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Q-VAT: Quantitative Vascular
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Leuven, Belgium, 2Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, Leuven,
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As our imaging capability increase, so does our need for appropriate image
quantification tools. Quantitative Vascular Analysis Tool (Q-VAT) is an open-source
software, written for Fiji (ImageJ), that perform automated analysis and
quantification on large two-dimensional images of whole tissue sections.
Importantly, it allows separation of the vessel measurement based on diameter,
allowing the macro- and microvasculature to be quantified separately. To enable
analysis of entire tissue sections on regular laboratory computers, the vascular
network of large samples is analyzed in a tile-wise manner, significantly reducing
labor and bypassing several limitations related to manual quantification. Double or
triple-stained slides can be analyzed, with a quantification of the percentage of
vessels where the staining’s overlap. To demonstrate the versatility, we applied
Q-VAT to obtain morphological read-outs of the vasculature network in microscopy
images of whole-mount immuno-stained sections of various mouse tissues.
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1. Introduction

Structural alterations in the vasculature play an important role in several cardiovascular

diseases (1–3). Studying the vasculature and its alterations is essential to get a better insight

into the pathophysiological mechanisms during disease progression. There is a large variety

of techniques to visualize and image the vasculature of different organs (4). Even though

advanced imaging techniques are on the rise, classical histology is still considered the

golden standard. High spatial resolution can be achieved which is highly beneficial for

detailed imaging of complex structures such as the vascular network. However, there are

several limitations in how classical histology is routinely applied in practice. Manual

quantitative histological characterization of several samples is time consuming, which

limits the amount of data that can be analyzed. Therefore, in practice often only a single

or a few representative images are acquired and analyzed. This leads to sample bias which

can result in incomplete or erroneous conclusions (5). Furthermore, it results in loss of

most of the information from all the tissue that is stained but not imaged.

In recent years, technological improvements such as the development of whole-slide

scanners have enabled the automatic acquisition of tiled images from large samples to full

slides with a high spatial resolution. The acquisition is no longer constricted to certain

manually selected regions of interest (ROI) (6). However, the large size of the obtained

datasets creates new challenge with regard to archiving and data processing (7). Most image

processing software’s are designed to analyze complete images that can be fully loaded in

the memory of the computer. Stitched high resolution images of large samples can produce

images of several gigabytes that become too large to be loaded and processed directly. Since
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the microscopic images of large samples are captured as a series of

smaller rectangular sub-images or tiles, these tiles can be extracted

and used to perform the processing on each tile subsequently.

This allows the processing of large datasets.

There are several tools available to automatically analyze and

quantify the vasculature (8–15). Most of these existing tools rely on,

often expensive, commercial software, require 3D images or are

limited to a single image. While research institutes often have pay-

per-use computers with such commercial licenses available, this is

rarely applied to routine imaging of immunostaining. This limits the

general accessibility and impedes their use for the automated analysis

of tiled histological images. Furthermore, the morphometric read-

outs are often extracted from the skeletonized vasculature, without

considering the inherent limitations of skeletonization algorithms.

They often introduce errors by normalizing per image rather than to

the area of tissue. Lastly, though many phenotypes are limited to

one vascular type (such as only in the capillaries), current

quantification software rarely quantify with respect to vessel diameter.

We have developed Q-VAT (Quantitative Vascular Analysis Tool)

to perform automated quantification of the vasculature in tiled,

segmented two-dimensional images. Q-VAT is an easy to use tool

written in the ImageJ macro language (16) that allows the user to

automatically analyze and quantify the vascular network of large

datasets in a tile-wise manner. When provided with a binary vascular

mask and a tissue mask Q-VAT automatically calculates several

morphological read-outs that characterize the vascular network. The

vasculature can be divided into two compartments, allowing the user

to focus on a certain compartment (e.g., the microvasculature),

investigate whether a specific vascular compartment is affected in a

certain pathology or exclude vessels above or below a certain

threshold. Moreover, Q-VAT allows the addition of one or two co-

staining’s and automatically computes the ratios of co-staining

compared to the first channel. When the analysis is finished Q-VAT

automatically saves the quantitative morphological read-outs for each

tile (into an Excel file) and creates tile-wise colormaps for each read-

out. Q-VAT is freely available for download, together with a more

detailed user guide onGitHub (https://github.com/bramcal/Q-VAT.git).
2. Materials and methods

