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Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that
can identify pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs). TLRs play an important role in the
innate immune response, leading to acute and chronic inflammation. Cardiac
hypertrophy, an important cardiac remodeling phenotype during cardiovascular
disease, contributes to the development of heart failure. In previous decades,
many studies have reported that TLR-mediated inflammation was involved in the
induction of myocardium hypertrophic remodeling, suggesting that targeting
TLR signaling might be an effective strategy against pathological cardiac
hypertrophy. Thus, it is necessary to study the mechanisms underlying TLR
functions in cardiac hypertrophy. In this review, we summarized key findings of
TLR signaling in cardiac hypertrophy.
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1. Introduction

Cardiac hypertrophy, characterized by an enlargement of cardiomyocyte size, is initially an

adaptive response to various stimuli (Figure 1) (1). Physiological cardiac hypertrophy occurs in

response to pregnancy and exercise to preserve or improve heart function without cardiac

fibrosis (2). In contrast, pathological cardiac hypertrophy accompanying myocardial

dysfunction and fibrosis is the cardiac response to chronic stressful conditions, such as

hypertension and valvular disease (3). Pathological cardiac hypertrophy plays a causal role in

the progression of heart failure. Pathological hypertrophy is associated with increased interstitial

fibrosis, cell death, and cardiac dysfunction, as well as increased production of proinflammatory

cytokines (3, 4). Inflammation is a characteristic feature of pathological cardiac hypertrophy (5).

Toll-like receptors (TLRs), as innate immune receptors, are key factors in cardiovascular

diseases (6). Insights into the precise function of TLR-mediated cardiac inflammatory signaling

will aid in developing novel therapies for pathological cardiac hypertrophy.
2. TLRs and downstream adaptors

TLRs have been first discovered in Drosophila melanogaster, playing a pivotal role

in embryonic development and dorsal-ventral polarity (7, 8). The researchers have
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FIGURE 1

Phenotypes of physiological and pathological cardiac hypertrophy.

FIGURE 2

Cardiac hypertrophy mediated by MyD88-dependent and independent
TLRs signaling pathways.
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further found that the function of TLRs is related to innate and

adaptive immunity (9). To date, 13 and 10 TLRs have been

identified in mice and humans, respectively. Each TLR

recognizes distinct microbial components. For example, a

heterodimer of TLR2/1 or TLR2/6 recognizes lipoproteins,

TLR3 responds to double-stranded RNA (dsRNA), TLR4

senses lipopolysaccharide (LPS), TLR5 binds to bacterial

flagellin, TLR7/8 respond to single-stranded viral RNA

(ssRNA), and TLR9 recognizes bacterial DNA containing

unmethylated CpG motifs (10–15).

TLR family members usually dimerize themselves and recruit

adaptor molecules with the same Toll- interleukin-1 (IL-1)

receptor (TIR) domain to transmit signals. TLRs signals can be

divided into myeloid differentiation factor 88 (MyD88)-

dependent and MyD88-independent pathways (Figure 2). Except

for TLR3, the signals of all TLR family members are conducted

through the MyD88-dependent pathway, which induces the

expression of proinflammatory cytokines, chemokines, and other

inflammation-related molecules by activating nuclear factor-κB

(NF-κB) and other transcription factors (8, 16). TLR3 signals

through the MyD88-independent pathway, which includes

another adaptor molecule, TIR domain-containing adaptor-

inducing interferon-β (TRIF), also known as the TRIF-dependent

pathway (17). TLR4 is the only TLR that triggers both MyD88-

and TRIF-dependent pathways (18, 19). MyD88 and TRIF are

TLR adaptor molecules, and other adaptor molecules include

TIR domain-containing adaptor protein (TIRAP) and TRIF-

related adaptor molecule (TRAM) (20–23).

Numerous specific protein serine/threonine kinases participate

in TLR signaling, such as IL-1 receptor-associated kinases (IRAKs),

the transforming growth factor-β-activated kinase 1 (TAK-1), and

the IκB kinase (IKK) complex. On the other hand, protein serine/

threonine phosphatases, phospho-protein phosphatases (PPPs),
Frontiers in Cardiovascular Medicine 02
metal-dependent protein phosphatases (PPMs), and aspartate-

based phosphatases counterbalance and limit TLR signaling (24).

