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Left atrial appendage (LAA) is a leading cause of atrial fibrillation and thrombosis in

cardiovascular disease. Clinicians can rely on LAA occlusion (LAAO) to e�ectively

prevent and treat ischaemic strokes attributed to the LAA. The correct selection of

the LAAO is one of themost critical stages in the successful surgical process, which

relies on the quantification of the anatomical structure of the LAA for successful

intervention in LAAO. In this paper, we propose an adversarial-based latent space

alignment framework for LAA segmentation in transesophageal echocardiography

(TEE) images by introducing prior knowledge from the label. The proposed

method consists of an LAA segmentation network, a label reconstruction network,

and a latent space alignment loss. To be specific, we first employ ConvNeXt as

the backbone of the segmentation and reconstruction network to enhance the

feature extraction capability of the encoder. The label reconstruction network then

encodes the prior shape features from the LAA labels to the latent space. The latent

space alignment loss consists of the adversarial-based alignment and the contrast

learning losses. It can motivate the segmentation network to learn the prior shape

features of the labels, thus improving the accuracy of LAA edge segmentation.

The proposed method was evaluated on a TEE dataset including 1,783 images

and the experimental results showed that the proposed method outperformed

other state-of-the-art LAA segmentation methods with Dice coe�cient, AUC,

ACC, G-mean, and Kappa of 0.831, 0.917, 0.989, 0.911, and 0.825, respectively.

KEYWORDS

left atrial appendage, deep learning, segmentation, transesophageal echocardiography,

latent space

1. Introduction

Left atrial appendage (LAA) lies anteriorly in the atrioventricular sulcus, which is

a finger-like structure extending from the left atrium (LA) with a unique embryonic

origin, anatomical structure, and physiological functions (1). With its active contractile

and secretory functions, LAA has great significance for relieving the pressure of the left

ventricle and ensuring the filling of the left ventricle (2). LAA is the main cause of

atrial fibrillation (AF) and thrombosis in cardiovascular disease because of its special

anatomical and functional characteristics (3). Thrombus is preferred to form in the LAA

and can cause thromboembolic (ischaemic) strokes. In particular, thrombus formed in LAA
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accounted for 91% of non-valvular AF stroke events and 15–38% of

non-AF strokes with cardiomyopathy (4).

Large variability of LAA size and morphology is expected

between subjects and previous clinical, and autopsy studies have

indicated that LAA size was positively correlated with the risk

for stroke and transient ischemic attack (TIA) (5). Moreover, the

LAA, with a relatively small orifice, a narrow neck, a multi-lobular

structure, and many trabeculations, would further increase the risk

for thromboembolic strokes (4). Fortunately, by virtue of catheter

radiofrequency ablation surgeries and LAA occlusion (LAAO) can

effectively prevent and treat ischemic stroke caused by LAA.

Over the past decade, there has been a dramatical growth in

the number of LAAOs (6, 7), and recent studies demonstrated that

the correct occluder selection is one of the most critical stages

during the successful procedure of LAAO. However, the correct

choice of the device for LAAO is a challenging task requiring careful

assessment of the highly variable LAA anatomical structure (8, 9):

the number, shape, and size of LAA lobes, LAA ostium, determined

by the circumflex artery, LAA landing zone (LZ) plane, defined

about 10mmdistally from the LAA ostial plane; and (3) LAAdepth,

measured the distance from the LZ plane to the distal LAA tip. To

sum up, the size, shape, and structure of LAA, which are related

to AF occurrence and thrombus formation, was proven to be a

powerful predictor of ischemic stroke. Meanwhile, the precise grip

of LAA morphology for the clinicians is a necessary prerequisite

condition for a successful intervention procedure. Therefore, owing

to its great clinical significance, it is imperative to accurately

identify the morphology of the LAA.

