Iowa. At 24 and 240 h

following irradiation, ECs were collected for analyses of the levels

of mRNA and proteins, as well as for imaging.
Measurement of cellular ROS production

Cellular ROS production was measured in cultured HCAECs

using the chloromethyl derivative of 7′-dichlorodihydrofluorescein
diacetate, acetyl ester (CM-H2DCFDA) (5 μM) (30). Cells were

loaded with CM-H2DCFDA (5 μM) for 45 min at 37°C. The cells

were then imaged at an excitation wavelength of 495 nm and an

emission wavelength of 520 nm, and the images were analyzed

using NIH ImageJ. All images were taken using the same settings.

Specifically, CM-H2DCFDA fluorescence signals were traced per cell

and data are presented as integrated density. Samples treated with

the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-

oxyl (TEMPO) prior to IR, and samples treated with H2O2 only,

served as negative and positive controls, respectively.
Measurement of mitochondrial ROS
production

Mitochondrial ROS (mitoROS) production was measured in

cultured HCAECs using the dihydroethidium derivative mitoSOX

red (5 μM) (31). Cells were loaded with mitoSOX (5 μM) and

MitoTracker Green FM (1 μM) (32) for 20 min at 37°C. The cells

were then imaged using a NIKON microscope and analyzed

using NIH ImageJ. All images were taken using the same

settings. Specifically, mitoSOX and the MitoTracker Green FM

signals were traced per cell and the fluorescence intensity of

mitoSOX was normalized to that of MitoTracker Green FM.

Data are presented as the ratio of the integrated density

mitoSOX signal to MitoTracker Green FM signal.
Measurement of mitochondrial membrane
potential

The mitochondrial membrane potential was measured in

HCAECs using tetramethylrhodamine methyl ester (TMRM, cat #

T668, Molecular Probes). Each well was seeded with 50,000 cells,

and these were grown in phenol-free endothelial cell growth

medium. Cells were rinsed once with PBS, loaded with TMRM

(100 nM) for 20 min at 37°C, and then rinsed once with PBS.

Images were acquired at an excitation wavelength of 544 nm and

an emission wavelength of 570 nm, using a Nikon Eclipse Ti2

microscope (objective 40X). Images were analyzed using the NS

Elements software (Nikon).
Quantification of nitric oxide

NO levels in HCAECs were measured using the fluorescent

probe DAF2-DA (Sigma) (33). Once the cells achieved
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confluency, they were exposed to DAF2-DA (5 µM) for 10 min.

They were then imaged under a fluorescence microscope.

PDGF (20 ng/ml) + glutamine (1 µM) was used to stimulate NO

production and continuous imaging was performed for 10 min

following treatment. The amount of NO produced is expressed

as fluorescence intensity normalized to baseline. L-NNA

(competitive inhibitor of NO synthase) and SNP were used as

negative and positive controls, respectively.
Assessment of damage to mtDNA

Quantitative PCR (QPCR) was used to assay mtDNA damage as

described previously (34). Briefly, total DNA (20 ng) was amplified

using the Platinum PCR Super Mix (Invitrogen, USA). Specific

primer sets were used to amplify both a long fragment of the

mtDNA (8.9-kb) (to determine its integrity) and a short fragment

(139-bp). The shorter fragment was amplified so that its integrity

could be determined, and the longer fragment was amplified so

that changes in mtDNA copy number could be monitored and

for use in normalizing the data obtained from amplification of

the longer fragment. Ratios of relative amplification were

calculated to compare mtDNA damage in irradiated ECs to that

in non-irradiated ECs; these values were used to express the

number of lesions present in DNA, assuming a Poisson

distribution, as previously described (34).
Quantitative real-time PCR

Total RNA extracted from cultured cells was used in real-time

PCR performed in a ViiA 7 Real-Time PCR System (Applied

Biosystems, Foster City, CA). Primers were designed by Integrated

DNA Technologies to amplify the following genes: NFkB-p50,

NFkB-p65, TNFα, cytochrome c oxidase I (mt-COI), NADH-

ubiquinone oxidoreductase chain 1 (mt-ND1), NADH

dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1

(NDUF1), cytochrome c oxidase 11 (COX11) and ribosomal 18S

(internal control).
Assessment of activity of ETC complex 1

The activity of ETC complex 1 in HCAEC lysates was

measured using the MitoCheck® Complex I Activity Assay Kit

(#700930, Cayman chemical, Ann Arbor, MI, USA) according to

the manufacturer’s instructions.
Statistical analysis

In all cell culture experiments, we employed a comprehensive

approach that included careful experimental design,

randomization, and rigorous data normalization techniques.