Different TLRs recognize specific ligands with distinct PAMPs and

DAMPs, whereas all TLRs signals activate NF-κB. The excessive

activation of TLR receptor signaling can also lead to autoimmune

and inflammatory diseases (25). Consequently, different TLRs in a

given pathological state may yield different outcomes that define the

phenotype of tissue injury and organ damage.
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3. Inflammation is involved in the
pathogenesis of cardiac hypertrophy

Common pathophysiological mechanisms associated with

cardiac hypertrophy include oxidative stress (26, 27), renin-

angiotensin-aldosterone system (RAAS) (28), nervous system-

activated sympathetic activity (29), pressure overload (30), and

inflammation (31, 32). Inflammation is the pathological basis of

myocardial hypertrophy (32). Other diseases such as

hypertension (33) and ischemic injury (34) also provoke

inflammatory responses, leading to cardiac hypertrophy. TLRs

are widely expressed in many cells in the heart, and activating

TLR-mediated inflammation signaling pathways promotes

immune cell migration to the heart and cardiac fibroblast

differentiation (35, 36). Therefore, TLR-induced inflammatory

signaling is significant in the development of cardiac hypertrophy.

Importantly, immune cells play a pivotal role in the inflammatory

response, but their cardioprotective or cardiodestructive effects differ

after pressure overload. Particularly, neutrophils, dendritic cells

(DCs), and mast cells demonstrate destructive functions in animal

models, whereas eosinophils and natural killer T cells display

cardioprotective activities (37). For example, S100 calcium-binding

protein A8/A9 complex (S100a8/a9), an initial proinflammatory

factor produced by neutrophils, activates the NF-κB pathway in

angiotensin II (Ang II)-induced cardiac fibrosis and hypertrophy

(38). Besides, TLR stimulation and DC infiltration are factors

contributing to heart failure (39). Cardiac macrophages, which are

highly plastic cells, are divided into two types of macrophages,

including proinflammatory (M1) and anti-inflammatory (M2)

phenotypes. M1 macrophages are associated with chronic

inflammation, and M2 macrophages produce IL-10 and TGF-β1,

which are related to tissue repair and fibrotic properties (33, 40).
TABLE 1 Summary of various factors that can interact with specific TLRs, lea

Factors Animal Model Downstream signaling
HSP70 TAC/Dox TLR2/NF-κB Infla

IL-1β Trypanosoma cruzi TLR2/NF-κB Card

SNO-MLP Phenylephrine/AngII TLR3/RIP3/NLRP3 Card

Palmitic acid Obesity TLR4/c-Src/EGFR Card

LPS LPS TLR4/MyD88/CaMKII LPS

MCP-1 Ang II TLR4 Card

RBP4 Ang II TLR4/MyD88 Insu

MD2 Ang II TLR-4/MyD88/NF-κB Card

fibrinogen TAB TLR4/MyD88/NF-κB Card

STAT3 Ang II IL-6/gp130/JAK2/STAT3 Card

Flagellin AB TLR5 Inte

Resiquimod SLE TLR7/8 Auto

T. cruzi Chagas’ disease TLR7/STAT3 Card

miR-101 PE/TAC XIST/miR-101/TLR2 Card

dsRNA Ang II TLR3/TRIF Card

LncRNA (CTPB1-AS2) Ang II SP1/CTPB1-AS2/TLR4 Card

ssRNA Enteroviral RNA TLR8/MyD88 Ente

Mitochondrial DNA DNase II-deficient heart TLR9 Chr

ACTA-1, α-actin; AAC, abdominal aortic constriction; CaMKII, calcium/calmodulin-de

lipopolysaccharide; MCP-1, monocyte chemoattractant protein 1; MD2, myeloid diffe

SNO-MLP, S-nitrosylation of muscle LIM protein; STAT3, signal transducer and activa

constriction; TRIF, toll-interleukin-1 receptor-domain-containing adapter-inducing int
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TLR4 activator LPS stimulates macrophages to produce mir-155 that

promotes cardiac inflammation, followed by cardiac fibrosis,

apoptosis, and hypertrophy (41). Overall, inflammatory cells infiltrate

the heart by activating intracellular inflammatory signaling pathways,

eventually contributing to cardiac hypertrophy and heart failure.
4. Toll-like receptors are associated
with cardiac hypertrophy