At present, the multi-slice spiral CT (MSCT) and

transesophageal echocardiography (TEE) imaging are the

most frequently used imaging techniques for LAA (10). MSCTs

require contrast injection, have radiation, and can’t be used

intraoperatively (6). In addition, the LAA is a hollow organ

with the feature of changing dimensions due to the increasing

LA pressure, and before and during operation procedures the

increases in LAA diameters are different among subjects, so

preoperative parameter measurements of LAA are not fully

representative of intraoperative indicators. TEE is the most

commonly recommended imaging modality for procedural

guidance and standard device sizing during the LAAO operation

by the device manufacturers (10, 11). However, there are still some

inherent disadvantages of TEE imaging, namely: the inter- and

intra-observer variability resulting from the manual estimation

of ultrasonic images; the correct identification of the LAA shape

needs a certain amount of experience, especially when the images

are interfered with by artifacts. Thereby, it is imperative to enhance

the intelligence and automation of the TEE image identification

and improve the repeatability and short learning curve for a

starting operator.

With the recent advances in artificial intelligence, it has become

possible to automatically identify the size, shape, and structure of

LAA (6). Previous research developed image-processing techniques

to segment the target anatomy for echo datasets, using simple

image-based techniques, deformable models, or machine-learning

strategies (12). Simard et al. (7) provided an image-based technique

applied in TEE images, extracting realistic LAA shapes but

being extremely time-demanding due to the high number of

manual corrections required. Pedro Morais et al. presented a

semi-automatic solution to complete the image segmentation and

acquire relevant clinical measurements (9). However, previous

manual or semi-automatic segmentation of the LAA based on

ultrasound data is slow and time-consuming, and interpretation

greatly varies among expert users. Thus, an approach for

accurate automated segmentation of the LAA should be proposed.

Indeed, taking into consideration the state-of-the-art, efficient and

automated strategies to segment the LAA in TEE images were,

to our best knowledge, not described, particularly due to (1) the

complex curvilinear and tubular anatomical shape of the LAA; (2)

the high anatomical variability of this structure; (3) the low image

quality. Therefore, a precise, more effective, and fully automated

LAA segmentation system in TEE images with less impact from

human error is needed.

In this paper, we propose a deep learning-based LAA

segmentation network for TEE images that enhances segmentation

performance by introducing prior knowledge of the label. The

proposed method consists of three parts: an LAA segmentation

network, a label reconstruction network, and a joint latent space

alignment loss. Firstly, we utilize the ConvNeXt as the backbone

of the segmentation and reconstruction network to enhance the

feature extraction ability of the network. Furthermore, the label

reconstruction network encodes the shape prior features in the

LAA labels in the latent space vector. A latent space alignment

loss combining adversarial-based loss and contrast learning loss

aligns the latent space of the reconstructed network with that of

the segmentation network. It aims to improve LAA segmentation

accuracy by introducing the shape prior to the segmentation

network. The experimental results show that our method achieves

state-of-the-art performance in LAA segmentation, can effectively

extract accurate LAA structures, and can assist in improving the

accuracy of thrombosis diagnosis and the successful performance

of LAAO.

2. Related work

2.1. Left atrial appendage segmentation

In the last decade, many LAA segmentation and detection

methods have been proposed to assist in LAA occlusion. Wang

et al. (13) proposed a non-model semi-automatic method for

LAA segmentation based on Computed Tomography Angiography

(CTA) images. The method relied on the manual selection of

four datum points to obtain the LAA bounding box and used

parametric max-flow generation and random forest to segment

2-D LAA slices merged into the 3D model. Zheng et al. (14)

proposed a fully automated system for segmentation of the left

atrium based on computed tomography (CT) images, including

the ventricle, LAA, and pulmonary veins. A multi-local shape

prior model was introduced to model the left atrium, and the

experiments on 687 CT images demonstrate the robustness and

advancement of the method. Qiao et al. (15) proposed a joint

atlas-optimized segmentation method to segment the left atrium,

pulmonary veins, and LAA from magnetic resonance angiography

(MRA) images. The method formulated the segmentation as a
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single registration problem between a given image and all atlas

images and used level sets to refine the atlas-based segmentation.

