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atherosclerosis
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and Shanyu Qin1*
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2Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University,
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Background: Atherosclerosis (AS) is one of the leading causes of the cardio-
cerebral vascular incident. The constantly emerging evidence indicates a close
association between nonalcoholic fatty liver disease (NAFLD) and AS. However,
the exact molecular mechanisms underlying the correlation between these two
diseases remain unclear. This study proposed exploring the common signature
genes, pathways, and immune cells among AS and NAFLD.
Methods: The common differentially expressed genes (co-DEGs) with a consistent
trend were identified via bioinformatic analyses of the Gene Expression Omnibus
(GEO) datasets GSE28829 and GSE49541, respectively. Further, the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed. We utilized machine learning algorithms
of lasso and random forest (RF) to identify the common signature genes. Then
the diagnostic nomogram models and receiver operator characteristic curve
(ROC) analyses were constructed and validated with external verification
datasets. The gene interaction network was established via the GeneMANIA
database. Additionally, gene set enrichment analysis (GSEA), gene set variation
analysis (GSVA), and immune infiltration analysis were performed to explore the
co-regulated pathways and immune cells.
Abbreviations

NAFLD, nonalcoholic fatty liver disease; AS, atherosclerosis; CVD, cardiovascular disease; MS, metabolic
syndrome; HCC, hepatocellular carcinoma; AMI, acute myocardial infarction; NASH, nonalcoholic
steatohepatitis; NLRs, NOD-like receptors; NF-KB, nuclear factor kappa B; NLRP3, NLRs protein 3; ROS,
reactive oxide species; GEO, Gene Expression Omnibus; DEGs, differently expressed genes; co-DEGs,
common differentially expressed genes; GO, Gene Ontology; BP, biological process; CC, cellular component;
MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate;
DCA, decision curve analysis; CIC, clinical impact curve; ROC, receiver operating characteristic; ssGSEA,
single sample gene set enrichment analysis; GSVA, gene set variation analysis; CI, confidence interval; AUC,
area under the curve; RF, random forest; GSEA, gene set enrichment analysis; OR, odds ratio; TRPP2,
transient receptor potential polycystin-2; PI-PLC, phosphoinositide-specific phospholipases; DCs, dendritic
cells; TLR4, toll-like receptor 4; T2DM, type 2 diabetes mellitus; NAFL, nonalcoholic fatty liver.
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Results: A total of 11 co-DEGs were identified. GO and KEGG analyses revealed that co-
DEGs were mainly enriched in lipid catabolic process, calcium ion transport, and
regulation of cytokine. Moreover, three common signature genes (PLCXD3, CCL19, and
PKD2) were defined. Based on these genes, we constructed the efficiently predictable
diagnostic models for advanced AS and NAFLD with the nomograms, evaluated with the
ROC curves (AUC= 0.995 for advanced AS, 95% CI 0.971–1.0; AUC= 0.973 for advanced
NAFLD, 95% CI 0.938–0.998). In addition, the AUC of the verification datasets had a
similar trend. The NOD-like receptors (NLRs) signaling pathway might be the most crucial
co-regulated pathway, and activated CD4 T cells and central memory CD4 T cells were
significantly excessive infiltration in advanced NAFLD and AS.
Conclusion:We identified three common signature genes (PLCXD3, CCL19, and PKD2), co-
regulated pathways, and shared immune features of NAFLD and AS, which might provide
novel insights into the molecular mechanism of NAFLD complicated with AS.

KEYWORDS

atherosclerosis, bioinformatics, machine learning, diagnosis model, immune infiltration, nonalcoholic

fatty liver disease
Introduction

Nonalcoholic fatty liver disease (NAFLD) and atherosclerosis

(AS) are both common chronic metabolic-related diseases

worldwide, characterized by oxidative stress, inflammation

damage, lipid peroxidation, and immune response (1–3).

Evidence indicates that NAFLD is an independent risk factor for

AS and cardiovascular disease (CVD) (1, 4). These two diseases

share similar clinical features, such as dyslipidemia, insulin

resistance, and abdominal obesity. CVD is the chief cause of

death among NAFLD patients (5), but the risk of NAFLD for

CVD is independent of metabolic syndrome (MS) (6). Chronic

liver conditions, including NAFLD, also can promote the

progression of hepatic cirrhosis and subsequently hepatocellular

carcinoma (HCC) (7). These emphasize the vital need for

efficacious treatment of AS in these NAFLD individuals.

AS is a remarkable chronic inflammatory disease of the artery

vessels, marked by intimal plaque formation (8). The advanced AS

plaques with thin or thick fibrous cap atheroma are more unstable

and harmful than the early ones (pathological intimal thickening

and intimal xanthoma) (9). The sudden rupture of advanced AS

plaques can result in acute myocardial infarction (AMI) or

stroke, leading to the worldwide cause of paralysis and death

(10). It is essential to prevent the progression from early

harmless AS plaques to rupture-prone ones. The excessive

immune cell infiltration, such as lymphocytes, macrophages, mast

cells, and dendritic cells, is extraordinarily predominant in

advanced AS (11). Many microarray studies illustrate that

inflammatory-related genes are highly activated in the advanced

AS plaques (12). Additionally, various pro-inflammatory

cytokines and chemokines enhance inflammatory response within

AS plaques by inducing chemotaxis of immune cells, resulting in

the promotion of advanced AS (13).