TLRs are major components of the innate immune system that

elicit cytokine and chemokine production primarily by activating

the proinflammatory transcription factor NF-κB (18). Herein, we

review several important TLRs associated with cardiac

hypertrophy (Table 1).
4.1. TLR2

TLR2 in complex with TLR1 or TLR6 is essential for

recognizing bacterial lipoproteins and lipopeptides. After

recognizing their ligands, the TLRs form stable TLR1-TLR2 or

TLR2-TLR6 complexes (60). TLR2 activation has been associated

with cardiovascular diseases (61, 62). Ye et al. have shown that

TLR2 mediates cardiac hypertrophy and inflammation in Ang-II-

treated mice through the TLR2/MyD88/NF-κB signaling

pathway. Ang II significantly increased the level of the TLR2-

MyD88 complex rather than that of TLR2 or MyD88 protein

(63). Additionally, TLR2 activation upregulates NF-κB and

inflammatory factors, such as IL-1β, which can induce

cardiomyocyte hypertrophy and fibroblast and vascular

endothelial cell proliferation (44). TLR2/NF-κB/IL-1β signaling is
ding to cardiac hypertrophy and cardiac remodeling.

Phenotype In vivo or in vitro Reference
mmation, cardiac hypertrophy, heart failure In vivo and in vitro (42, 43)

iac hypertrophy In vitro (44)

iac hypertrophy, heart failure In vivo (45)

iovascular diseases In vitro (46)

/MI-induced hypertrophic and inflammatory In vivo (47)

iac hypertrophy and dysfunction In vivo (48)

lin resistance and cardiac hypertrophy In vivo (49)

iac inflammation and remodeling In vivo and in vitro (50)

iac hypertrophy In vivo (51)

iac dysfunction and remodeling In vivo (52)

rstitial cardiac fibrosis and dysfunction In vivo (53)

immune-mediated dilated cardiomyopathy In vivo (41)

iomegaly and myocardial failure In vitro (54)

iac hypertrophy In vivo and in vitro (55)

iac hypertrophy and hypertension In vivo (56)

iac hypertrophy In vivo (57)

rovirus-associated DCM In vivo (58)

onic inflammation and heart failure In vivo (59)

pendent protein kinase II; DOX, doxorubicin; HSP70, heat shock protein-70; LPS,

rential protein-2; PE, phosphatidylethanolamine; RBP4, retinol-binding protein 4;

tor of transcription 3; SLE, systemic lupus erythematosus; TAC, transverse aortic

erferon-β.
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essential for activating the IGF-1/PI3K/Akt pathway and leads to

adaptive cardiac hypertrophy during pressure overload (64).

Besides, TLR2 is involved in renal ischemia/reperfusion (I/R)-

induced cardiac hypertrophy by regulating the systemic

inflammatory profile and NF-κB activation (65). A recent study

has suggested that lncRNA X-inactive specific transcripts (XIST)