With the widespread application of deep learning techniques in

medical image segmentation tasks, the LAA segmentation methods

based on deep learning have been further developed. For example,

Jin et al. (1) proposed an LAA segmentation method based on a

fully convolutional neural network and conditional random fields

in CTA images. The network segmented the LAA in each 2D slice of

a manually provided bounding box and then used a 3D conditional

random field to merge the segmented 2D probability maps into the

final 3D volume. For TEE imaging, Ghayoumi Zadeh et al. (16)

used the You Only Look Once (YOLO) algorithm to detect the

LAA region. However, the algorithm can only detect rectangular

areas of LAA and fails to obtain pixel-level structure information.

In this paper, we present an effective, deep learning-based pixel-

level LAA segmentation framework for TEE images. Considering

the complex shape knowledge of the LAA, the proposed method

utilizes the prior knowledge stored in the latent space of the mask

to guide the segmentation network to output accurate LAA edges.

2.2. GAN-based medical image
segmentation

With the first application of Generative Adversarial Networks

(GANs) in image segmentation (17), GANs have been widely

used in medical image segmentation tasks, effectively improving

the accuracy of medical image segmentation. The current

performance of GANs to assist in segmentation tasks is 2-

fold: (1) data augmentation to improve the generalization of

segmentation networks; (2) adversarial loss to optimize the

distance between predicted results and labels. Data augmentation-

based segmentation methods mainly employ GANs to synthesize

target images for assisting fully/weakly supervised segmentation

networks. For example, Conte et al. (18) utilized GAN to

synthesize missing MRI sequences and demonstrated that the

images generated by GAN can effectively improve the precision of

the segmentation network. Chen et al. (19) leveraged a generation

network of unpaired CT-MRI data to assist MRI images for

the craniomaxillofacial segmentation framework. The network

involved a cross-modality image synthesis model in learning the

mapping between CT and MRI and an MRI segmentation model.

Iqbal and Ali (20) proposed a new medical imaging generative

adversarial network (MI-GAN). MI-GAN generated synthetic

retinal images and the corresponding segmentation masks to

assist in the retinal image segmentation task. The adversarial loss-

based segmentation method uses generative adversarial networks

to generate segmentation results that are indistinguishable from

manual segmentation. Moeskops et al. (21) introduced an

additional adversarial loss function to improve the CNN-based

MRI image segmentation network, which canmotivate the network

to generate high-quality segmentation results. Yang et al. (22)

proposed an automatic GAN-based segmentation algorithm for

liver extraction from 3D CT volumes. The network used an

encoder-decoder structure integrated with multi-level feature

concatenation and deep super-vision for liver segmentation. Dong

et al. (23) proposed a segmentation network based on conditional

generative adversarial networks for left ventricle segmentation on

3D echocardiography. The network facilitated the fusion of large

3D spatial contextual information from 3D echocardiography by

self-learning structured loss. Wang et al. (24) proposed a patch-

based unsupervised domain-adaptive optic disc and optic cup

segmentation framework, which addresses the domain transfer

challenge by aligning the target domain’s segmentation results with

the source domain’s segmentation results. The network presented a

new morphology-aware segmentation loss to guide the network in

generating accurate and smooth segmentations. Unlike the above

methods that introduce adversarial loss at the network’s output,

the proposed method introduces adversarial loss into the latent

space layer of the network for constraint. It can facilitate the

segmentation network to learn the contextual information of the

labels to improve the accuracy of the overall segmentation results

and the model’s generalization ability.

3. Method

The overall framework proposed in the paper is shown in

Figure 1. In the training process, the proposed method consists

of three parts: LAA segmentation network, mask reconstruction

network, and latent space alignment loss. First, we train a mask

auto-encoder reconstruction network based on the ConvNeXt

model to obtain the latent space feature of the mask. We then

construct an LAA segmentation network and adopt generative

adversarial learning to align the segmentation network’s latent

space with the mask reconstruction’s latent space vector, thus

introducing prior knowledge of the LAA mask. In addition, we

introduce contrast learning loss to enhance the association between

the prior latent features and the latent space features of the original

image to increase the LAA segmentation accuracy.

3.1. LAA segmentation network

A U-shape structure is employed to segment the LAA and

consists of an encoder, a decoder, and skip connection layers. The

encoder enables the extraction of shallow and deep features of the

fused image to obtain the latent space, after which the decoder is

utilized to recover themask prediction results from the latent space.