Sell culture experiments were performed in different batches

of cells and included multiple controlsto account for
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systematic variations. Additionally, we implemented strategies

to address technical variability, such as using standard

reference samples or including technical replicates within and

across batches.

Data are expressed as mean ± standard error of the mean

(SEM) and were analyzed using the GraphPad Prism 9.0

software. All data sets were analyzed for normality and equal

variance. The Kruskal-Wallis and Dunn’s post hoc tests

were used for data sets where a normal distribution could not

be assumed. The two-tailed unpaired Student’s t-test and

one-way ANOVA, followed by Tukey’s multiple comparison

test, were used for data sets with a normal distribution.

Two-way ANOVA followed by Tukey’s multiple comparison test

was used for grouped data sets. A p-value < 0.05 was

considered significant.
Results

Pretreatment with pravastatin and
atorvastatin protects endothelial function
equally

To assess the effect of pravastatin and atorvastatin on

vascular reactivity following irradiation, we measured relaxation

of the common carotid artery in response to treatment with

acetylcholine (Ach, endothelium-dependent) and sodium

nitroprusside (SNP, endothelium-independent). C57BL/6J mice

were treated with either pravastatin, atorvastatin, or vehicle only

(control) and then subjected to irradiation (12 Gy x-ray) of the

head and neck. At 24 and 240 h, relaxation in response to ACh

was significantly less pronounced in the carotid arteries of

irradiation- compared to sham-treated mice (p < 0.0001;

Figure 1A). Both pravastatin and atorvastatin preserved

endothelium-dependent relaxation at 24 and 240 h post-

irradiation, and did so to a similar extent (Figures 1B,C).

Notably, endothelium-independent relaxation of the carotid

artery (i.e., in response to SNP) was not affected by irradiation

and was similar in all groups (Figures 1D–F). This was also the

case for relaxation in response to ACh in mesenteric resistance

arteries (MRAs) (Figures 1G–I), which lie outside the

radiation field.

The reported effects of RT include increased levels of

cellular ROS, and this has been shown to impair both NO

bioavailability and endothelial function (35, 36). We tested

the abilities of pravastatin and atorvastatin to reduce ROS

levels and preserve NO production in HCAECs following

irradiation. In pilot studies, we compared the effects of

pravastatin and atorvastatin on EC viability by cell counts

and MTT assays. We tested 5 and 10 μM of each compound

because these doses were used in previous studies (37–41).

Whereas pravastatin had no effect at either concentration, the

10-μM dose of atorvastatin decreased cell counts compared to

vehicle and 5 μM atorvastatin (Supplementary Figures S1A,B)

or viability compared to vehicle and pravastatin treatment

in MTT assays (Supplementary Figure S1C). Thus, for our
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FIGURE 1

Pravastatin and atorvastatin preserve endothelial function in vivo following head-and-neck IR. (A–C) Effects of statins on endothelium-dependent
relaxation of the carotid artery in response to acetylcholine (ACh). C57BL/6J mice were treated with (A) vehicle, (B) pravastatin (Prava), or (C)
atorvastatin (Ator) after head-and-neck irradiation (12Gy) or sham treatment, and relaxation was tested at 24 and 240 hr after irradiation. (D–F) Effects
of statins on endothelium-independent relaxation of the carotid artery in response to sodium nitroprusside (SNP), in mice treated as in A, B, and C,
respectively. (G–I) Effects of statins on endothelium-dependent relaxation of mesenteric resistance arteries (MRAs), in mice treated as in A, B, and C,
respectively. n=5 mice per group. p values were determined using repeated measures 2-way ANOVA followed by Tukey’s post-Hoc test.
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FIGURE 2

When administered before IR in vitro, pravastatin and atorvastatin prevent IR-induced ROS production and loss of NO production. All panels compare
HCAECs subjected to irradiation (4 Gy). (A,B) Change in cellular ROS levels, as determined by CM-H2DCFDA fluorescence at (A) 24 and (B) 240 h
after IR, in cells treated with vehicle, pravastatin (Prava), or atorvastatin (Ator) starting at 18 h before irradiation (4 Gy). HCAECs treated with TEMPO or
H2O2 served as negative and positive controls, respectively. (C–F) NO production in cells pretreated with pravastatin (C,D) or atorvastatin (E,F) and in
response to PDGF (20 ng/ml), as determined by DAF2-DA fluorescence. NO levels are normalized to baseline (i.e., levels before PDGF addition) and
plotted as fold-change relative to untreated cells. HCAECs treated with L-NNA and SNP served as controls. Images were taken at (C,E) 24 and (D,F)
240 h after irradiation. n= 4 independent experiments. p values by Kruskal-Wallis test.