could induce cardiac hypertrophy by targeting miR-101 and

increasing TLR2 levels (55). Besides, studies have demonstrated

that heat shock proteins (HSPs), such as HSP60 and HSP70,

induced cardiac hypertrophy by activating NF-κB through the

TLR2/MyD88-dependent pathway in Dox-induced animal

models (42, 43). In contrast, HSP25 protects the heart from Dox-

induced cardiotoxicity by antagonizing the binding of Dox to the

TLR2 receptor (66). TLR2 deficiency in cardiac cells prevents

Ang II-induced cardiac remodeling, inflammation, and

dysfunction by reducing the formation of TLR2-MyD88

complexes (67). Obesity has been studied as an activator of

DAMPs, which use the TLR2 signaling pathway to increase

cytokine expression in heart tissue (68). Although TLR2 has been

shown to induce cardiac hypertrophy, several studies have

suggested that TLR2 is required for cardiac protection. TLR2-

deficient mice have shown short-term advantages after

myocardial I/R but promoted left ventricular dilation in the long

term with reduced collagen and decorin density in the infarct

scar (69). TLR2 stimulation also protects the heart from

exaggerated autoimmunity in experimental autoimmune

myocarditis by promoting regulatory DCs formation, which

limits autoreactive T-cell responses (70). Therefore, the role of

TLR2 in cardiac hypertrophy is destructive or protective,

depending on the etiology and disease stage.
4.2. TLR3

TLR3 is located in the endoplasmic reticulum. Upon

stimulation with dsRNA, TLR3 moves to the endosomes, where

TLR3 is phosphorylated by Bruton’s tyrosine kinase (BTK) and

phosphorylated IRF3, triggering its downstream signaling (71,

72). Its adaptor protein for the dsRNA-induced signaling

pathway is not MyD88 but TRIF (73, 74). TRIF also recruits

additional proteins necessary for downstream signaling, including

receptor-interacting protein 1 (RIP1), TNF receptor-associated

factor 3 (TRAF3), nucleosome assembly protein 1 (NAP1), and

TBK1. The TLR3/TRIF pathway then activates NF-κB and IFN

regulatory factor 3 (IRF-3) (56). TLR3 deficiency in mice with

Coxsackie virus B3 (CVB3) infection increases viral replication

during the acute period of myocarditis. TLR3 deficiency also

increases the level of cytokines related to T helper (Th) 2

response, such as IL-4, IL-10, IL-13, and TGF-β. IL-4 deficiency

in mice improves heart function during acute CVB3 myocarditis,

suggesting that TLR3 prevents myocarditis by reducing viral

replication and IL-4 levels in the heart (75). S-nitrosylation of

muscle LIM protein (MLP) induces TLR3-mediated RIP3 and

nucleotide-binding oligomerization domain-like receptor pyrin

domain containing 3 (NLRP3) inflammasome activation, thereby

promoting the development of myocardial hypertrophy (45).
Frontiers in Cardiovascular Medicine 04
Although Ang II activates both MyD88 and TRIF pathways, only

the TRIF pathway is required to mediate hypertension and

cardiac hypertrophy (76). A recent study has found that both

TLR4-TRIF and TLR3-TRIF pathways mediate Ang II-induced

cardiac hypertrophy, whereby only the TLR3-TRIF pathway is

required for Ang II-induced hypertension (77).
4.3. TLR4

PAMPs and DAMPs act as exogenous or endogenous ligands for

TLR4, respectively. Its co-receptor myeloid differentiation protein 2

(MD2) recognizes LPS and binds TLR4, followed by the activation

of the TLR4 signaling pathway (78). Additionally, hyperthyroidism,

enteroviral replication, and lifestyle-related diseases directly

compromise the myocardial structure and lead to inflammation

through TLR4 and downstream activation of the NLRP3

inflammasome or NF-κB-dependent pathways (16, 79, 80). For

example, postnatal growth restriction (PNGR) and hyperoxia cause

intestinal dysbiosis that activates pulmonary hypertension and,

subsequently, promotes right ventricular hypertrophy via the TLR4/

NF-κB/IL-1β pathway (81). Besides, TLR4 activation increases

oxidative stress and activates MCP-1 expression, resulting in cardiac

hypertrophy in Ang II-induced hypertension (48). TLR4 is the only

member of the TLRs family that simultaneously activates

intracellular signal transduction through two different signaling

pathways, the MyD88-dependent and MyD88-independent pathways.

In the MyD88-dependent pathway, LPS binds to LPS-binding

protein (LBP), and this complex then binds with CD14,

transferring LPS to TLR4 and its co-receptor MD2 through

hydrogen bonding on Arg-90, Glu-92, and Asp-100 (50, 82–84).

Inside the cells, this CD14/TLR4/MD2 compound interacts with

adaptor TIRAP, inducing IL receptor-associated kinase (IRAK)

phosphorylation, MyD88 separation, and TRAF6 combination.

Then, TRAF6 can activate NF-κB through TGF-β activated

kinase 1 (TAK1) and MAPKs, such as JNK, extracellular-signal-

regulated kinase (ERK), and p38 kinase, through mitogen-

activated protein kinase ERKA 6 (MKK6), which, in turn,

activates AP-1, leading to the expression of proinflammatory

cytokines (51, 85–87). Several different inflammatory cytokines,

including TNF-α, IL-6, and IL-1β, are induced through this

signaling pathway (88). For example, retinol-binding protein 4

(RBP4) contributes to insulin resistance and heart failure by

activating the TLR4/MyD88 signaling pathway (49).

Other MyD88-dependent pathways include the TLR4/MyD88/

CaMK II, TLR4/MyD88/PI3K/Akt, and TLR4/MyD88/MAPK

pathways, showing that TLR4/MyD88 downstream is more

complicated in regulating cardiac hypertrophy. CaMK II belongs

to serine/threonine kinases and plays an important role in

cardiac structure remodeling and electrical activity (89). MyD88

leads to CaMK II oxidation and is essential for adverse cardiac

hypertrophy and inflammation during myocardial infarction (47).