The skip connection layers fuse the feature map at each stage of the

encoder with the feature map obtained by upsampling the decoder

layers. This allows the decoder to access high-level features learned

by the encoder and helps the decoder to accurately preserve the

details of the input image.

In general, the encoder structure in the U-Net model is a VGG

network (25), i.e., each layer consists of two 3 × 3 convolutional

kernels, a linear rectification function (ReLU), and a max-pooling

layer with a step size of 2. In recent years, with the successive

introduction of ResNet (26), DenseNet (27), and Transformer (26),

the feature extraction capability of neural networks for input

images has been significantly improved. In order to extract richer

feature information, the ConvNeXt (28) network is used as the

base network of the encoder. ConvNeXt uses ResNet50 as the base

network and carries out macroscopic design and improvement

of the network to enhance the feature extraction capability. First,
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FIGURE 1

Overview of the proposed network. The framework consists of three parts: LAA segmentation network, maks reconstruction network and latent

space alignment.

FIGURE 2

The structure illustrations of the ConvNeXt block and discriminator. (A) ConvNeXt block; (B) Discriminator network.

ConvNeXt adjusts the number of blocks in each stage of ResNet-50

to (3, 3, 9, 3). In the first layer of the network, the Stem convolution

layer in the Transformer with a step size of 4 and a kernel size of 4 is

employed to downsample the input image. In each convnext block,

the network introduces a deeply separable convolution module,

which operates the 3×3 convolution in channels and then performs

channel fusion by 1 × 1 convolution. Subsequently, an inverse

bottleneck layer is adopted to avoid information loss. As shown in

Figure 2, the convolution channel numbers are large in the middle

and small in the ends: dim, dim × 4, dim, with large convolution
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kernels 7 × 7 introduced into the block to enhance the spatial

feature extraction ability, where dim represents the dimension

of the input feature. In addition, the network is optimized with

some network details, including normalization layers, activation

functions, and downsampling. Specifically, the network chooses to

replace RELUwith GELU as the activation function. It draws on the

Transformer concept and uses a less activation function strategy:

the GELU activation function is added between the two 1 × 1

convolution layers, as shown in Figure 2. For the normalization

layer, the network replaces the Batch Normalization (BN) layer

with the Layer Normalization (LN) layer, using a less normalization

layer strategy: an LN layer is added between the two 1 × 1

convolutions. For the downsampling operation, ConvNeXt adopts

a 2 × 2 convolution with a step size of 2 inserted between the

different stages. Finally, an LN layer is added before and after the

downsampling layer and after the Global Average Pooling (GAP)

layer to maintain the model stability. For each decoder layer,

we use a residual module and an upsampling module to recover

the input mask information. During this training process, cross-

entropy loss and dice coefficient loss LDice are used to optimize the

LAA segmentation network:

LCE = −

C
∑

i=1

gi log pi (1)

LDice = 1−
2
∑N

i=1 pigi + ǫ
∑N

i=1 p
2
i +

∑N
i=1 g

2
i + ǫ

(2)

Where N is the number of all pixels, pi and gi represent the i-th

pixel of the prediction map and the ground truth, respectively. C =

2 indicates the number of classes, and ǫ is a small positive constant

used to avoid numerical problems and accelerate the convergence

of the training process.

Lseg = λCE · LCE + λDice · LDice (3)

Where λCE and λDice are set to 1 and 1 empirically.

3.2. Mask reconstruction network

We adopt auto-encoder structure as mask reconstruction

network, including an encoder and a decoder. In the mask

reconstruction network, we also employ ConvNeXt as the encoder

with the residual module and the upsampling layer forming the

decoder layer. During training, we use L1 loss to optimize the

reconstruction results, which can be represented as:

L1 =

N
∑

i=1

∣

∣gi − ri
∣

∣ (4)

Where ri and gi represents the i-th pixel of the reconstruction

map and the LAA mask, respectively.