The spectrum stages of NAFLD are from nonalcoholic fatty liver

(NAFL) to nonalcoholic steatohepatitis (NASH), advanced fibrosis,

and progressive cirrhosis. The outcomes of steatosis and

steatohepatitis are very different. The steatosis rarely progresses to
02
liver fibrosis and is considered mild NAFLD (14). In contrast,

around 20% of NAFLD patients will progress to NASH, and

NASH can progress to cirrhosis in up to nearly 20% of patients

(15). It is reported that NASH also can significantly promote the

progression of HCC and lead to an increased risk for resultant

liver-related morbidity and mortality (16). Hence, NASH is part of

the spectrum of advanced NAFLD (14). Immune cells play an

independent risk factor and trigger the origination of

inflammatory-related cytokines and chemokines, leading to

hepatocyte inflammatory damage and a fibrogenic response in

NASH. Noteworthy, multitudinous harmful inflammatory sources,

including intrahepatic inflammation, circulating inflammatory

cells, excess chemokines, adipose tissue inflammation, and

unbalanced intestinal flora microenvironment, have been

confirmed as the probable inducement of advanced NAFLD (17).

Although NAFLD is defined as a critical risk factor and promotion

for advanced AS, the exact common molecule mechanisms and

pathways that trigger the progression of these two inflammatory

diseases to the advanced ones remain unclear. The NOD-like

receptors (NLRs) signaling pathway that includes intracellular NLRs

family members, related cytokines, caspases, and nuclear factor kappa

B (NF-KB) might be one of the most fundamental pathways (18).

Activating NLRs generally leads to the enhanced downstream NF-KB

signaling pathway and finally mediates cellular inflammatory

response and apoptosis. It reported that the NF-kB activation, which

is closely associated with atherogenesis, is also an essential regulator

of intrahepatic inflammation in advanced NAFLD (19). NLRs

protein 3 (NLRP3) inflammasome modulates the effector pro-

inflammatory cytokines such as IL-1β and IL-18 to promote the

origination of reactive oxide species (ROS), accelerating the

progression from NAFL to the advanced stage (20). Moreover,

NLRP3 inflammasome activation and IL-1β secretion enhance the

AS progression by driving vascular inflammatory response (21).

NAFLD and AS have remarkably similar features in many

aspects, complications, clinical prognosis, inflammatory response,

cytokines, immune infiltration, and signaling pathways.

Furthermore, it is necessary to identify the biomarkers involved
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in the progression of advanced NAFLD and AS due to the poor

clinical prognosis. Nowadays, along with the advance of high-

throughput sequencing and microarray technologies, exploring

the interaction transcription characteristic may provide a novel

insight into the common pathogenesis of advanced AS and

NAFLD. Bioinformatics has performed a vital role in life science

research, which was utilized to analyze the differentially

expressed genes and predict the potential therapeutic targets in a

particular disease. Therefore, in this research, we analyzed the

gene expression dataset, downloaded from the Gene Expression

Omnibus (GEO) database, with bioinformatic methods and

machine learning algorithms to identify the common signature

genes, pathways, and immune cells among advanced AS and

NAFLD. Meanwhile, the predictive diagnostic nomogram models

were established and evaluated for these two diseases.
Materials and methods

Data source of microarray

The mRNA expression profilings were downloaded from the

public database of GEO. Atherosclerosis and nonalcoholic fatty liver

disease were utilized as keywords to search for related gene

expression datasets. The inclusion criteria were set as the test

specimens included should be derived from humans, and these

independent expression profiles contain the largest sample size.

Four datasets (GSE28829, GSE49541, GSE43292, and GSE48452)

were enrolled in this study. We divided them into a training set

(GSE28829 and GSE49541) and a validation set (GSE43292 and

GSE48452) because both GSE28829 and GSE49541 come from the

same sequencing platform. There was 29 samples’ mRNA

expression profiling in GSE28829, including 13 early (pathological

intimal thickening and intimal xanthoma) and 16 advanced (thin or

thick fibrous cap atheroma) atherosclerotic plaque samples from the

Maastricht Pathology Tissue Collection (MPTC) (9, 22). In the

dataset of GSE49541, a total of 72 NAFLD samples were divided

into two groups based on the histologic severity of fibrosis: F0–1

(mild) and F3–4 (advanced) (14). Additional details are provided in

Table 1, and the procedure for this study is displayed in Figure 1.
Identification of co-DEGs

The differently expressed genes (DEGs) were identified from

normalized and preprocessed data via the GEO2R tool (23). The

screening threshold was stated at |log2 Fold Change (FC)| > 0.585

and P value < 0.05, and these DEGs with the consistent
TABLE 1 Details of the GEO datasets.

Dataset Disease Platform Organism
GSE28829 AS GPL570 Homo sapiens

GSE49541 NAFLD GPL570 Homo sapiens

GSE43292 AS GPL6244 Homo sapiens

GSE48452 NAFLD GPL11532 Homo sapiens

NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; NAFL, no
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expression trends in GSE28829 and GSE49541 were picked up as

co-DEGs. The correlation coefficients of co-DEGs were calculated

based on Pearson’s correlation coefficient.
Enrichment analyses of GO and KEGG

Gene ontology (GO) enrichment [including biological process

(BP), cellular component (CC), and molecular function (MF)]

analysis and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis were applied by utilizing the R