2.1. Animals

Experiments were conducted in 102 weeks old (N = 4) B6CBAF1

hybrid mice obtained from Envigo. All experiments were approved

by the KU Leuven Animal Ethics Committee. Experiments were

performed according to the Belgian law (067/2008, 243/2013) and

the guidelines from Directive on Care and Use of Experimental

Animals (2010/63/EU) of the European Parliament.
2.2. Tissue processing &
immunohistochemistry

Brain tissue was fixed in 4% paraformaldehyde for 24 h at 4°C

and then stored in PBS with 0.1% NaN3. Next, the brain was
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embedded in 4% ultrapure low melting point agarose (16520050,

Invitrogen) in PBS. The samples were cut into 40 μm coronal

sections. Free-floating sections were stained with Lycopersicon

Esculentum (Tomato) Lectin DyLightTM 488 (1:1000, L32470,

ThermoFisher). Mouse cardiac and liver tissue were fixed in 4%

paraformaldehyde for 24 h at 4°C, paraffin embedded and cut

into 4 μm (cardiac) or 7 μm (liver) sections. Cardiac sections

were stained with Griffonia Simplicifolia Lectin I Isolectin B4

DylightTM 649 (1:100, DL-1208, Vector Laboratories). Liver

sections were stained with primary Mouse endoglin CD105

(1:100, AF1320, R&D Systems) and secondary Cyanine 3 (Cy3

1:50, NEL704A001KT, Perkin Elmer) antibody. The eyes of the

mouse were enucleated and fixed in 4% paraformaldehyde for

20 min at room temperature and then washed with PBS. The

retina was dissected from the eye and further fixed in 4%

paraformaldehyde for 24 h at 4°C. The free-floating retinas were

stained with Griffonia Simplicifolia Lectin I Isolectin B4

DylightTM 649 (1:100, DL-1208, Vector Laboratories) and

Collagen IV polyclonal antibody (1:200, 2150–1470, Bio-Rad)

with secondary Rabbit IgG (1:400, A-31572, ThermoFisher).
2.3. Image acquisition

All samples were mounted on microscope slides and imaged

using a Nikon NiE—Märzhäuser Slide Express two equipped

with a Hamamatsu Orca Flash 4.0 camera. For each type of

tissue, a custom-made JOBS-GA2 protocol was developed for

sample detection. The brain sections were acquired as a z-stack

with 5 planes at 5 μm separation with a Plan Apo 10× (NA 0.45)

objective. The cardiac and liver sections were acquired as a single

plane with a Plan Apo 20× (NA 0.75) objective. The retinas were

acquired as a z-stack with 3 planes at 5 μm separation with a

Plan Apo 10× (NA 0.45) objective. Before analysis, the Z-stacks

were projected along the Z-axis using a maximum intensity

projection and all files were converted to 8-bit and saved as Tag

Image Files (.TIF). All input images used for this paper are

available at https://doi.org/10.6084/m9.figshare.21820515.
2.4. Pre-processing

Excessive background signal and noise should first be reduced

from the immuno-stained microscopy images. Depending on the

quality of the staining and the type of tissue, masking of the

background can be done using a simple thresholding or using

more complex algorithms. The Q-VAT tool requires 8-bit binary

TIF files with pixels belonging to the background set to 0 and

pixels containing vasculature set to 255.

To ensure correct normalization of the quantitative

morphological read-outs, a binary tissue mask is required (8-bit

binary TIF image with background = 0 and tissue = 255). The

tissue mask allows normalization to the tissue area, rather than

the entire field of view of the tile. It also removes background

signal originating from outside the tissue (e.g., fluorescent air

bubble, dust particle) and allows empty tiles to be skipped during
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the analysis. Moreover, it allows the user to analyze only a specific

ROI by providing defining the ROI through the tissue mask. In the

GitHub page, we have included an ImageJ macro (Q-VAT masking

tool) that uses a succession of several ImageJ commands to

automatically create a vascular mask and tissue mask from

stitched immuno-stained images (Supplementary Figure S1).

The generation of these masks consist of two parts. First, the

input image is used to create a tissue mask. Next, the input

images and the tissue mask are used to create a vascular mask

containing only the vasculature. Both masks are saved as whole

images and as separate tiles that can be analyzed using the Q-

VAT tool.

If the Q-VAT masking tool is used the input image is loaded and

duplicated. One copy is used to create the tissue mask and the other

to create the vascular mask. For the tissue mask, the contrast in the

input image is first enhanced. Next, the image is smoothed to reduce

noise, using a filter that replaces each pixel with the average of its 3 ×

3 neighborhood. The resulting image is thresholded automatically to

segment the tissue from the background using Huang’s fuzzy

thresholding method (17) and converted to an 8-bit binary image.