3.3. Latent space alignment loss

The latent space alignment loss is the main contribution of

the paper. Unlike the classical pixel-level loss, the latent space

alignment loss allows optimization of the segmentation results in

terms of high-dimensional feature alignment: the extraction of the

shape prior knowledge in the encoder is enhanced by constraining

the consistency of the label with the image in the latent space.

Most works optimize the network for pixel-level losses, ignoring

the contribution of intermediate-layer features to the network. In

addition, the skip connection layer of the U-shape network tends

to pass multi-scale information from the encoder to the decoder.

This can lead to the network tending to use low-level encoder layer

features while ignoring high-level encoder features. However, these

low-level encoder features have insufficient contextual information.

The network needs to force the encoder layer to output high-level

encoder features to provide global information to the decoder.

Therefore, we propose a latent space alignment loss, including an

adversarial loss and a contrast learning loss. First, for the adversarial

loss, we used the least squares generative adversarial network

(LSGAN) (29) to perform feature alignment between the latent

space vector of the original image and that of the segmentation

result. As shown in Figure 2, the discriminator network consists

of five convolutional layers with a step size of 1 and a kernel

size of 3, and a fully connected (FC) layer. Each convolutional

layer is followed by a LeakyReLU layer with a slope of 0.2 and

a batch normalization layer, and the network outputs the final

result through the FC layer. The objective function of LSGAN is

as follows:

min
D

LGAN(D) =
1

2
Ex∼pdata(k)

[

(D(k)− 1)2
]

+
1

2
Ex∼px(x)

[

(D(G(x)))2
]

, (5)

min
G

LGAN(G) =
1

2
Ex∼px(x)

[

(D(G(x))− 1)2
]

(6)

Where D and G represent the discriminators and encoders of

the segmentation network, k represents the latent space features of

the mask, and x represents the original TEE image.

Nevertheless, the GAN-based alignment loss tends to align the

overall marginal distribution from the two groups of features and

may ignore the differences in the latent space features of different

input images within a batch. Therefore, based on the adversarial

loss, we introduce a contrast learning loss to enhance the similarity

of the pairwise latent space features. The contrast learning loss can

be defined as:

LCL = − log
exp

(

q · k+/τ
)

∑B
i=0 exp

(

q · ki/τ
)

) (7)

Where q represents the latent space feature from the original

image, and k+ is the corresponding latent space features from the

mask for q, denoting positive samples. B represents the number

of samples in a batch. τ represents the temperature coefficient to

adjust the level of attention to difficult samples, and we set τ to 0.1.

Thus, the joint latent space alignment loss LLA is defined as:

LLA = λGAN · LGAN + λCL · LCL (8)

Where λGAN and λCL are set to 1 and 1 empirically.
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4. Experiment

4.1. Dataset

In this paper, we constructed an echocardiography left atrial

appendage segmentation dataset. The local dataset was acquired by

Philips Epiq 7c (Philips Ultrasound, Bothell, USA) or a Philips IE33

scanner from the ultrasound department of Ningbo First Hospital.

It includes 1,783 images from 41 patients (containing 18 non-

thrombotic and 23 thrombotic LAA patients). All the images have

the same image resolution of 800 × 600. We randomly assigned

1,783 images to the training, testing and validation sets in a ratio

of 4:1:1. We ensure that TEE images from one patient fall into the

same training, validation, or testing set. Two experts were invited to

label the boundaries of LAA regions manually for all 1,783 images,

and their consensus was finally used as ground truth.

4.2. Implementation details

The proposed method was implemented by the publicly

available Pytorch Library in the NVIDIA GPU (GeForce RTX

3090 with 24 GB). In the training phase, we employed an Adam

optimizer (30) to optimize the deep model. We used a gradually

decreasing learning rate, starting from 0.0001, and a momentum of

0.9. In each iteration.We resized the image to 448×448 for training,

and the batch size was set to 8 during the training. In addition,

online data enhancement with a random rotation from−10◦ to 10◦

was employed to enlarge the training set.