clusterProfiler package. The false discovery rate (FDR) was

calculated via the Benjamini-Hochberg adjustment. The cutoff

criterion was P-value < 0.05. Finally, three packages (ggplot2,

circlize, and pathview) were utilized to visualize these enrichment

analyses’ significant results.
Machine learning of lasso and random
forest

Ulteriorly, two machine learning algorithms, containing lasso

regression and random forest (RF), were used to screen the

common signature genes from co-DEGs. Lasso regression and

the optimal parameter λ were determined through 10-fold cross-

validation via the R glmnet package with “family = binomial,

measure = deviance” and with all other parameters arranged to

default (24). In the RF algorithm, which comes with a feature

selection function, the “Mean Decrease Gini” value could typify

the significance of a feature. Each input gene of co-DEGs was

ranked by order of importance in the classification using their

“Mean Decrease Gini” score, and the top 50% of co-DEGs were

identified as feature genes of the RF model. The particular co-

DEGs identified by both machine learning models consistently

were defined as the common signature genes.
Construction of diagnostic model and
evaluation of diagnostic efficiency

Using the R rms package, we constructed the diagnostic models

with nomograms based on the common signature genes. The

calibration curve was established to assess the calibration of the

nomogram models by mean absolute error and 1,000 bootstrap

samples using the R CalibrationCurves package. Decision curve

analysis (DCA) was performed to evaluate the value of net

benefits in the nomogram models at the different high-risk

thresholds. Finally, whether the nomogram models had favorable
Number of samples
13 early atherosclerotic plaque samples 16 advanced atherosclerotic plaque samples

40 mild NAFLD samples 32 advanced NAFLD samples

32 control samples 32 atheroma plaque samples

14 NAFL samples 18 NASH samples

nalcoholic fatty liver; AS, atherosclerosis; GEO, Gene Expression Omnibus.
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FIGURE 1

Flowchart of the study.

Mo et al. 10.3389/fcvm.2023.1142296
predictive effects were evaluated by the clinical impact curve (CIC).

Then the receiver operating characteristic (ROC) curves and the

area under the curve (AUC) were applied to assess further the

diagnostic efficacy of the nomogram models in the training set

and validation set, respectively.
Construction of interaction network for
common signature genes

Subsequently, we established an interaction network of three

common signature genes via GeneMANIA (http://www.

genemania.org/), a reliable online tool for distinguishing internal

correlations in gene sets. The details of the outcomes of this

interaction network are displayed in Supplementary Material.
Gene set variation analysis and gene set
enrichment analysis

A nonparametric unsupervised gene set variation analysis (GSVA)

method was performed to demonstrate the differential enrichment
Frontiers in Cardiovascular Medicine 04
KEGG pathways in GSE28829 and GSE49541. This study utilized

the R GSVA package with the gene sets of c2.cp.kegg.symbols.gmt,

downloaded from the official site (https://www.gsea-msigdb.org/

gsea/msigdb/). The threshold standard for statistically significant

terms was set as adj. P-value < 0.05 and |log2FC|>1. Following, we

focus on elucidating the potential roles of common signature genes

in the advanced AS and NAFLD. A single-gene gene set

enrichment analysis (GSEA) for each signature gene was performed

separately via the R clusterProfiler package. Firstly, all samples from

GSE28829 and GSE49541 were split into the low-expression and

high-expression groups according to the expression level of a

specific single signature gene. Then GSEA was played to estimate

the significantly different KEGG pathways within these two groups.
Immune infiltration analysis

Independent expression profiles GSE28829 and GSE49541 from

the same sequencing platform were utilized to further immune

infiltration analysis. The deconvolution algorithm of CIBERSORT

(25), which can assess the percentage of 22 infiltrating immune cell

subtypes, was used to calculate the immune infiltration of advanced
frontiersin.org
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FIGURE 2

Identification of DEGs. (A) The heatmap of GSE28829; (B) the heatmap of GSE49541; (C) the volcano plot of GSE28829; (D) the volcano plot of GSE49541.
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AS plaques and advanced NAFLD tissues via the CIBERSORT R

script v1.03. Then the correlation between each subtype of immune

cells and each common signature gene was estimated with Pearson’s

correlation analysis and visualized. Furthermore, we obtained 28

immune-related cell gene sets and utilized the single sample gene

set enrichment analysis (ssGSEA) via the R GSVA package to

explore the different infiltration enrich scores of each immune cell

subtype in each sample (26, 27). The R limma package was applied

to analyze the different infiltration enrich scores between advanced

and early AS groups, as well as advanced and mild NAFLD groups.

Finally, the results of ssGSEA were visualized with the boxplots.
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Results

Identification of co-DEGs in GSE28829 and
GSE49541

After normalizing the micro-array results, DEGs (606 in

GSE28829 and 121 in GSE49451) were identified with P value <

0.05 and |log2FC| > 0.585 as the screening threshold. Then the

volcano plots and heatmaps of DEGs are displayed in

Figures 2A–D. We applied the intersection of the Venn

diagrams and identified 11 co-DEGs (9 upregulated co-DEGs
frontiersin.org
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FIGURE 3

(A) The Venn diagram of 9 upregulated co-DEGs; (B) the Venn diagram of 2 downregulated co-DEGs; (C) the correlation coefficient matrix of co-DEGs in
GSE28829; (D) the correlation coefficient matrix of co-DEGs in GSE49541; (E) the heatmap of co-DEGs in GSE28829; (F) the heatmap of co-DEGs in
GSE49541. *means P < 0.05; **means P < 0.01; ***means P < 0.001.