The TLR4/MyD88/PI3K/Akt pathway has both adverse and

protective effects on cardiac hypertrophy, probably due to the

different PI3K isoforms. PI3K p110γ activates maladaptive
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cardiac hypertrophy, whereas PI3K p110α induces adaptive cardiac

hypertrophy (90).

The MyD88-independent pathway is also named the TRIF-

dependent pathway. IKKϵ and TBK1 are molecules downstream

of TRIF, which activate NF-κB and IRF3, respectively (91, 92).

NF-κB releases IκB from the binding complex, leading to NF-κB

translocation from cytosol to the nucleus.

Interestingly, some molecules induce cardiac hypertrophy by

multiple pathways. Nucleotide-binding oligomerization domain-2

(NOD2)-knockdown in mice increases cardiac hypertrophy and

fibrosis by upregulating multiple pathways, including the TLR4/

NF-κB, TLR4/MAPK, and TGF-β/Smad pathways (93). Besides,

Ang II activates STAT3, which interacts with TLR4 and increases

IL-6, and, in turn, promotes the second STAT3 activation,

leading to an upregulated expression of genes for cardiac

hypertrophy through the IL-6/glycoprotein 130 (gp130)/Janus-

family tyrosine kinases 2 (JAK2) pathway (52).
4.4. TLR5

TLR5, a transmembrane protein, is highly expressed in

immune cells, cardiomyocytes, and vascular endothelial cells.

TLR5 triggers inflammatory responses and promotes cardiac

hypertrophy, and the deficiency of TLR5 in mice attenuates the

cardiac hypertrophy and dysfunction induced by pressure

overload (53). TLR5 directly interacts with spleen tyrosine kinase

and activates NADPH oxidase, stimulating the p38 MAP kinase

pathway in DOX-induced cardiotoxicity (94).
4.5. TLR7/8

TLR8 mediates the antiviral response by recognizing ssRNA.

TLR8 is associated with the immune response to enteroviral

replication and may be involved in enterovirus-associated dilated

cardiomyopathy (58). Additionally, both T. cruzi trypomastigotes

(extracellular form) and amastigotes (intracellular form) induce

cardiomyocyte apoptosis via TLR7 signaling to activate

transcription factor STAT3, which then upregulates apoptotic

gene BAX and downregulates anti-apoptotic gene BCL-2 (54).

Furthermore, TLR7/8 agonist resiquimod causes myocarditis and

dilated cardiomyopathy, mimicking the cardiac damage induced

by systemic autoimmune diseases, such as systemic lupus

erythematosus and rheumatoid arthritis. Furthermore, the cardiac

damage may be due to the systemic increase in inflammation or

the direct autoimmune response toward the heart (95).
4.6. TLR9

TLR9, a receptor for unmethylated CpG-DNA, bacterial DNA,

viral DNA, and fungi, was first cloned and identified in 2,000 (96–

99). When TLR9 is activated by binding with its ligands, it can

induce a TLR9-mediated immune response, such as an antiviral

response, and the production of type I IFN through plasmacytoid
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DCs (100). TLR9 induces NF-κB via the MyD88-dependent

pathway, where CD82 acts as an important regulator of TLR9-

mediated signaling in cancer, infectious diseases, and

autoimmune diseases (101). Furthermore, TLR9 triggers innate

and adaptive immune responses against pathogens, such as

Brucella, Streptococcus pneumoniae, Helicobacter, mouse

cytomegalovirus (MCMV), herpes simplex virus (HSV) types 1

and 2, and adenovirus (102–108). Bacterial DNA could mediate

neutrophil signaling by TLR9-independent and MyD88-

dependent pathways (109). Mitochondrial DNA escapes from cell

autophagy and leads to TLR9-mediated inflammatory responses

in cardiomyocytes, followed by myocarditis and dilated

cardiomyopathy (59). Inhibiting TLR9/NF-κB-mediated sterile

inflammation also improves pressure overload-induced right

ventricular dysfunction (110). However, TLR9 also mediates the

cardiac protection of oligonucleotides or peptides. Synthetic

oligonucleotides (ODNs), such as CpG-ODN C274 and 1668-

thioate, attenuate ISO (isoproterenol) or I/R-induced cardiac

hypertrophy by activating TLR9-mediated PI3K/AKT signaling

(111, 112). Wang et al. have demonstrated that cathelicidin-

related antimicrobial peptide (CRAMP) inhibited the cardiac

hypertrophic response by activating the IGFR1/PI3K/AKT

pathway and ameliorated cardiac oxidative stress by activating

the TLR9/AMPK pathway in cardiomyocytes. TLR9 is required

for the anti-oxidative effect of mCRAMP, as demonstrated by

using TLR9-knockout mice. Additionally, TLR9 knockout partly

reverses the antihypertrophic effect of mCRAMP, suggesting that

TLR9 also contributes to protecting cardiomyocytes from

hypertrophy induced by pressure overload (113).
5. Potential therapeutic approaches in
cardiac hypertrophy

Several promising drugs and technologies have been developed

to attenuate TLR-mediated inflammatory response and reverse

cardiac hypertrophy (114). Thus, TLRs and TLR signaling

medications might be potential treatment approaches in cardiac

hypertrophy.