4.3. Evaluation metrics

To achieve comprehensive and objective assessment of the

segmentation performance of the proposed method, the following

metrics are calculated and compared: the following metrics are

calculated and compared:

• Area Under the ROC Curve (AUC);

• Accuracy (ACC) = (TP + TN) / (TP + TN + FP + FN);

• G−mean score =
√

Sensitivity× Specificity;

• Dice coefficient (Dice) = 2× TP / (FP + FN + 2× TP);

• Intersection over union (IOU) = TP / (FP + FN + TP);

• Kappa score = (Accuracy− pe)/(1− pe).

Where TP is true positive, FP is false positive, TN is true

negative, and FN is false negative. pe in Kappa score represents

opportunity consistency between the ground truth and prediction,

and it is denoted as:

pe =((TP + FN)(TP + FP)+ (TN + FP)(TN + FN))

/(TP + TN + FP + FN)2
(9)

4.4. Performance comparison and analysis

To demonstrate the segmentation performance of the

proposed method, several state-of-the-art segmentation methods

are introduced for comparison: U-Net (31), ResU-Net (32),

CE-Net (33), SwinU-Net (34), and TransU-Net (35). U-Net and

ResU-Net are benchmark models for medical image segmentation,

and CE-Net, SwinU-Net, and TransU-Net are the advanced

medical image segmentation methods. Therefore, comparing

these classical methods, the segmentation performance of the

proposed method can be effectively demonstrated. Table 1 shows

the comparative results of different segmentation methods

for LAA segmentation. Firstly, the proposed method achieves

state-of-the-art performance in all metrics. In particular, the

proposed method achieved LAA segmentation with Dice,

IOU, AUC, ACC, G-mean, and Kappa of 0.831, 0.724, 0.917,

0.989, 0.911, and 0.825, respectively, which indicates that the

segmentation results of the proposed method are in good

agreement with the expert annotations. Table 2 shows the LAA

segmentation results in the thrombus and non-thrombus groups

using different segmentation methods. For the non-thrombotic

group, all comparative segmentation methods achieve advanced

performance. The proposed method slightly underperformed

CE-Net and TransU-Net in Dice and Kappa metrics, and achieved

the best performance in all other metrics. The segmentation

performance of thrombus group performed poorly compared to

the segmentation results of the non-thrombotic group. Among

them, the Dice for all comparison methods failed to exceed 0.8,

which indicates that thrombus segmentation is very challenging.

The segmentation performance of our method in the thrombus

group far exceeds that of the other compared methods. Specifically,

our method improved each metric compared to CE-Net and

TransU-Net: Dice improved by 2.0% and 2.3%, AUC improved

by 2.9% and 2.1%, G-mean improved by 3.5% and 2.5%, and

Kappa improved by 3.1% and 3.4%, respectively. This suggests that

the proposed method not only achieves comparatively advanced

segmentation performance in the non-thrombus group, but also

enables better segmentation of thrombus in TEE images. This also

demonstrates the proposed approach has great advantages in LAA

segmentation and can alleviate the problem of hard-to-segment

thrombus samples.

To better demonstrate the superior performance of the

proposed method on LAA segmentation, we visualize the

segmentation results of all compared methods. Figure 3 illustrates

the segmentation results for the four test samples, where

the first and second rows show the TEE images with non-

thrombotic and the corresponding LAA segmentation results,

and the third and fourth rows show the TEE images with

thrombotic and the corresponding LAA segmentation results.

From observing the segmentation results in Figure 3, it can be

seen that the comparative methods have more over- and under-

segmentation in their segmentation maps, while the proposed

method produces smoother and more accurate LAA regions.

Furthermore, the segmentation visualization results of CE-Net

and TransU-Net are second only to the proposed methods,

in line with the performance of the metrics in the Table 1.

Specifically, all comparison methods appear severely under-

segmented (blue), which is highly detrimental to measuring LAA

shape. Under-segmentation and over-segmentation can damage

the LAA morphological structure, which is detrimental to the

successful progress of the blocking procedure. In addition, it can

be observed from Figure 3 that most of the segmentation results
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TABLE 1 LAA segmentation performance of comparison methods on TEE images.