Mo et al. 10.3389/fcvm.2023.1142296
and 2 downregulated co-DEGs) with consistent expression trends

in GSE28829 and GSE49541 (Figures 3A,B and Supplementary

Material). Then the heatmaps and correlation coefficient

diagrams (Figures 3C–F) of these 11 co-DEGs show that it can

easily identify patients with advanced AS or advanced NAFLD

from early AS and mild NAFLD.
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Function enrichment analyses of the
co-DEGs

The biology functions of co-DEGs were performed in GO and

KEGG pathway analyses to gain more insights. In the GO

category, these co-DEGs were clustered into three functional
frontiersin.org
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FIGURE 4

(A) The chord plot show GO BP enrichment significance items of co-DEGs; (B) the bubble chart show GO CC and GO MF enrichment significance items
of co-DEGs; (C) the KEGG pathway enrichment analysis of co-DEGs; (D) forest map of univariate logistic regression of co-DEGs in GSE28829; (E) forest
map of univariate logistic regression of co-DEGs in GSE49541.
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groups: BP, CC, and MF. The co-DEGs were mainly located in the

reticulum and played a crucial role in extracellular matrix

structural constituent, calcium ion transport, positive regulation of

cytokine production, NIK/NF-KB signaling, positive regulation of

ERK1 and ERK2 cascade, and lipid catabolic process. In the MF

term, these co-DEGs participate in the regulation of extracellular

matrix structural constituents, cytokine activity, muscle alpha-
Frontiers in Cardiovascular Medicine 07
actinin binding, and calcium-release channel activity (Figures 4A,

B and Supplementary Material). The enrichment analysis results

of KEGG pathways show that the co-DEGs mostly associate with

the ECM-receptor interaction, focal adhesion, and PI3K-Akt

signaling pathway (Figure 4C and Supplementary Material). In

summary, these outcomes powerfully demonstrate that cytokines,

signal transduction pathways via calcium channels, and lipid
frontiersin.org
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metabolism cooperatively took part in these two inflammatory

diseases.
Univariate logistic regression analysis of the
co-DEGs

The unvaried logistic regression analyses were utilized to reveal

the correlation between each co-DEGs and dependent variables

(advanced AS vs. early AS; advanced NAFLD vs. mild NAFLD).

Expectedly, the upregulated co-DEGs were the risk factors for

advanced AS and advanced NAFLD with the odds ratio (OR) > 1

simultaneously. On the contrary, the downregulated co-DEGs

were protective factors. The forest plots for risk factors based on

univariate analysis are shown in Figures 4D,E. These results

suggest that these co-DEGs may be involved in the common

pathogenesis of advanced AS and NAFLD.
Recognition of common signature genes via
machine learning algorithm

Additionally, we trained machine learning algorithms of lasso

regression and RF to screen the signature genes from co-DEGs.

The lasso regression is a machine learning algorithm involving a

linear relationship assumption and an L1 regularization penalty.

Firstly, the lasso regression with the minimum binomial deviance

was performed through 10-fold cross-validation. Then genes with

non-zero regression coefficients were selected for signature genes

of co-DEGs. As a result, there were 6 co-DEGs (CCL19, CHI3L1,

ZWINT, PLCXD3, LXN, and PKD2) were included in the

simplified lasso regularization model from GSE28829 (Figures 5A,

B). Meanwhile, PLCXD3, COL6A3, LUM, PKD2, RAMP1, and

CCL19 were enrolled from GSE49541 (Figures 5C,D). Then the

importance of each co-DEGs was estimated by calculating the

“Mean Decrease Gini”, and the top 6 co-DEGs were enrolled from

the RF model in GSE28829 and GSE49541 (Figure 5E). Finally,

an intersection of the Venn diagram was performed, and

PLCXD3, CCL19, and PKD2 were simultaneously the signature

genes for these two diseases (Figure 5F).
Construction of the nomogram models

Furthermore, a nomogram model for NAFLD was constructed

based on these three signature genes (PLCXD3, CCL19, and PKD2)

via the R rms package (Figure 6A). Then, a calibration curve was

used to evaluate the predictive power of the nomogram model. The

calibration curve indicated that the error between the actual

probability and predicted probability of advanced NAFLD is

minimal in GSE49541, with a mean absolute error of 0.048. This

result suggests that this nomogram model owns a high accuracy

in predicting advanced NAFLD (Figure 6B). To estimate the

clinical applicability of the prediction nomogram model, we

execute DCA and CIC. As shown in Figure 6C that within all

practical risk thresholds (from 0 to 1.0) and within the range
Frontiers in Cardiovascular Medicine 08
that affects the prognosis of patients, the nomogram model

always has an excellent overall net income. The “Number high

risk” curve was close to the “Number high risk with event” curve

at a high-risk threshold from 0.4 to 1, which indicated that the

nomogram model owns extraordinary predictive power for

advanced NAFLD (Figure 6D). Similarly, a nomogram model for

advanced AS was established and evaluated in GSE28829. These

signature genes also consistently have a favorable diagnostic

efficiency for advanced AS (Figures 7A–D).
Assessment of the nomogram model with
training and verification sets

ROC curves with AUC are shown to investigate the nomogram

models’ diagnostic effectiveness for advanced AS and NAFLD

using the identified three common signature genes. ROC curve

analyses revealed that the AUC was 0.870 for PLCXD3, 0.899 for

PKD2, and 0.966 for CCL19 in GSE28829 (Figure 8A).

Additionally, the AUC was 0.995 [95% confidence interval (CI),

0.971–1.0] for the nomogram model by utilizing all common

signature genes simultaneously in GSE28829 (Figure 8B).