Next, to fill remaining small holes, the image is median filtered by

replacing each pixel with the median of the neighboring pixels

using a user defined neighborhood radius (i.e., Radius for median

filtering (μm)). Then, the “Analyze particles” command is used to

obtain a binary tissue mask, where the small particles (e.g.,

ventricles) are removed based on a user defined threshold (i.e.,

particle size lower range (μm)). This results in an 8-bit binary

image with pixels belonging to the background set to 0 and pixels

containing tissue set to 255. This binary tissue mask is then

divided into the original acquisition tiles. The tissue mask as a
FIGURE 1

User interface of the Q-VAT tool. Through this interface the user selects the
(μm/pixel) as well as several input parameters: the vascular compartment se
threshold (μm). The user can choose whether or not to save the output figu
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whole image and the separate tiles are each saved as TIF files. The

user has the option to save a validation image, which consists of a

superimposition of the vascular mask onto the original image.

This feature facilitates visual inspection of the vascular mask.

The duplicated input image is used for the creation of a vascular

mask. First, the input image is despeckled and smoothed. Next, the

image is corrected for uneven background intensities using the

convoluted background subtraction with a Gaussian kernel

(BioVoxell Toolbox) (18). This background subtraction method

creates a convoluted copy of the input image and subtracts the

Gaussian filtered image from it. The radius for the Gaussian

method (i.e., Radius of biggest object (μm) should be based on the

radius of the biggest object in the input image. The background

signal outside of the tissue is removed by multiplying the tissue

mask with the background subtracted image. The resulting image

is thresholded automatically to segment the vasculature from the

background using automatic thresholding. The user is presented

with a choice of thresholding methods, including ImageJ’s default,

Huang’s fuzzy thresholding (17) and Otsu’s thresholding (19).
2.5. Q-VAT pipeline

When the pre-processing is performed using the Q-VAT

masking tool, the files will be automatically saved according to

the required file organization; The user only needs to provide the

correct data directory and several input parameters in the user

interface (see Figure 1). Q-VAT will automatically analyse

and quantify all images contained within the designated data

directory. More detailed instructions are available on the Github
input directory containing the data to be analyzed, the spatial calibration
paration threshold (μm), the close label radius (μm) and the prune ends
res. If multiple channels are to be analyzed, this can also be indicated.
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page (temporary link to be changed upon publication: https://

github.com/bramcal/Q-VAT.git).

After the user input is complete, Q-VAT can be run on any

operating system in which FIJI (i.e., ImageJ that has been

bundled with several plugins) can be run to perform automated

quantification of the vasculature in tiled, segmented two-

dimensional images. The Q-VAT tool is entirely automated and

requires no user intervention during the analysis.

Q-VAT loops over the different acquisition tiles and performs

quantification of the vasculature based on the provided vascular

mask and tissue mask. First, the tissue mask is loaded and

converted to an 8-bit binary image. The number of pixels within

the tile belonging to the background (Background = 0) and the

tissue mask (Mask = 255) are determined. If a tile only contains

background pixels, the image is closed and the next tile in the

loop is loaded. If a tile contains pixels belonging to the tissue

mask, the corresponding vascular mask is loaded and converted

to an 8-bit binary image (Background = 0, Vasculature = 255). To

remove background noise and only consider tissue within the

provided tissue mask (or ROI), these two images are multiplied.

Intensity inhomogeneities, incomplete filling or inconsistent

staining of the vasculature can lead to errors in the vascular mask,

which will subsequently introduce errors in the quantification of

the vasculature (e.g., incorrect vascular density, skeletonization

errors). Therefore, an additional hole filling step is performed

before the quantification. Small holes in the vascular mask with a

diameter below a user defined threshold (i.e., Close label radius

(μm)) are filled using the simple segmentation plugin followed by

a closing operation (3D ImageJ Suite plugin) (20). The output

images in the masked file subfolder can be verified for appropriate

hole filling. The local thickness of the corrected vasculature is

determined (Local Thickness) (21, 22) and the corrected

vasculature is then skeletonized (Skeletonize (2D/3D)) (23). Small

protrusions in the vasculature can result in incorrect endpoint

branches, which will lead to quantification errors. Therefore,

before analyzing the skeleton, endpoint branches with a length

below a user defined threshold (i.e., Prune ends threshold (μm))

are removed from the skeleton (Prune Skeleton ends) (24). Both

of these parameters (“Close label radius” and “Prune ends

threshold “) are user defined (Supplementary Table S1). The

diameter of the vasculature is determined by the software by

measuring the local thickness along the center line of the

vasculature. The diameter of the vasculature is encoded into the

skeleton by multiplication of the local thickness by the skeleton.