Method Dice AUC ACC G-mean IOU Kappa

U-Net 0.778± 0.135 0.901± 0.071 0.986± 0.009 0.893± 0.082 0.654± 0.161 0.770± 0.138

ResU-Net 0.805± 0.134 0.914± 0.070 0.987± 0.010 0.907± 0.079 0.691± 0.156 0.799± 0.137

CE-Net 0.819± 0.112 0.907± 0.071 0.988± 0.008 0.898± 0.082 0.706± 0.142 0.813± 0.115

SwinU-Net 0.807± 0.130 0.893± 0.077 0.988± 0.008 0.881± 0.102 0.693± 0.156 0.801± 0.132

TransU-Net 0.809± 0.129 0.897± 0.070 0.988± 0.010 0.887± 0.081 0.696± 0.152 0.803± 0.131

Our method 0.831 ± 0.113 0.917 ± 0.066 0.989 ± 0.007 0.911 ± 0.075 0.724 ± 0.140 0.825 ± 0.116

The values in bold represent the best of all the comparative experimental results.

TABLE 2 LAA segmentation performance of the comparative methods for the non-thrombus and thrombus groups.

Non-thrombus Thrombus

Method Dice AUC G-mean Kappa Dice AUC G-mean Kappa

U-Net 0.860± 0.079 0.950± 0.037 0.948± 0.040 0.855± 0.081 0.741± 0.139 0.879± 0.072 0.868± 0.085 0.733± 0.142

ResU-Net 0.863± 0.075 0.957± 0.045 0.859± 0.076 0.859± 0.076 0.778± 0.146 0.895± 0.070 0.886± 0.081 0.772± 0.149

CE-Net 0.881± 0.066 0.961± 0.028 0.960± 0.029 0.877± 0.068 0.778± 0.135 0.867± 0.077 0.852± 0.099 0.771± 0.137

SwinU-Net 0.869± 0.089 0.949± 0.037 0.947± 0.041 0.865± 0.091 0.784± 0.122 0.872± 0.074 0.858± 0.090 0.777± 0.124

TransU-Net 0.884 ± 0.060 0.945± 0.041 0.942± 0.045 0.881 ± 0.062 0.775± 0.137 0.875± 0.070 0.862± 0.082 0.768± 0.140

Our method 0.880± 0.080 0.966 ± 0.024 0.965 ± 0.025 0.877± 0.081 0.808 ± 0.120 0.896 ± 0.067 0.887 ± 0.078 0.802 ± 0.122

The values in bold represent the best of all the comparative experimental results.

FIGURE 3

Visualization results of di�erent methods for vessel segmentation on TEE images. From left to right: the original image, the vessel segmentation

results obtained by U-Net, ResU-Net, CS-Net, SwinU-Net, TransU-Net, and the proposed method, respectively. Blue represents under-segmentation

and red indicates over-segmentation.

show poor edge detail at the LAA opening and the comparison

methods cannot correctly identify the location of key points at the

LAA opening. It indicates that these segmentation methods have

difficulty capturing the contextual information of TEE images and

the lack of prior clinical leads to incorrect segmentation of critical

edges. The proposed method can accurately capture prior clinical

knowledge and effectively improve the segmentation performance

of edges.
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TABLE 3 Ablation studies of our segmentation method in TEE images.

ConvNeXt
block

GAN loss Contrast loss Dice AUC ACC Gmean IOU Kappa

0.778± 0.135 0.901± 0.071 0.986± 0.009 0.893± 0.082 0.654± 0.161 0.770± 0.138

X 0.815± 0.112 0.899± 0.067 0.988± 0.008 0.890± 0.078 0.701± 0.141 0.809± 0.115

X X 0.827± 0.127 0.903± 0.070 0.989 ± 0.007 0.894± 0.084 0.721± 0.153 0.822± 0.129

X X X 0.831 ± 0.113 0.917 ± 0.066 0.989 ± 0.007 0.911 ± 0.075 0.724 ± 0.140 0.825 ± 0.116

The values in bold represent the best of all the comparative experimental results.

4.5. Ablation studies

In this paper, our proposed method employs three modules

to build the LAA segmentation framework, i.e., ConvNeXt block,

GAN loss, and contrast loss. To evaluate the effectiveness of each

module, we validate the segmentation performance on the local

TEE dataset using different combinations of these modules.