Homoplastically, the AUCs for each common signature gene

were displayed in Figure 8C, and the nomogram model based on

three common signature genes also owned a high accuracy

(AUC = 0.973, 95% CI 0.938–0.998) (Figure 8D). Consistent with

the training set, the AUCs of the nomogram models in two

independent validation sets (GSE43292 of AS and GSE48452 of

NAFLD) were 0.822 (95% CI 0.706–0.912) and 0.762 (95% CI

0.567–0.913), respectively (Figures 8E–H). These results

suggested that these three common signature genes (PLCXD3,

CCL19, and PKD2) and nomogram models can serve as effective

diagnostic biomarkers for distinguishing advanced AS and

NAFLD.
Interaction network of common signature
genes and their co-expression genes

We analyzed the interaction network and related functions of

these common signature genes. These genes showed a complex

interaction network with a physical interaction of 77.64%, co-

expression of 8.01%, predicted of 5.37%, co-localization of 3.63%,

genetic interactions of 2.87%, pathway of 1.88%, and shared

protein domains of 0.60%. The biological functions of this

interaction network were mainly involved in cellular calcium ion

homeostasis, chemokine receptor binding, cytokine activity,

granulocyte chemotaxis, neutrophil migration, and cellular

response to chemokine (Figure 9 and Supplementary Material).

CCL19 sits in a more central position in this interaction network

by taking part in the most biological functions. These outcomes

illustrated that inflammatory response and its associated

pathways might participate jointly in the pathogenesis of these

two diseases. Thus, the precisely common pathways need further

investigation urgently.
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FIGURE 5

Recognition of common signature genes between AS and NAFLD. (A) The processes of LASSO regression for identifying variables in GSE28829 and mapping
each variable to a curve; (B) the log (λ) value was optimally selected in GSE28829 by 10-fold cross-validation and plotted by the partial likelihood deviance;
(C) the processes of LASSO regression for identifying variables in GSE49541 and mapping each variable to a curve; (D) the log (λ) value was optimally selected
in GSE49541 by 10-fold cross-validation and plotted by the partial likelihood deviance; (E) the Mean Decrease Gini of each co-DEGs within random forest
models for GSE28829 and GSE49541; (F) the Venn diagram of 3 common signature genes between GSE28829 and GSE49541.

Mo et al. 10.3389/fcvm.2023.1142296
Identification of the co-regulated pathways
via GSVA

We utilized the GSVA analysis to explore the co-regulated

pathways with consistent expression trends in GSE28829 and
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GSE49541, respectively. The results of GSVA analyses and Venn

diagrams illustrated that the activities of two immune-related

pathways (NOD-like receptor signaling pathway and leukocyte

transendothelial migration) were simultaneously up-regulated in

advanced AS and NAFLD groups (Figures 10A–C).
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FIGURE 6

(A) The nomogram model predicting NAFLD based on three common signature genes in GSE49541. The nomogram is used by summing all points
identified on the scale for each variable. The total points projected on the bottom scales indicate the probabilities of NAFLD; (B) the calibration
curves for the nomogram with the mean absolute error = 0.048; (C) DCA of the nomogram model and each common signature gene (the “All”
means diagnosis-all strategy; the “None” means diagnosis-none strategy) and the nomogram model had the highest net benefit at all practical risk
thresholds (from 0 to 1.0); (D) the CIC of the nomogram model.
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Correspondingly, the activities of 10 metabolic-related pathways,

especially fatty acid and amino acid metabolism, were

simultaneously down-regulated (Figure 10D). These pathways

will be candidates for further validation.
Validation of the co-regulated pathways via
single gene GSEA

Since PLCXD3, CCL19, and PKD2 might be pivotal in the

progression of advanced AS (GES28829) and NAFLD

(GSE49541), we selected these genes separately for further single-

gene GSEA to confirm the findings of GSVA. The conclusions

were primarily consistent with the previous results. Both the

leukocyte transendothelial migration and NOD-like receptor

signaling pathway own a higher activity in the high CCL19

group (Figures 11A–D). Inversely, the up-regulation of CCL19

was closely associated with the down-regulated fatty acid

degradation (Figures 11E,F). Interestingly, several classic

immune-related pathways, such as the toll-like receptor signaling
Frontiers in Cardiovascular Medicine 10
pathway, TNF signaling pathway, and Th1 and Th2 cell

differentiation, also have a high activity due to the perturbation

of CCL19 (Supplementary Figures S1A–F). Similarly, the single-

gene GSEA outcomes of PLCXD3 and PKD2 were mainly

consistent with the above (Supplementary Material).
Immune infiltration analysis

It is reported that AS and NAFLD are inflammatory-related

diseases characterized by the infiltration of immune cells into

plaques and hepatic lobules. Our study also revealed that

multiple immune-related pathways might promote the

progression of AS and NAFLD, as previously described. Then

two disparate algorithms were applied to identify the

heterogeneous infiltration of immune cells in AS and NAFLD.

Firstly, we used the ssGSEA to identify immune cell subtypes

that are differentially represented in the advanced and early AS,

while the immune-related genes set of 28 immune cell subtypes

was derived from 37 studies of microarray data (27). As shown
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FIGURE 7

(A) The nomogram model predicting AS based on three common signature genes in GSE28829. The nomogram is used by summing all points identified
on the scale for each variable. The total points projected on the bottom scales indicate the probabilities of AS; (B) the calibration curves for the nomogram
with the mean absolute error = 0.067; (C) DCA of the nomogram model and each common signature gene (the “All” means diagnosis-all strategy; the
“None” means diagnosis-none strategy) and the nomogram model had a higher net benefit at all practical risk thresholds (from 0 to 1.0); (D) the CIC
of the nomogram model.