This results in a skeletonized image that contains the local

thickness along the center line of the vasculature (i.e., the

diameter) as intensity values. Because this generates a measure of

the mean branch diameter, the vasculature can be divided into

two compartments, based on a user defined threshold (i.e.,

Vascular compartment separation threshold). This allows the

output to be separated by vascular compartment into vessels above

and below a certain diameter (i.e., capillaries from larger vessels,

or micro vs. macrovasculature).

This skeleton is then analyzed (Analyze Skeleton (2D/3D))

(24), which results in a range of vascular morphological read-

outs: number of branches, number of junctions, number of
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endpoints, number of vessel clusters, branch length, average

intensity (i.e., mean branch diameter), Euclidean distance. The

branch length and the Euclidean distance are used to calculate

the arc-chord ratio, that is used to estimate the tortuosity of the

vasculature (Tortuosity Index = branch length/Euclidean

distance). The mean diameter and the branch length are used to

calculate the vessel area within the image (mean branch

diameter*branch length = branch area). Normalizing the vessel

area by the area of the tissue mask provides an estimate of the

vascular density within the tissue (%). Several of the vascular

morphological read-outs (mean vessel diameter, vascular density,

vessel length density, mean branch length, branch density and

tortuosity Index) are calculated for the branches above/below the

user defined threshold, respectively. Definitions of all available

measurements is provided in Supplementary Table S2.

Q-VAT allows the inclusion of up to two co-staining’s

(Supplementary Figure S2). For each of the channels, the

percentage of the vascular area that is positive for the co-staining

is calculated automatically. First, the non-overlapping signal are

removed by multiplying the vascular mask of the first channel

with the vascular mask of each of the additional channels. Next,

Q-VAT will perform the same steps as described above on the

overlapping signal from each of the additional channels. The

ratio between co-stained channel and the vascular channel (first

channel) will be calculated for each of the morphological read-

outs. This functionality can be particularly useful for application

such as empty collagen sleeves, the evaluation of the proportion

of perfused vessels, co-localization of blood vessels with other

structures (e.g., pericytes, vascular smooth muscle cells, nerve

fibers) or the evaluation of different vascular staining methods.
2.6. Comparison of methods

For AngioTool, all images were imported, calibrated and

analyzed with the default settings for vessel diameter (10) and

vessel intensity (15–255). Foreground and background small

particles were removed (483 px) and small holes were filled (12

px) with settings as close as possible to the input settings used

for the Q-VAT analysis. Images containing the vessels outlines

were exported using the overlay setting. Segmentation images

were generated by filling the vasculature outlines in these images.

Vascular morphological read-outs of the vascular density (i.e.,

vessels percentage area) and endpoint density (i.e., total number

of end points/explant area) were obtained from the excel file

containing analysis parameters and computed results. The branch

density was calculated. The cluster density and branch density

were calculated by counting the number of vessel clusters and

branches in the segmentation and skeletonization images,

respectively. These values were then normalized to the explant

area, resulting in the cluster -and branch density (i.e., number of

clusters/explant area; number of branches/explant area).

For REAVER, all images were imported, calibrated and

analyzed in batch mode with the default settings for average filter

size (128), wire dilation threshold (0), vessel thickness threshold

(3). Segmentation of the vasculature was achieved using the grey
frontiersin.org
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to binary threshold (0.09) and small particles were removed similar

to Q-VAT and AngioTool using the Minimum connected

Component Area (483 px). The binary segmentation of all

images was extracted. Vascular morphological read-outs of the

vascular density (i.e., vessel area fraction), Branch density (i.e.,

segement count/field of view) were obtained. The endpoint

density was calculated from the REAVER generated mat datafiles

(i.e., endpoints/field of view). The cluster density was obtained

by counting the number of vessel clusters in the binary

segmentation images and normalizing to the field of view (i.e.,

number of clusters/fields of view).