Ait-Aissa et al. 10.3389/fcvm.2023.1133315
in vitro studies, we treated cells with 10 μM pravastatin or

5 μM atorvastatin.

In irradiated HCAECs, at both 24 and 240 h the levels

of intracellular ROS detected by CM-H2DCFDA were

significantly higher than in non-irradiated counterparts
Frontiers in Cardiovascular Medicine 06
(p < 0.0001; Figures 2A,B). Pretreatment with either pravastatin

or atorvastatin completely blocked the increases in ROS levels at

both time points. Consistent with the concept that increases

in intracellular ROS lead to reduced bioavailability of NO

in vascular beds (35), NO production by HCAECs after
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FIGURE 3

Pravastatin protects against IR-induced mitochondrial damage or hyperpolarization in vitro. All panels compare cells subjected to irradiation (4 Gy) after
pretreatment with pravastatin (Prava, 10 mM) starting at 18 hr before irradiation. (A,B) Representative images and signal integrated density of mitoSOX
fluorescence normalized to mitoTracker fluorescence in HCAECs at (A) 24 and (B) 240 hr after IR. (C,D) mtDNA lesions in DNA extracted from
HUVECs at (C) 24 hr and (D) 240 hr after IR. (E,F) Representative images and integrated density of mitochondrial membrane potential in HCAECs, as
determined by TMRM fluorescence, at (E) 24 hr and (F) 240 hr after irradiation. Analysis per cell, n= 4 independent experiments. p values were
determined by Kruskal-Wallis test.

Ait-Aissa et al. 10.3389/fcvm.2023.1133315
irradiation was significantly reduced at both time points, and this

effect was abolished by pretreatment with statins (p < 0.0001;

Figures 2C–F).
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These data indicate that pravastatin and atorvastatin have

comparable abilities to prevent the irradiation-induced cellular

ROS production that leads to a deficiency in NO production, and
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ultimately to endothelial dysfunction, in arteries within the field

of radiation.
Pretreatment with pravastatin, but not
atorvastatin, protects against mitochondrial
injury after irradiation

Irradiation leads to increases in the levels of mitoROS, i.e., greater

mitochondrial injury (42). Here, we sought to test whether

pravastatin and atorvastatin provide protection against specifically

mitochondrial injury after irradiation by measuring mitoROS levels

using mitoSOX (levels were normalized to mitochondrial mass, as

determined by MitoTracker). As anticipated, at both 24 and 240 h

post-irradiation, mitoROS production was elevated (p < 0.0001;

Figures 3A,B), and this effect was abolished by treatment with

pravastatin (p = 0.6054). Treatment with rotenone (positive control)

promoted mitoROS production in the absence of irradiation

(p < 0.0001; Figures 3A,B). One outcome of irradiation is damage

to the mitochondrial DNA (mtDNA). This DNA is particularly

susceptible to radiation in part because it lacks histones and several

DNA repair mechanisms, but also because it is located near

components of the electron transport chain (ETC), the source of

ROS in mitochondria. Thus, we measured lesions in mtDNA

isolated from HUVECs that had been subjected to irradiation, with

or without pravastatin pretreatment. In vehicle-treated HUVECs,

the occurrence of mtDNA damage following irradiation was

significantly higher than in untreated controls (p < 0.0001

compared to non-IR; Figures 3C,D). Consistent with our findings

for mitoROS, pravastatin reduced mtDNA damage after irradiation

(at 24 h: p = 0.9979 and at 240 h: p = 0.8677 compared to non-IR

pravastatin; Figures 3C,D). Next, we measured the effects of statins

on the mitochondrial membrane potential (Δψmt). Following

irradiation, HUVECs showed significantly elevated Δψmt, and this

was attenuated by pravastatin pretreatment (p < 0.0001 compared

to irradiated vehicle; Figures 3E,F).

Unexpectedly, pretreatment with atorvastatin had no protective

effect on mitoROS production at either 24 or 240 h (p < 0.0001

compared to non-IR atorvastatin; Figures 4A,B). Similarly,

pretreatment with atorvastatin did not prevent mtDNA damage

following irradiation at either time point (p < 0.0001 (24 h) and

p = 0.0003 (240 h) compared to non-IR vehicle; Figures 4C,D).