Mo et al. 10.3389/fcvm.2023.1142296
in Figure 12A, almost all of these subtypes of immune cells

(especially the T-lymphocyte, macrophage, dendritic cell, and

mast cells) were excessively enriched in advanced AS plaques

compared to the early ones, which indicated that the excessive

activation of immune cells has a regulatory effect on promoting

AS. In the advanced NAFLD tissues, activated CD4 T cells,

central memory CD4 T cells, and type 2 T helper cells were

significantly more than mild NAFLD (GSE49541) (Figure 12B).

Next, the correlations between each subpopulation of immune

cells and each signature gene were performed based on Pearson’s

correlation coefficient via the CIBERSORT algorithm, as the

heatmaps show that each signature gene was significantly

associated with one or more subtypes of immune cells, especially

the CCL19 belonging to chemokines (Figures 13A,B). The violin

plots of the expression levels of 22 immunocyte subtypes in

GSE28829 and GSE49541 are displayed in Supplementary

Figures S2A,B. Summarily, the inflammation process plays a
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critical role in advanced AS and NAFLD, and they share some

common characteristics in this issue.
Discussion

Inflammation, an innate and integrated response to pathogens,

irritants, immune mediator, and chemicals, also lead to tissue

damage if immoderate or unbalanced. NAFLD and AS are

inflammation-related diseases jointly mediated by metabolic and

immune factors. It has well known that various cytokines,

excessive inflammation cascades, inappropriate inflammation

processes, and activated immune cell infiltration profoundly

disturb endarterium physiology and promote atherosclerosis (28).

Many studies indicated that inflammation exacerbates the

metabolic disorders of NAFLD, and metabolic inflammation

plays a crucial role in the pathogenesis and progression of
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FIGURE 8

The validation of the nomogram models with ROC curves. (A) The ROC and AUC of each common signature gene in GSE28829; (B) the ROC and AUC of
the nomogram model in GSE28829; (C) The ROC and AUC of each common signature gene in GES49541; (D) the ROC and AUC of nomogram model in
GSE49541; (E) the ROC and AUC of each common signature gene in GSE43292; (F) the ROC and AUC of the nomogrammodel in GSE43292; (G) the ROC
and AUC of each common signature gene in GES48452; (H) the ROC and AUC of the nomogram model in GSE48452.
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NAFLD to advanced liver disease. Moreover, the long-term

prognosis of NAFLD is closely correlated with the dysfunction of

metabolic-inflammatory signaling (29). Many cytokines and

signal pathways, such as IL-1β and PI3K/Akt/mTOR pathway,

are confirmed to drive the dysregulation of hepatic metabolism

and inflammation (30). It has been proposed that NAFLD is

closely associated with chronic inflammation and insulin

resistance, and hyperinsulinemia promotes hepatic lipogenesis,

further exacerbating insulin resistance (31, 32). The development

of hepatic insulin resistance can trigger lipogenesis, contributing

to the progression of NAFLD, dyslipidemia, and AS (33). Along

the line, we hypothesize that NAFLD and AS might share

overlapping pathogenic DEGs and pathways. However, the

integrated studies that focus on comprehensively analyzing the

molecular mechanism, pathways, and immune infiltration

characteristics of advanced AS and NAFLD co-pathogenesis are

still limited. Thus, we perform this study from the transcriptome

perspective through the public data.

As previously described, we analyzed the advanced NAFLD

and AS transcriptomic data and finally identified three common

signature genes (PLCXD3, CCL19, and PKD2). Then the

nomogram models with extraordinary predictive efficacy were

established and confirmed for advanced NAFLD and AS with the

calibration curve, DCA, and CIC. The ROC curves of training

sets were applied to evaluate the availability of the nomogram

models with the AUC = 0.995 (95% CI 0.971–1.0) for advanced

AS and AUC = 0.973 (95% CI 0.938–0.998) for advanced
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NAFLD. Furthermore, the AUC of the verification sets had a

similar trend. These outcomes indicated that PLCXD3, CCL19,

and PKD2 might play an essential role in developing NAFLD

and AS, contributing to effectively diagnosing these two diseases.

We also identified the co-regulated pathways between advanced

NADLAD and AS via GSVA. Two immune-related pathways

(NOD-like receptor signaling pathway and leukocyte trans

endothelial migration) are simultaneously upregulated in the

advanced AS and NAFLD groups. A total of 10 metabolic-related

pathways were simultaneously downregulated, including fatty acid

metabolism. These results illustrated that these two diseases own

common inflammatory pathways and metabolic disorders. NLRs

involve in the inflammatory response and promote programmed

cell death. Much attention has been paid to its critical role in the

pathogenesis of metabolic diseases, such as NAFLD, type 2

diabetes mellitus (T2DM), hypertension, and AS (34).