We created an ImageJ macro to evaluate the segmentation

generated by the different vascular quantification tools for the

entire images. The performance of each quantification tool was

evaluated by metrics that quantified the degree of agreement

between the automatic segmentation and the manual

segmentation, approximating the ground-truth. The

segmentation’s overall performance was assessed by calculating

the Dice similarity coefficient, accuracy, sensitivity and specificity

for the entire tile (9, 25) as follows:

Dice similarity coefficient ¼
2�true positive

2�true positiveþ false positiveþ false negative

Accuracy ¼
true positiveþ true negative

true positiveþ true negativeþ false positiveþ false negative

Sensitivity ¼ true positive
true positiveþ false negative

Specificity ¼ true negative
true negativeþ false positive

Where true/false positive/negative refer to the number of pixels in

the entire image. Q-VAT yielded higher average Dice similarity,

accuracy, sensitivity and specificity than the other two

quantification tools (Supplementary Table S4).
2.7. Statistical analysis

Statistical analysis was carried out in GraphPad Prism 9. After

quantification outliers were removed using robust regression and

outlier removal (ROUT) method with a ROUT coefficient

Q = 1%. All data values are given as mean ± SEM. Comparison

between different ROIs were performed using one-way analysis

of variance (ANOVA) with Tukey’s test for multiple comparison.

Group wise comparison between Q-VAT and existing automated

vascular feature quantification tools was performed using one-

way ANOVA with Holm-Šídák’s test for multiple comparisons.

Values of p < 0.05 were considered statistically significant.
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3. Results

3.1. Method development

Q-VAT was originally developed to perform automated

quantification of the vasculature in entire two-dimensional brain

sections. The stitched immuno-stained images of 40 μm thick brain

sections were pre-processed to generate a vascular mask and a

tissue mask. The following parameters were applied for the

automatic analysis: Calibration, 0.643 μm/px; Vascular compartment

separation threshold, 10 μm; Close label radius, 3 μm; Prune ends

threshold, 5 μm. Figure 2 shows the mean vessel diameter, vascular

density, mean branch length and tortuosity index of the entire

vasculature for each acquisition tile from the entire brain sections

of the four animals, which are averaged in Table 1.
3.2. Validation

We validated the measurements obtained with Q-VAT by

comparison to existing methods for vascular feature quantification

(Figure 3). Manual segmentation of the vasculature is widely

considered as the gold standard method that yields most accurate

segmentation. We therefore used manual segmentation as the

benchmark, approximating the ground-truth, for evaluating the

performance of automated segmentation. In order to validate the

Q-VAT masking tool for pre-processing, the vasculature and the

tissue area were manually segmented in eight randomly selected

tiles, using ImageJ’s paintbrush tool (Supplementary Figure S3).

From the manual segmentation images, morphological read-outs

of the cluster density (#/mm²), branch density (#/mm²) and

endpoint density (#/mm²) were determined by manually counting

the number of vessel cluster, vessel branches and endpoints. The

vascular density was obtained by normalizing the number of pixels

segmented as vasculature to the number of pixels manually

segmented as tissue area. To evaluate the performance of Q-VAT

for segmentation and quantification of the vascular network, we

compared its output to those of two other tools designed to

quantify the vascular network in fluorescent microscopy image,

namely AngioTool (12) and Rapid Editable Analysis of Vessel

Elements Routine (REAVER) (9) (Figure 3A). AngioTool is freely

available open-source software written in the java programming

language, designed to quantify the vasculature in microscopy

images. REAVER is an open-source software tool written in

MATLAB, designed to quantify the vasculature in high-resolution

2D fluorescent microscopy images. AngioTool was set to default

conditions (see methods) and tiles loaded one-by-one since batch

mode is not possible. REAVER was run in batch mode with a

single grey to binary threshold per batch. REAVER allows manual

correction of the segmented images, however this was not applied

since it is not feasible for entire tissue sections.

Incorrect normalization of the morphological read-outs

introduces errors in the quantification process. It is crucial to

ensure that the normalization is performed only in relation to

the tissue area. When analyzing images of larger samples, there
frontiersin.org
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FIGURE 2

Morphological read-outs for 4 animals. Mean vascular density (average per tile) (A), mean vessel diameter (B), mean branch length (C) and tortuosity index
(D) of the entire vasculature for each acquisition tile from the entire brain sections of each of the four mice (M1, M2, M3, M4).

TABLE 1 Average morphological read-outs for the entire brain sections of
four animals (mean ± SEM).