Moreover, the increase in Δψmt after irradiation was similar in

atorvastatin- and in vehicle-treated HUVECs (p < 0.0001

compared to non-IR atorvastatin; Figures 4E,F). These findings

reveal that, unlike pravastatin, atorvastatin does not preserve

mitochondrial function post-irradiation.
Pretreatment with pravastatin, but not
atorvastatin, blocks chronic inflammatory
signaling post-irradiation

Next, we investigated pro-inflammatory pathways that are

activated downstream by mitoROS after irradiation. We tested

whether irradiation-induced increases in the expression of TNFα
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and NFκB are abolished by statin pretreatment (43–45). In

vehicle-treated HCAECs, levels of the NFκB-p50 (p < 0.0001;

p = 0.0003), NFκB-p65 (p = 0.0006; p = 0.0004), and TNFα

(p = 0.0001; p < 0.0001) mRNAs were elevated at 24 and 240 h

respectively. Pravastatin treatment blocked the expression of

these markers at both 24 and 240 h following irradiation

(Figures 5A–F). In contrast, although atorvastatin treatment

inhibited upregulation of the NFκB-p50 (p = 0.0002; Figure 6A)

and NFκB-p65 (p = 0.0013; Figure 6C) mRNAs at 24 h post-

irradiation, it failed to block the expression of either NFκB or

TNFα at 240 h (p < 0.0001, Figures 6B,D,F; p < 0.0001, p =

0.0022). In the case of TNFα, atorvastatin did not affect

expression at either timepoint (p < 0.0001, Figures 6E,F). The

protein levels of NFκB-p65 was also assessed and the results

exhibited similar patterns as the mRNA results (Supplemental

Figure S2). These findings suggest that TNFα expression may be

driven by NFκB upregulation and lead to a sustained excess of

mitoROS after RT.
The effects of pretreatment with pravastatin
and atorvastatin on mitochondrial DNA
transcription and ETC function after
irradiation differ

Next, we investigated the mechanisms by which pravastatin

protects against sustained mitoROS production following

irradiation. We reasoned that excess ROS are by-products of

dysregulation of the activity of the ETC. Because damage to

mtDNA occurs during irradiation, and it is sustained at 240 h

whereas damage to nuclear DNA (nucDNA) is not (46, 47),

we hypothesized that the transcription of mitochondrial (but

not nuclear) subunits of ETC complexes is impaired after

irradiation and leads to loss of ETC activity and increased

mitoROS production.

To test this hypothesis, we performed qRT-PCR for the ETC

subunits mtCOI and mtND1, which are transcribed from the

mtDNA. Irradiation significantly reduced transcript levels at 24

and 240 h (Figures 7A–H). Whereas preincubation with

pravastatin prevented this effect (Figures 7A–D), preincubation

with atorvastatin did not (mtCOI 24 h p = 0.0205, 240 h p =

0.0048 and mtND1 24 h p = 0.0205, 240 h p = 0.0048 compared to

non-IR atorvastatin) (Figures 7E–H). In contrast, the

transcription of two subunits encoded by nucDNA, NDUF1 and

COX11, was unaffected by irradiation (Supplementary

Figure S3). This dissociation of transcriptional effects, based on

whether ETC subunits are encoded by nuclear or mitochondrial

DNAs, is consistent with ETC activity being impaired after

irradiation. Indeed, activity of ETC complex 1 was reduced at

24 h (p < 0.0001 compared to non-IR vehicle), and this effect was

blocked by pravastatin treatment (p < 0.0001 compared to IR

vehicle; Figures 7I,J). However, as in the case of mitoROS

production and mtDNA production, atorvastatin failed to prevent

impairment of the activity of ETC complex 1 (p = 0.0007

compared to non-IR atorvastatin).
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FIGURE 4

Atorvastatin does not protect against IR-induced mitochondrial damage or hyperpolarization in vitro. All panels compare HCAECs subjected to irradiation
(4 Gy) after pretreatment with atorvastatin (Ator, 5 mM) or vehicle. Parameters assessed are: (A,B) Representative images and signal integrated density of
MitoSOX fluorescence normalized to MitoTracker fluorescence at (A) 24 and (B) 240 hr after irradiation, in cells treated with atorvastatin (5 mM) or vehicle
starting 18 hr before irradiation. (C,D) Damage to mtDNA as assessed by PCR assay. mtDNA lesions at (C) 24 and (D) 240 hr after irradiation, in HUVECs
treated with atorvastatin or vehicle starting 18 hr before IR. (E,F) Representative images and integrated density of mitochondrial membrane potential, as
determined by TMRM fluorescence, at (E) 24 and (F) 240 hr after irradiation. Analysis per cell, n=4 independent experiments, p values by Kruskal-Wallis test.
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Discussion

In this study, we tested whether statins protect from endothelial

dysfunction after RT by preventing the mitochondrial injury.