Inflammasomes are crucial regulators of innate immunity,

contributing to atherogenesis by being activated within

macrophages and artery walls. It is suggested that the NLRs

protein inflammasome and its stimulation of innate immunity is a

strong promotor of AS (35). IL-1β and IL-18, two atherogenic

cytokines, are matured in NLRPs inflammasomes. Further research

revealed that NLRP3 inflammasome is expressed in atherosclerotic

plaque (36). Current evidence suggests that innate immunity is an

essential accelerator in NAFLD progression, and NLRs drive

NASH (37). Furthermore, cardiolipin can activate the up-regulated

NLRP3 inflammasome and promote NASH pathogenesis (38). In
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FIGURE 9

The common signature genes and their co-expression genes were analyzed via GeneMANIA.
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summary, the NLRs signaling pathway and NLRPs inflammasomes

were co-upregulated in advanced NAFLD and AS, providing a novel

potential treatment for these two diseases.

CCL19 is a member of chemokine ligands, taking part in

inflammatory responses and normal lymphocyte recirculation

and homing (39). It specifically binds to chemokine receptor

CCR7 and shows potent chemotactic activity for regulating T

cells activation (40). According to GO analysis and gene-
Frontiers in Cardiovascular Medicine 13
interaction network, CCL19 was crucial in positively regulating

cytokine production, NIK/NF-KB signaling, cytokine activity,

chemokine receptor binding, and inflammatory cell migration. It

was detected that CCL19 was significantly and positively

associated with inflammatory signaling pathways such as toll-like

receptor 4 (TLR4)/NF-KB and proinflammatory factors,

including IL-6 and TNF-α in NAFLD patients. Additionally,

metformin can significantly suppress the high expression of
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FIGURE 10

The volcano plots and Venn diagrams for identifying co-regulated pathways. (A) The volcano plot of up-regulated and down-regulated pathways in
GSE28829; (B) the volcano plot of up-regulated and down-regulated pathways in GSE49541; (C) the Venn diagram of common up-regulated
pathways between GSE28829 and GSE49541; (D) the Venn diagram of common down-regulated pathways between GSE28829 and GSE49541.
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CCL19 and improve NAFLD, demonstrating that inhibition of

CCL19 may be an effective treatment for NAFLD (41). The

CCL19/CCR7 pathway promotes the progression of high-fat-

induced IR and obesity (42), and these issues are well-known as

risk factors for accelerating the pathogenesis of NAFLD and AS.

CCL19/CCL21-CCR7 is closely correlated with high coronary

artery disease risk and is considered a novel homeostatic

chemokine system that promotes atherogenesis by modulating

monocyte adhesion and migration (43). Salem MK reported that

CCL19 is significantly over-expressed in unstable carotid

atherosclerotic plaques (44). Inversely, the deletion of CCR7 in

mouse AS contributes to the reduced atherosclerotic plaque

content through regulating T cells and antigen-presenting

dendritic cells (DCs) (45).
Frontiers in Cardiovascular Medicine 14
To our knowledge, this is the first study demonstrating that

CCL19 was significantly and simultaneously co-upregulated in

advanced NAFLD and AS. As the previous references and our

findings suggested, CCL19 might mediate the pathogenesis of

advanced NAFLD and AS by regulating the immune-related

pathways and inflammatory cell migration. Then we applied

CCL19-specific single-gene GSEA to explore the critical

mechanisms within these two diseases. Exhilaratingly, the up-

expression of CCL19 is positively associated with the activation of

NOD-like receptors signaling pathway, leukocyte transendothelial

migration, toll-like receptor signaling pathway, TNF signaling

pathway, and Th1 and Th2 cell differentiation, which corresponds

with the literature and supports our hypothesis. Moreover, the

high expression of CCL19 was significantly associated with
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1142296
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 11

Single-gene GSEA of CCL19. (A) The NOD-like receptor signaling pathway from single-gene GSEA in GSE28829; (B) the NOD-like receptor signaling
pathway from single-gene GSEA in GSE49541; (C) the leukocyte transendothelial migration from single-gene GSEA in GSE28829; (D) the leukocyte
transendothelial migration from single-gene GSEA in GSE49541; (E) the fatty acid degradation from single-gene GSEA in GSE28829; (F) the fatty acid
degradation from single-gene GSEA in GSE49541.
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FIGURE 12

ssGSEA for immune infiltration. (A) The boxplots of 28 immunocyte subtypes between advanced and early AS in GSE28829; (B) the boxplots of 28
immunocyte subtypes between advanced and mild NAFLD in GSE49541.

Mo et al. 10.3389/fcvm.2023.1142296
reduced activity of fatty acid degradation, which might lead to

dyslipidemia and trigger the advance of NAFLD and AS.

Therefore, targeting CCL19 may provide a therapeutic method for

decelerating the progression of advanced NAFLD and AS.
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However, few studies that focus on the correlation between

PLCXD3, PKD2, and these two relevant diseases, and direct

evidence is also lacking. A Previous study has illustrated that

down-regulated expression of PLCXD3, a member of the
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FIGURE 13

Immune infiltration analysis of the CIBERSORT algorithm. (A) The heatmap of the correlation coefficient between each common signature gene and each
immunocyte subtype in GSE28829; (B) the heatmap of the correlation coefficient between each common signature gene and each immunocyte subtype
in GSE49541.
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phosphoinositide-specific phospholipases (PI-PLC) family,

suppressed insulin secretion due to the disruption of the

necessary insulin signaling pathways and insulin biosynthesis

genes in islet β-cells (46). Taneera Jalal revealed and confirmed

PLCXD3 as a potential regulator of pancreatic islet function (47).