Morphological read-out All vessels Diameter >
10 µm

Diameter <
10 µm

Mean vessel diameter (μm) 11.1 ± 0.3 13.5 ± 0.1 7.8 ± 0.1

Vascular density (%) 26.1. ± 0.3 17.1 ± 1.2 8.9 ± 1.1

Vessel length density
(mm/mm²)

23.1 ± 0.8 12.2 ± 0.6 10.7 ± 1.4

Mean branch length (μm) 30.5 ± 0.6 28.9 ± 0.6 31.2 ± 1.6

Branch density (#/mm²) 766.1 ± 20.1 406.4 ± 11.7 341.0 ± 32.2

Tortuosity index 1.2 ± 0.0 1.1 ± 0.0 1.1 ± 0.0

Cluster density (#/mm²) 224.5 ± 14.5

Branchpoint density (#/mm²) 282.4 ± 15.1

Endpoint density (#/mm²) 665.1 ± 15.5
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are often areas of the image that are not completely covered by

tissue. In such cases, accurate normalization becomes even more

important to minimize the error introduced in the quantification

process. The Q-VAT masking tool generates a tissue mask based

on the intensity values of the original image, which is used to

normalize the quantitative morphological read-outs (Figure 3B).

AngioTool normalizes the read-outs to the area of the convex

hull that contains all vessels in the input images. However, this

approach can introduce normalization errors in cases where

there are no particles at the edges or when the shape of the

convex hull does not match with the actual shape of the edge of

the tissue. REAVER, on the other hand, utilizes the entire field of

view of the image to normalize the morphological read-outs.

This can introduce normalization errors when analyzing images

that are not completely covered by tissue. The normalization

error was determined for each approach by calculating the

absolute difference between the automated tissue segmentation

and the benchmark segmentation of the tissue area (Figure 3B).
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For our dataset of randomly selected tiles, Q-vat outperformed

both AngioTool and REAVER in terms of segmentation

performance for both the tissue area (Figure 3C) and the

vasculature (Figure 3D). Dice similarity, accuracy, sensitivity and

specificity (see methods for definitions) were highest for Q-VAT,

however there was no statistical difference with respect to

AngioTool except for Dice similarity and sensitivity (Figure 3D).

AngioTool is much more labor intensive, however, requiring each

tile to be uploaded and processed separately. REAVER was not

developed for batches per se, and therefore fails to segment properly

when the grey to binary threshold is not adjusted per image.

We assessed the performance of Q-VAT in analyzing and

quantifying the vascular network by comparing the

morphological read-outs from the different vascular

quantification tools to those obtained from the manual

segmentation (Figure 3E). The normalized absolute error with

respect to the benchmark segmentation was calculated for the

four morphological read-outs listed above. Q-VAT demonstrated

lowest absolute error for all four morphological read-outs

compared to the other two vascular quantification tools

(Supplementary Table S5). These results demonstrate that

Q-VAT is a reliable and accurate tool to quantify the vascular

network in immuno-stained microscopy images of large samples.
3.3. Region-wise analysis

Next, we demonstrated the ability of Q-VAT to perform region

specific analysis. A mask containing a user-defined ROIs, rather

than a tissue mask of the entire tissue section, can be used for

quantification of specific regions of the tissue. The Q-VAT tool is
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FIGURE 3

Validation of Q-VAT by comparison with existing methods for vascular feature quantification in microscopy images. (A) Representative image segmented
(bottom) and quantified (top) using manual analysis, Q-VAT, AngioTool and REAVER. (B) Tissue masking of a representative images for all three methods.
(C) Evaluation of the segmentation performance of the tissue area. (D) Evaluation of the segmentation performance of each quantification tool using Dice
similarity (left), sensitivity (middle), and specificity (right). (E) Evaluation of absolute error comparing morphological read-outs (cluster density (#/mm²),
vascular density (%), branch density (#/mm²) and endpoint density (#/mm²) to those obtained from manual segmentation.
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limited to a single mask, but multiple ROIs can be analyzed by

repeating the analysis using different input masks. We have

manually delineated ROIs of the cortex (red), corpus callosum

(blue) and hippocampus (yellow) in ImageJ and repeated the

analysis for each ROI separately (Figure 4A). A significant

reduction in the mean vessel diameter in the corpus callosum and

the hippocampus was present as compared to the cortex

(Figure 4B). This difference was not observed when considering all

vessels, nor when considering only the vascular compartment above

the separation threshold. The decrease in mean vessel diameter in

the corpus callosum and hippocampus compared to the mean

vessel diameter in the cortex can therefore be attributed to a

reduction in the diameter of the smaller vessels in these ROIs. A

significantly lower total vascular density was also present in the

corpus callosum as compared to the cortex and hippocampus

(Figure 4C), however this did not vary based on whether all vessels

were analyzed or only a subset of all vessels. Similar differences in

capillary density were previously reported in immunohistochemical

staining’s of mouse (26, 27) and rat brain sections (28, 29).
3.4. Different organs