An alternative therapeutic strategy is blocking TLR upstream

molecules to diminish inflammation and attenuate cardiac

hypertrophy. For example, some protein molecules, such as

modified citrus pectin (a specific inhibitor of galectin-3), cardiac

transmembrane BAX inhibitor motif containing 1 (TMBIM1),

HMGB1, EGFR, human mesenchymal stem cells, and

erythropoietin (EPO), in the heart reverse pressure overload-

induced cardiac hypertrophy by blocking the TLR4 signaling

pathway (109, 115–117). Inhibiting some nucleic acid molecules,

such as lncRNA CTPB1-AS2, lncRNA NEAT1 and miR-93, can

ameliorate cardiac hypertrophy by downregulating TLR4 signaling

(57–119). Silencing of protein molecule-like fatty acid-binding

protein 4 protects against LPS-induced cardiomyocyte hypertrophy

and apoptosis by inhibiting the TLR4/NF-κB pathway (120).

Besides, CaMKIIδB silencing prevents cardiac hypertrophy

independent of an inflammatory response by inhibiting the

complement system and TLR2/4 NF-kB signaling (121).
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In addition, TLR inhibitors can decrease cardiac hypertrophy.

Some chemical compounds, such as choline and eritoran,

ameliorate cardiac hypertrophy by inhibiting TLR4, which

decreases inflammatory cytokines, such as IL-1β and IL-6, and

increases anti-inflammatory cytokines, such as IL-10 (122, 123).

Other chemical compounds, such as Triad3A (a ubiquitin E3

ligase), TAK-242, and lipopolysaccharide from Rhodobacter

sphaeroides (LPS-RS), have been reported to negatively regulate

the NF-κB activation pathway via the inhibition of TLR4/TLR9 or

TLR4 and subsequently inhibit cardiac disease (124–127).

Additionally, Ang II-induced microglia activation and oxidative

stress are linked to TLR4 activation in the paraventricular nucleus

(128). Inhibiting TLR4 within the paraventricular nucleus (PVN,

an important cardioregulatory center in the brain) attenuates

blood pressure and inflammation (129). Calcitriol infusion in the

PVN ameliorates hypertensive responses and cardiac hypertrophy

by decreasing TLR4-associated inflammation (130). Recombinant
TABLE 2 Summary of various inhibitors that can interact with TLR signaling

Factors Animal model Downstream signaling

miR-93 Ang II TLR4/PI3K/Akt/mTOR Am

mCRAMP Ang II TLR9/AMPKa Com
par

S100a8/a9 Ang II TLR4/NF-κB Pre
inte

Telmisartan Ang II TLR4/MyD88/NF-κB Att
and

Triad3A Ang II TLR4 and TLR9/NF-κB Am

MgIG Isoproterenol TLR4/NF-κB (p65) Am

DMF Isoproterenol TLR4/MyD88/p-ERK1/2 Am

Arbutin Isoproterenol TLR4/NF-κB Am

LPS-RS Isoproterenol TLR4/MyD88 Red
dys

HSP25 Dox TLR2/NF-κB Pre

SQYXD Dox TLR4/NF-κB Am

TAK-242 (TLR4
inhibitor)