An Emiratis population-based cross-sectional study indicated that

genetic variants of the PLCXD3 are correlated with lower HDL-

cholesterol and MS risk (48). According to GO analysis, as

previously described, PLCXD3 was closely related to the lipid

catabolic process. These outcomes were consistent with the

literature review, which suggested that up-regulated PLCXD3

might contribute to the progression of NAFLD and AS due to its

involvement in hyperinsulinemia and dyslipidemia. We found

that PKD2, also called transient receptor potential polycystin-2

(TRPP2), plays a vital role in calcium ion transport and cellular

calcium ion homeostasis based on enrichment analysis and gene

interaction network. It is a Ca2+ channel located on the

membrane of the cell surface and endoplasmic reticulum (ER),

closely associated with various cellular functions. Hasan Raquibul

reported that SUMO1 modification of PKD2 channels regulates

arterial contractility (49). Current knowledge regards PKD2 may

regulate the functions of endothelial cells, vascular smooth

muscle cells, and blood pressure (50). The mutation of the PKD2

leads to a systemic disorder of vasculature (51). The dysfunction

of calcium homeostasis in hepatic mitochondria can lead to

excess lipid absorption and metabolism disorders, which have

been regarded as a potential mechanism to accelerate NAFLD

progression (52). Based on our bioinformatics analyses, we found

that PLCXD3 and PKD2 might provide a novel perspective to

understand the disease progression of advanced NAFLD and AS,

and these results might serve as a theoretical basis for further

experimental studies in this direction.

Finally, we were concerned with exploring the analogical

feature of immune cell infiltration among advanced NAFLD

and AS. Various immune cells, such as macrophages, DCs, and

T cells, participate in and drive lipid deposition and

peroxidation, ultimately promoting atherogenesis (53–55). The

compositions of circulating and intrahepatic immune cells were

also polymorphic in patients with fatty liver and steatohepatitis

(56). Interestingly, we found that activated CD4 T cells and

central memory CD4 T cells were significantly excessive

infiltration in advanced NAFLD and AS, which had a similar

trend. In the hyperlipidemic μMT−/− ApoE−/− mice model,

wildtype B cells can accelerate atherogenesis and increase CD4

T cells in plaques, including memory and activated CD4 T cells.

These outcomes indicated that targeting the interaction of B

cells and CD4 T cells may be a therapeutic strategy to restrict

AS progression (57).

Furthermore, novel evidence tends to confirm that the

dysbiosis of NASH may drive the migration of CD4 T cells from

intestinal and mesenteric lymph-nodal into the liver (58). Other

studies also found rather increased numbers of intrahepatic CD4

T cells in murine models of NASH, such as western and high-fat

diets (59). Central and effector memory CD4 T cells play an

active role in promoting and sustaining liver high-fat-diet related

murine model of NASH, accompanied by marked up-regulation
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of pro-inflammatory cytokines IL-17A and IFN-γ. Then

depletion of CD4 T cells leads to abrogate the intrahepatic

immune infiltration, inflammation, and fibrosis (60). Using an

experimental transgenic murine model, Nabil D showed that the

hepatocyte damage triggers a high releasing amount of IL-17.

Some studies revealed that IL-17 activates lipolysis of the white

adipose tissue and actively promotes the progression of hepatic

steatosis and NASH. Additionally, a high concentration of

circulating IL-17 was reported in NASH patients (59). Similarly,

previous studies revealed that IL17 contributes to vascular and

systemic inflammation in experimental AS (61), and the

frequencies of IL17+ CD4 T cells significantly increase in the

severe coronary AS group (62). Thus CD4 T cells, combined

with their relevant pro-inflammatory cytokines, might contribute

to NAFLD and AS co-morbidities through immune and

inflammatory pathways. The polymorphism and variability of

immune cell infiltration is a great challenge and expect to

become a novel research topic.

Because of the substantial metabolic similarity between

NAFLD and AS, many researchers have focused on this field.

However, studies have yet to explore the common molecular

mechanism and pathways between these two relevant diseases via

advanced bioinformatics methods. Unlike previous studies, our

study simultaneously pays more attention to exploring common

signature genes, related co-regulated pathways, and immune

characteristics. Due to the high comorbidity rate between

NAFLD and AS, we have applied an integrated method based on

bioinformatics and machine learning algorithms, which have

been proven to be credible in various diseases, to identify the

common signature genes and pathways for the first time (63).

These findings may further clarify the sharing mechanism of

advanced NAFLD and AS. Our study also had some limitations.

Significantly, this is a retrospective study that requires further

experiments and clinical data to corroborate our outcomes in the

future. Fortunately, the diagnostic models base on three signature

genes were also efficient in external validation sets, which would

partially enhance the credibility of our results. Moreover, it

should be emphasized that the direct diagnosis of advanced

NAFLD and AS could not base on these common signature

genes and pathways, and invasive biopsy and pathological

confirmation at histology are needed. However, our findings

might provide new insights and biomarkers for the common

molecular mechanisms of advanced NAFLD and AS. Because of

the close correlation between clinical factors and these two

diseases, integrating these signature genes with other clinical

diagnostic models and targeting them might also will be

considerable and valuable.
Conclusion

We identified three common signature genes (PLCXD3,

CCL19, and PKD2), co-regulated pathways, and shared immune

features of advanced NAFLD and AS, and then established

effective diagnosis models. We found that these two related

diseases shared many common pathogenic mechanisms. This
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study might provide novel insights into the molecular mechanism

of advanced NAFLD complicated with AS from the multi-

dimensional perspective of genetics, signaling pathways, and

immune infiltration.
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