The application of Q-VAT is not limited to brain sections but

can be used on sections from many different organs (Figure 5). For

the retina, it was not necessary to split the image into tiles and the

entire stitched image was analyzed as one tile. For the other organs,

the obtained vascular mask and tissue mask were split up into the

tiles matching the size of the acquisition tiles and analyzed in a

tile-wise manner. The input parameters for the analysis of the

presented data are reported in Supplementary Table S1, S3. The

average vascular density and mean vessel diameter was higher in

the brain and lowest in the heart (Figures 5B–C).
3.5. Tile-wise output maps

To create a visual readout of the tissue density, Q-VAT creates

average tile-wise output maps for all measurements (Figure 6). In
FIGURE 4

Region-wise analysis. (A) Manually delineated Regions Of Interest (ROIs) of the
(B) Mean vessel diameter and (C) Average vascular density within the different R
analyzed with a one-way ANOVA and Tukey’s HSD post hoc test. *p < 0.05, *
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the previous sections, we have always performed the quantification

on the original acquisition tiles. However, Q-VAT can also be

performed on tiles with a different size. The tile-wise output

maps offer a clear and simple way to visually represent the

quantified morphological read-outs. Figure 6C shows an example

of a tile-wise output map of the vascular density quantification

of an entire rat brain section with a spatial resolution of

300 × 300 μm. There are several edge effects that should be

considered when generating such tile-wise maps. One should be

aware that partial volume effects will occur at the edges of the

tissue (e.g., periphery and ventricles). Furthermore, non-specific

staining at the edges of the tissue can occur due to peripheral

drying, under fixation or buildup of secondary antibody

(Figure 6A). These edge effects will introduce miscalculations at

the edges of the sample (Figure 6C).
4. Discussion

We have developed a tool to perform automated quantification

of the vasculature network in tiled, segmented 2D images in a free

open-source software (Fiji). Furthermore, we provided an

automated pre-processing pipeline that can be used to obtain the

segmented vasculature from large immuno-stained microscopy

images. Apart from the obvious advantages of automatic

segmentation and quantification over manual quantification,

Q-VAT addresses some of the limitations of other quantification

tools. In contrast to other tools, Q-VAT was specifically developed

to analyze tiled images. Thus Q-VAT can analyze large data files

automatically, without the need to load each tile individually. This

reduces the labor intensity of the vascular quantification. To

reduce quantification errors, Q-VAT normalizes the morphological

read-outs based on the area of tissue, rather than on the entire

field of view. Furthermore, we addressed some of the inherent

limitation of the skeletonization algorithms by filling small voids

in the vascular images and pruning short endpoint branches in the

skeleton. Additional morphological read-outs were added to the

default skeleton analysis (Analyze Skeleton 2D/3D, ImageJ). A

comparison of the absolute error between the results obtained with
cortex (red), corpus callosum (blue) and the hippocampus (yellow) (n= 4).
OIs for all vessels or vessels above/below a threshold (10 μm). All data was
*p < 0.01, ***p < 0.0001.
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FIGURE 5

Overview of the automated quantification of the vascular network in immuno-stained microscopy images of different types of tissue using Q-VAT. (A) The
original stitched high resolution images of the entire tissue section (first column, scalebars 1000 μm) are pre-processed and used to create vascular
masks (second column) and and tissue masks (third column). These masks are divided into the original acquisition tiles (last column; (top) half of an
original acquisition tile; (bottom) segmented vascular mask of half of the acquisition tile) and are used to perform automated quantification of the
vasculature. (B-C) Average morphological read-outs for the mean vessel diameter (B) and vascular density (C) (n= 4 animals per organ).

FIGURE 6

Example of a tile-wise morphological output map. (A) Original stitched high resolution images (scalerbar 1000 μm), (B) Vascular mask, (C) Tile-wise
output map of vascular density expressed in percent of tissue of the entire rat brain section. Area outside the brain tissue was set to pure black.
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and without the additional correction steps was performed. Our

findings revealed a statistically significant decrease in the absolute

error when quantifying the branch density (#/mm²), while there

was no significant difference observed in the other morphological

read-outs (Supplementary Figure S4).

We validated the performance of Q-VAT along with two existing

vascular quantification tools for both segmenting and quantifying the

vasculature. To assess their performance, we compared the results to

a benchmark data set of manually segmented images. Visual

inspection shows that all automated quantification tools tended to

produce thicker vessel segmentations compared to the ground

truth. Therefore, when comparing values between different software

tools, one should exercise caution and consider using relative vessel

diameters to account for this effect. Using a dataset of randomly
Frontiers in Cardiovascular Medicine 09
selected images, we demonstrated an overall improvement in

segmentation performance compared to the existing vascular

quantification tools. The average segmentation results provided by

Q-VAT were in closest agreement to the manually segmented

images, which are used as an approximation of the ground-truth.