We established that irradiation acutely induces mitoROS

production; this promotes mtDNA damage, which reduces
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transcription of mRNAs from mtDNA encoding ETC subunits

and to lowers ETC activity; and reduced ETC activity promotes

sustained mitoROS production. While both prava- and

atorvastatin prevented endothelial dysfunction and cytosolic ROS,

surprisingly, only pravastatin, a hydrophilic statin, reduced

mitoROS production, suppressed mtDNA damage, and preserved
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FIGURE 5

Pravastatin prevents IR-induced inflammatory signaling. All panels compare HCAECs subjected to irradiation (4 Gy) after pretreatment with pravastatin
(Prava, 10 μM, overnight) or vehicle. (A,B) Quantitative (q)RT-PCR for NFκB-p50 at (A) 24 and (B) 240 h after irradiation. (C,D) qRT-PCR for NFκB-p65
at (C) 24 and (D) 240 h after irradiation. (E,F) qRT-PCR for TNFα at (E) 24 and (F) 240 h after irradiation. p values by Kruskal-Wallis test.
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activity of the ETC complex. Moreover, irradiation induced

mRNA expression of the inflammatory mediators NFκB-p65,

p50, and TNFα, which was prevented by pravastatin but not
Frontiers in Cardiovascular Medicine 10
atorvastatin. These findings shed light on the mechanistic

underpinnings of the vasoprotective effects of statins after

irradiation.
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FIGURE 6

Atorvastatin does not prevent IR-induced inflammatory signaling. All panels compare HCAECs subjected to irradiation (4 Gy) after pretreatment with
atorvastatin (Ator, 5 μM, overnight) or vehicle. (A,B) Quantitative (q)RT-PCR for NFκB-p50 at (A) 24 and (B) 240 h after irradiation. (C,D) qRT-PCR for
NFκB-p65 at (C) 24 and (D) 240 h after irradiation. (E-F) qRT-PCR for TNFα at (E) 24 and (F) 240 h after irradiation. p values by Kruskal-Wallis test.
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FIGURE 7

Pravastatin, but not atorvastatin, prevents irradiation-induced reduction of mtDNA transcription and ETC activity. All panels compare HCAECs subjected
to irradiation (4 Gy) after pretreatment with atorvastatin (Ator, 5mM, overnight), pravastatin (Prava, 10mM, overnight) or vehicle. (A–D) Effects of
pretreatment with pravastatin (Prava, 10mM, overnight) on transcriptional activity. (A,B) Quantitative (q)RT-PCR for cytochrome c oxidase I (MT-COI)
at (A) 24 and (B) 240 hr after irradiation. (C–D) qRT-PCR for NADH-ubiquinone oxidoreductase chain 1 (MT-ND1) at (C) 24 and (D) 240 hr after
irradiation. (E–H) Effects of pretreatment with atorvastatin (Ator, 5 mM, overnight) on transcriptional activity. (E,F) qRT-PCR for MT-COI at (E) 24 and
(F) 240 hr after irradiation. (G,H) qRT-PCR for MT-ND1 at (G) 24 and (H) 240 hr after irradiation. (I,J) Activity of ETC complex 1, as assessed by
fluorometric assay at (I) 24 and (J) 240 hr after irradiation. p values by Kruskal-Wallis test.
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In the absence of agents to specifically prevent or treat for

RT-induced cardiovascular disease, aspirin, colchicine, and statins

have been proposed as potential therapies (14). In a retrospective

cohort study of cardiac patients post RT, statin use was

associated with a significant 32% reduction in stroke, and a

strong trend toward reducing the composite outcome of

cardiovascular and cerebrovascular events (16). A multivariate
Frontiers in Cardiovascular Medicine 12
analysis of known predictors of cardiovascular events in 1,100

patients demonstrated that statin use was associated with a

reduction in both stroke and transient ischemic attacks over a

median follow-up period of 3.4 years after RT (15). Of note,

these studies did not provide data about which statin had been

administered. Statins are particularly interesting as preventive

measures because several studies have also reported anticancer
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properties (48, 49). In prostate and rectal cancer, statin use is

associated with improved outcomes and response to

chemoradiation therapy (50, 51). In a retrospective study with

the SEER-Medicare dataset, patients with head-and-neck cancer

taking a statin had improved overall as well as cancer-specific

survival compared to those not taking a statin (52).