Aldosterone TLR4 Inh
epit

dsRNA Coxsackievirus B3 TLR3/IL-4 Pre

Eritoran TAC TLR4/IL-1β,IL-6 Am

1668-thioate TAC TLR9 Red
card

NOD2 AB TLR4/MAPKs/NF-κB/TGFβ/
Smad

Att

RIP2 AB TLR4/MyD88/NF-κB/MAPKs Am
fibr

TMBIM1 AB Tumor susceptibility gene 101/
TLR4/Lysosome

Am

Choline Spontaneously
hypertensive

TLR4 Imp
hyp

Lactobacillus reuteri
GMNL-263

Diabetes mellitus TLR-4/NF-κB Red

MD1 High-fat diet TLR4/MyD88/CaMKII Am
dys

AAC, abdominal aortic constriction; AB, aortic banding; DOX, doxorubicin; DMF, dime

shoch protein 60; LPS-RS, lipopolysaccharide from the photosynthetic bacterium

magnesium isoglycyrrhizinate; MD1, myeloid differentiation protein 1; NOD2, nucle

receptor-interacting serine/threonine-protein kinase 2; SHR, spontaneously hyperte

heterodimeric proteins; SQYXD, Shenqi Yangxin decoction; Triad3A, ubiquitin E3

containing 1.
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human relaxin (RLX) and bioactive peptides attenuated cardiac

hypertrophy, inflammation, and fibrosis and appeared to involve

the inhibition of TLR4 (131, 132). Interestingly, studies have

reported that silencing TLR4 gene through siRNA prevents the

development of diabetic cardiomyopathy in streptozotocin-induced

type 1 diabetes (133).

Some TLR/MyD88 signaling inhibitors also ameliorate

cardiac hypertrophy. Receptor-interacting serine/threonine-

protein kinase 2 (RIP2) deficiency ameliorates cardiac

hypertrophy through multiple signaling pathways that reduce

TLR4/MyD88/NF-κB activation and MAPKs phosphorylation

(134). In contrast, some molecules and compounds negatively

regulate cardiac hypertrophy by suppressing TLR4/MyD88

signaling, which includes protein molecules such as MD1 and

anti-HSP70 antibody and compounds such as Ang II type 1

receptor (AT1-R) antagonist and liver × receptors agonist (135–

138). Besides, long-term oral atazanavir attenuates myocardial
and ameliorate cardiac hypertrophy and cardiac remodeling.

Effect In vivo or
in vitro

Reference

eliorate cardiac hypertrophy In vitro (118)

pletely ameliorate cardiac oxidative stress and
tly ameliorate cardiac hypertrophy

In vivo (113)

vent inflammatory cell infiltration, perivascular and
rstitial fibrosis, and hypertrophy

In vitro (38)

enuate mean arterial pressure, cardiac hypertrophy,
inflammation

In vivo (136)

eliorate cardiac hypertrophy In vivo and in
vitro

(125)

eliorate myocardial fibrosis In vivo (143)

eliorate cardiac hypertrophy In vivo (144)

eliorate cardiac hypertrophy In vivo (149)

uce cardiac redox imbalance, mitochondrial
function, and cardiac hypertrophy

In vivo (127)

vent cardiac hypertrophy In vitro (66)

eliorate cardiac hypertrophy In vivo (147)

ibits hypertension, cardiac and renal fibrosis, and
helial-mesenchymal transition

In vivo (126)

vent myocarditis and DCM In vivo (75)

eliorate cardiac hypertrophy In vivo (123)

uce cardiac growth and fibrosis and delay loss of
iac function

In vivo (112)

enuate cardiac hypertrophy and fibrosis In vivo (93)

eliorate cardiac hypertrophy, inflammation, and
osis

In vivo (134)

eliorate cardiac hypertrophy and heart failure In vivo (116)

rove vagal activity, hypertension, and cardiac
ertrophy

In vivo (122)

uce diabetes-induced cardiomyopathy. In vivo (153)

eliorate cardiac hypertrophy, fibrosis, and
function

In vitro (135)

thyl fumarate; E6446, TLR9 inhibitor; HSP25, heat shock protein 25; HSP60, heat

Rhodobacter sphaeroides; MCP-1, monocyte chemoattractant protein-1; MgIG,

otide-binding oligomerization domain-2; PAB, pulmonary artery banding; RIP2,

nsive rats; SHR, spontaneously hypertensive Wistar rats; S100a8/a9, extracellular

ligase; TAK-242, TLR4 inhibitor; TMBIM1, transmembrane BAX inhibitor motif
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infarction-induced cardiac fibrosis by targeting the HMGB1/