Furthermore, out of the three different automated vascular

quantification tools, Q-VAT exhibited the smallest absolute error

compared to the outputs obtained from the manually segmented

images for all four morphological read-outs. The Q-VAT tool was

specifically developed to automatically analyze immuno-stained

microscopy images of large samples, which often exhibit a higher

degree of background noise and intensity variability. The Q-VAT

masking tool performs the pre-processing on the entire images

rather than on individual tiles, which allows it to take advantage of
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the characteristics of the large samples. In contrast, the other

quantifications tools were designed for analyzing individual images

and may demonstrate better segmentation performance in

scenarios where the image characteristics of the entire tissue

sample cannot be leveraged. Furthermore, the images were

analyzed using fixed input settings in AngioTool (individually) and

REAVER (batch processing). Although adjusting the input

parameters on an image per-image basis could potentially improve

the segmentation slightly, this would be a time-consuming task

when analyzing all tiles of large samples. The REAVER

quantification tool provides the option to combine automatic

analysis with manual curation. However, this approach is not

feasible when analyzing the vasculature network of large tissue

samples. Therefore, these options were not used in the method

validation. The advantage of the Q-VAT tool is that it is entirely

automated, allowing quantification of all tiles of a large sample

without the need for manual intervention. This approach ensures

the analysis of the entire tissue sample, avoiding information loss

and sample bias. We can conclude that Q-VAT is a useful tool for

the automated analysis of immune-stained microscopy images of

large tissue samples.

A major advantage of Q-VAT over existing quantification

software is its ability to divide the vasculature into two

compartments based on the mean diameter of each branch and

focus on a single vascular compartment. This allows Q-VAT to

measure subtle difference that would otherwise have been

undetectable. A limitation associated with this is that only a

calculated estimate of the vascular density can be obtained. This

means that Q-VAT does not measure vascular density directly but

calculates it based on the diameter along the skeleton. As such, for

vascular density, care should be taken when comparing values from

Q-VAT directly with values measured by another software.

However, it should be noted that despite this limitation, Q-VAT

exhibited the smallest error in quantification of the vascular density

in our dataset of randomly selected images.

Region-wise quantification of different brain regions

demonstrated that Q-VAT is sensitive enough to detect changes

in the morphological read-outs between different ROIs

(Figure 4). Moreover, by dividing the vascular network into two

compartments, based on the vascular compartment separation

threshold, Q-VAT can observe significant differences in a specific

vascular compartment, that would not be detectable if only the

entire vasculature network is analyzed (Figure 4B).

Q-VAT reports all morphological read-outs for all tissues, however

consideration should be given to which read-outs are suitable for

specific types of tissue. Acquiring and analyzing only a single plane of

a 3D structure, like the vascular network, will limit the accuracy of

the quantification. The branching structure of the vascular network

will not be visible and morphological read-outs can be biased by the

slice thickness. Widefield microscopy allows imaging of relatively thin

samples with a thickness within the depth of field. However, the

depth of field typically decreases with increased magnification (due to

larger apertures). This particularly becomes a problem when trying to

image thick samples at a high magnification. To increase the

thickness of the plane of focus and get closer to actual 3D acquisition,

a series of images can be acquired along the axial direction (i.e., Z-
Frontiers in Cardiovascular Medicine 10
stack). Combining these images into a 2D image using a projection

removes out of focus information and provides a more realistic 2D

representation of a 3D structure.

Since Q-VAT splits the stitched high-resolution images into

smaller tiles, the large blood vessels will also be divided into

pieces. Due to this inherent limitation, the length quantification

of long blood vessels running across different tiles will not be

correct. This will also be the case when quantifying only a few

manually acquired representative images. The smaller the analysis

tiles, the larger the effects on the length quantification will be.

However, the same error occurs when quantifying only a few

manually acquired representative images. This effect will be

reduced when focusing only on the microvasculature (using the

vascular separation threshold), as the mean branch length of the

microvasculature is much shorter compared to larger vessels.

Q-VAT is limited to 2D images, or 2D projections of Z-stack

images. Others have developed software tools for 3D vascular

beds (30–32). Considering most research groups working with

mouse or human tissue samples are still performing 2D imaging

on sections, we focused our efforts on splitting the analysis based

on vessel diameter. Expanding this tool to image quantification

of 3D vascular networks would be the logic next step in the

further development of Q-VAT.
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