Although the protective effects of statins in RT-induced

vascular injury have been attributed to cholesterol-lowering and

anti-oxidant effects, the molecular underpinnings of the

protective effects after irradiation are not fully understood. Most

studies of cardioprotection by statins after irradiation have

focused on inhibition of TGFβ-induced fibrotic signaling; they

have not investigated specific mechanisms leading to endothelial

dysfunction or other pre-atherosclerotic events.

In this study, we set out to determine the effects of statins on

mitochondria. Our rationale was that mitochondria are

particularly susceptible to damage by irradiation, in part because

the machinery that repairs mtDNA is rudimentary and leaves the

DNA only partially repaired. This can lead to altered expression

of ETC subunits (confirmed by our study). It can also cause a

chronic increase in mitoROS production, genomic instability, and

epigenetic changes that are propagated upon cell division

(53–55). A second reason that mitochondrial injury affects

the response to irradiation is that DNA repair depends on ATP

production, and this is impaired after RT (21, 54). In a recent

study, we demonstrated that blocking the production of mitoROS

during irradiation prevents mtDNA damage, loss of NO

production, and endothelium-dependent dilation of the carotid

artery (55); our findings from the current study are consistent

with, and expand on, each of these observations and

demonstrates that pravastatin prevents the deleterious effects of

RT in vascular disease in part by its actions in mitochondria.

Available data on the effects of statins on mitochondrial

function in various organs, notably skeletal muscle and liver, are

inconsistent and partially contradictory (56, 57). Our observation

that two different statins have distinct effects related to their sites

of action are in line with previous reports and may provide

explanations for them. Some discrepancies have been reported

previously. For example, in a rat skeletal muscle cell line,

lipophilic statins (such as atorvastatin) were found to be more

toxic to mitochondria than the hydrophilic statin pravastatin

(57). In a second example, a study in ECs confirmed that the

toxic effects of 10 mM pravastatin were smaller than those of

10 mM atorvastatin (58). In pancreatic β-cells, atorvastatin, but

not pravastatin, affected the mitochondrial metabolism by

suppressing the antioxidant defense system and enhancing ROS

production (59). Mechanisms proposed to account for these

findings included decreased levels of mevalonate and of

mitochondrial antioxidant coenzyme Q. Although these reports

are consistent with our finding that atorvastatin leads to higher

levels of mitoROS, our demonstration that pravastatin abolishes

mitochondrial injury after irradiation points towards an

additional protective mechanism that remains to be elucidated,

including effects on mitochondrial fission and fusion.

The current study has several limitations. We focused on early

time points (i.e., up to 10 days after RT) because our goal was to
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identify molecular pathways that are activated at the time of

irradiation. Further studies are needed to ascertain whether the

administration of statins at the time of RT only is sufficient to

preserve endothelial function and reduce the development of

atherosclerosis months to years later. Here, we investigated the

effects of two specific statins, pravastatin, and atorvastatin.

Further experiments are needed to understand whether

differences in their effects on mitochondria are indeed

attributable to group effects (i.e., their hydrophilic vs.

hydrophobic natures). Moreover, the mechanistic studies were

conducted in vitro, and the results may not be generalizable to

in vivo conditions in patients.

In our experiments, mice and ECs were treated with

concentrations of pravastatin and atorvastatin that are identical,

or very similar, to those reported previously (59–61). However,

we only tested a small range of concentrations and more

extensive studies will be necessary to establish dose effects.

Lastly, further studies are needed to explore the implications of

our findings for clinical practice.

Thus, although our findings in mice imply that pravastatin

is more efficacious than atorvastatin, further studies in humans

are needed to determine the extent to which our findings with

different statins will translate to patients undergoing RT.

Notwithstanding the need for further work as detailed here,

our current data justify such studies, including a more

detailed comparison of the use of specific statin types in

human cohorts.

In summary, our study provides a mechanistic explanation for

how the administration of statins during RT lowers the risk of

developing irradiation-associated atherosclerotic vascular

disease. In addition, it demonstrates that some statins,

potentially because of their specific chemical properties, activate

protective mechanisms in mitochondria and decrease

inflammatory responses after RT.
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