TLR9 signaling pathway (139). Pharmacologic inhibition of the

MyD88 inhibitor, ST2825/IMG2005, protects against pathologic

cardiac remodeling (140, 141). Moreover, other types of

cardiovascular drugs, such as telmisartan, magnesium

isoglycyrrhizinate (MgIG), dimethyl fumarate (DMF), and

statins, including atorvastatin and simvastatin, effectively

suppress the TLR-4/NF-κB signaling pathway and protect

against cardiac remolding in pressure overload, chronic

intermittent hypoxia, and LPS-induced conditions (46, 142–

145). Traditional Chinese Medicine drugs, such as Shenqi

Yangxin decoction (SQYXD), Lycium barbarum polysaccharide

(LBP), arbutin, Astragaloside IV (AsIV), and Dangshen Erling

decoction (DSELD) have been shown to attenuate cardiac

hypertrophy by targeting the high mobility group box 1

(HMGB1)/receptor for advanced glycation end products

(RAGE) and TLR4/NF-κB signaling pathway (146–150). A

recent report showed that double overexpression of miR-19a

and miR-20a (dOex-mIRs) in human induced pluripotent stem

cell (iPS)-derived mesenchymal stem cells (MSCs) effectively

preserves the left ventricular function in dilated cardiomyopathy

through, at least in part, regulating TLR4/MAL/MyD88

signaling pathway (151). Nevertheless, more clinical trials and

reliable measurements regarding therapeutic approaches

targeting TLR signaling pathways are needed. The factors that

inhibit TLR signaling-mediated cardiac hypertrophy and cardiac

remodeling are listed in Table 2.

Moreover, rather than directly targeting the TLR signaling

pathway, some indirect strategies may provide additional

therapeutic benefits for cardiovascular diseases. Caloric restriction

is an effective therapeutic approach in the treatment of diabetes

and associated cardiomyopathy by inhibition of TLR2 and TLR4

(152). Besides, probiotics Lactobacillus reuteri GMNL-263,

Bifidobacterium breve CECT7263 (BFM), Lactobacillus fermentum

CECT5716 (LC40), and L. coryniformis CECT5711 (K8) plus L.

gasseri CECT5714 (LC9) (1:1), prevent dysbiosis, endothelial

dysfunction, endotoxemia, and high blood pressure and

ameliorate cardiac hypertrophy via the downregulation of their

indirect target TLR4 (153–155). Apart from these, renal

denervation and repetitive hyperthermia (RHT) attenuate the

development of cardiac hypertrophy, at least in part by inhibiting

TLR4 expression (19, 156).
6. Conclusion and future perspectives

Increased inflammatory factors and cytokines are clearly

associated with cardiac hypertrophy and TLRs. In this review, we

summarized comprehensive information about TLRs, such as

TLR2, TLR3, TLR4, TLR5, TLR7/8, and TLR9, which are closely

related to cardiac hypertrophy. TLRs interact with their ligands

and co-receptors to induce the expression of numerous

inflammatory factors and inflammatory cell infiltration in the

heart, leading to cardiac hypertrophy and heart failure through

various inflammatory signaling pathways. Reviewing the

interaction between TLRs and inflammation in cardiac
Frontiers in Cardiovascular Medicine 07
hypertrophy may be a research direction for the treatment of

cardiovascular diseases and other inflammatory-related diseases.

However, the link between TLRs and cardiac hypertrophy has

not been fully explored. For example, little has been reported

about the role of TLR7/8 and TLR9 in cardiac hypertrophy,

especially how they mediate inflammatory signaling pathways

and heart diseases. Additionally, the TLR family not only

regulates inflammation but is also one of the essential mediators

of the innate immune response. It is worth noting that the

excessive activation of TLRs can lead to chronic inflammation

and autoimmune diseases, while TLR defects can lead to cancer

and allergies (157, 158). Therefore, the TLR family might play a

variety of different roles in cardiovascular diseases. Still, it may

need a deeper exploration of the TLR signaling pathway related

to cardiac hypertrophy.

The engagement of different TLR ligands leads to unique

cytokine production (159). It is likely that cross-talk within

various TLR pathways is highly complex and contains many

unknowns (160). Although there are many challenges in

developing drugs and balancing TLR signaling, in consideration

of molecular targeting therapy against TLRs and signaling

molecules might be a promising approach in clinical treatment,

many research centers and pharmaceutical companies are

expending extensive efforts to develop TLRs modulators. Some

of the TLR-based agonistic and antagonistic agents have shown

to be efficacious in preclinical models and have now entered

clinical trials (161, 162). Overall, these interesting findings

encouraged us to set a further goal to understand the detailed

mechanism of TLR-mediated inflammatory responses and

cardiac hypertrophy and identify the potential targets of

therapeutic interventions through TLRs’ downstream and

upstream signaling pathways.
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