4.5.1. Ablation for ConvNeXt backbone
To discuss the performance of the ConvNeXt backbone, we

compared the original U-Net with our proposed encoder-decoder

architecture (with ConvNeXt as the backbone), as shown in Table 3.

Compared to the original U-Net, our encoder-decoder architecture

with the ConvNeXt backbone achieves better performance onAUC,

ACC, Kappa, Dice, and FDR. This demonstrates the advantage of

the ConvNeXt backbone in feature extraction.

4.5.2. Ablation for GAN loss
We performed GAN loss-based learning of latent space

alignment using a ConvNeXt backbone-based segmentation

network and a label reconstruction network to demonstrate the

effect of GAN loss in the LAA segmentation network. Table 3

shows the comparative performance between the network based

on the ConvNeXt backbone and the network incorporating the

ConvNeXt backbone and GAN loss. We can observe that GAN

loss-based latent space alignment learning achieved higher scores

in Dice, AUC, ACC, G-mean, IOU, and Kappa than segmentation

network using only the ConvNeXt backbone. This suggests that

GAN loss-based latent space alignment learning can improve the

segmentation performance of LAA edge details by introducing the

prior shape knowledge.

4.5.3. Ablation for contrast loss
Furthermore, we analyze the effect of contrast loss in latent

space alignment learning on LAA segmentation performance. In

latent space alignment learning, the segmentation results based

on GAN loss learning are regarded as the initial segmentation

results; the final LAA segmentation results are derived from the

joint GAN loss and contrast loss. Therefore, we compared the

preliminary segmentation results with the final LAA segmentation

results of the joint loss. As shown in Table 3, the final LAA

segmentation performance improved in most metrics compared

to the results of the coarse stage. Compared to using only GAN

loss, the segmentation performance of joint loss increased in most

metrics: Dice improved by 0.4%, AUC by 1.4%, G-mean by 1.7%,

IOU by 0.3%, and Kappa by 0.3%. It demonstrates that the joint

loss can close the label’s latent space to the corresponding image’s

latent space, which yields more accurate prior knowledge and thus

improves the LAA segmentation performance.

5. Conclusion

The LAA size, shape, and structure are associated with the

development of atrial fibrillation and thrombus formation and have

been shown to be powerful predictors of ischaemic stroke. The

LAA occlusion (LAAO) can effectively prevent and treat ischaemic

strokes caused by the LAA. The size and shape of the LAA

vary considerably between subjects, which can present challenges

for correctly selecting the occluder. Therefore, the clinician’s

precise knowledge of the LAA morphology is a prerequisite for

successful interventional surgery. In order to better characterize the

morphological structure of the LAA, we require a more accurate

technique to segment the LAA region. In this paper, we propose

a deep learning-based LAA segmentation network in TEE images,

including three components: LAA segmentation network, label

reconstruction network, and latent space alignment loss. Firstly, we

use the ConvNeXtmodule as the backbone of the segmentation and

reconstruction network to enhance the feature extraction capability

of the network. The label reconstruction network can encode the

shape prior to the LAA mask in the latent space. The latent

space alignment loss is introduced prior to the LAA segmentation

network to improve the accuracy of LAA edge segmentation.

The experimental results show that our method surpasses other

advanced comparison methods in LAA segmentation and can

effectively extract accurate LAA structures to improve thrombus

diagnosis accuracy and successful LAAO.

Although the proposed method has stressed its potential for

LAA segmentation of TEE images, several aspects still need to

be improved. On the one hand, the performance of the proposed

method for LAA segmentation in non-thrombotic patients is

significantly better than that of LAA segmentation in thrombotic

patients. This implies that the morphological structure of the

LAA in TEE images with thrombus is relatively complex, and

the existing segmentation method is not yet able to meet the

clinical requirements and needs further improvement. On the

other hand, our method only performs LAA segmentation on

2D TEE images and cannot capture 3D spatial features. It is

not conducive to the next step of LAA reconstruction and

the measurement of morphological structures. In the future,

we will extend the proposed method to LAA segmentation

of 3D TEE images, allowing for LAA reconstruction and

morphological classification.
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