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Background: The intermediate metabolites associated with the development of
atherosclerotic cardiovascular disease (ASCVD) remain largely unknown. Thus,
we conducted a large panel of metabolomics profiling to identify the new
candidate metabolites that were associated with 10-year ASCVD risk.
Methods: Thirty acylcarnitines and twenty amino acids were measured in the
fasting plasma of 1,102 randomly selected individuals using a targeted FIA-MS/
MS approach. The 10-year ASCVD risk score was calculated based on 2013
ACC/AHA guidelines. Accordingly, the subjects were stratified into four groups:
low-risk (n= 620), borderline-risk (n= 110), intermediate-risk (n= 225), and high-
risk (n= 147). 10 factors comprising collinear metabolites were extracted from
principal component analysis.
Results: C4DC, C8:1, C16OH, citrulline, histidine, alanine, threonine, glycine,
glutamine, tryptophan, phenylalanine, glutamic acid, arginine, and aspartic acid
were significantly associated with the 10-year ASCVD risk score (p-values≤
0.044). The high-risk group had higher odds of factor 1 (12 long-chain
acylcarnitines, OR = 1.103), factor 2 (5 medium-chain acylcarnitines, OR = 1.063),
factor 3 (methionine, leucine, valine, tryptophan, tyrosine, phenylalanine, OR =
1.074), factor 5 (6 short-chain acylcarnitines, OR = 1.205), factor 6 (5 short-chain
Abbreviations

CVD, cardiovascular disease; ASCVD, atherosclerotic cardiovascular disease; ACC, American college of
cardiology; AHA, American heart association; HDL-C, high-density lipoprotein cholesterol; KMO,
Kaiser-Meyer-Olkin; PCA, principal component analysis; KEGG, kyoto encyclopedia of genes and genomes;
BMI, body mass index; BCAA, branched-chain amino acid; AAA, aromatic amino acid; WC, waist
circumference; HC, hip circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG,
triglyceride; Non-HDL-C, non-high-density lipoprotein cholesterol; HbA1c, hemoglobin A1c; FPG, fasting
plasma glucose; OR, odds ratio.
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acylcarnitines, OR = 1.229), factor 7 (alanine, proline, OR = 1.343), factor 8 (C18:2OH,
glutamic acid, aspartic acid, OR = 1.188), and factor 10 (ornithine, citrulline, OR = 1.570)
compared to the low-risk ones; the odds of factor 9 (glycine, serine, threonine, OR =
0.741), however, were lower in the high-risk group. “D-glutamine and D-glutamate
metabolism”, “phenylalanine, tyrosine, and tryptophan biosynthesis”, and “valine, leucine,
and isoleucine biosynthesis” were metabolic pathways having the highest association with
borderline/intermediate/high ASCVD events, respectively.
Conclusions: Abundant metabolites were found to be associated with ASCVD events in this
study. Utilization of this metabolic panel could be a promising strategy for early detection
and prevention of ASCVD events.
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Introduction

Cardiovascular disease (CVD) is a disorder of the heart/vessels

known as the most important reason behind global mortality. The

contribution of CVD to the death rate has increased continuously

(1, 2). Therefore, it is crucial to identify high-risk individuals to

prevent CVD and its associated complications and reduce the

burden of the disease and mortality (3). To this purpose,

different CVD risk assessment scoring systems have been

developed so far (4). One of the recent most-applied tools is the

10-year atherosclerotic CVD (ASCVD) risk index that was

presented by the American Heart Association (AHA)/ the

American College of Cardiology (ACC) (5). This risk score was

calculated based on several characteristics of individuals

including age, sex, race, total cholesterol, high-density lipoprotein

cholesterol (HDL-C), systolic blood pressure, antihypertensive

treatment, smoking status, and diabetes mellitus history (6, 7).

Although there have been many advances in the development

of predictive CVD risk assessment tools, the underlying

molecular pathomechanisms of ASCVD events are largely

unrecognized. This issue revealed the necessity for conducting

metabolomics analysis (8). The metabolomics approach allows

for a better understanding of the intermediate metabolites

associated with ASCVD events and leads to the identification

of new diagnostic and therapeutic strategies (9, 10). Indeed,

physiologic perturbations, particularly in individuals at high risk

of ASCVD events, can rapidly affect metabolite profiling, which

can be targeted for disease management (11). Herein, several

metabolomics studies have been conducted to determine the

association between metabolic profiles and CVD risk, which

showed that branched-chain amino acids and urea cycle-related

metabolites, were associated with higher cardiovascular risk

(12, 13). However, these studies identified the association

between a number of acylcarnitines/amino acids and CVD risk,

but the results are not easily comparable, e.g., isoleucine, leucine,

and glutamine were associated with cardiovascular events in one

study (13) while these metabolites were not associated with an

increased incidence of cardiovascular events in another study

(12). So, intermediate metabolites associated with developing

ASCVD events remain largely unknown. Thus, to better

understand the pathogenesis of the disease, in this study, we
02
conducted the comprehensive metabolomics profiling of plasma

in a large-scale Iranian population and determined the

association between plasma metabolite levels and the 10-year

ASCVD risk score.
Methods

Study subjects

1,102 individuals aged between 40 and 79 years old with LDL

levels less than 190 mg/dl and no pre-existing coronary artery

disease or myocardial infarction were randomly selected from a

survey of Surveillance of Risk Factors of Non-Communicable

Diseases in Iran (STEPs 2016). In brief, the STEPs 2016 protocol,

previously published, includes 31,050 individuals older than 18

years from the rural and urban areas of 389 Iranian districts

selected using a systematic cluster random sampling (14). The

study protocol conforms to the ethical guidelines of the 1975

Declaration of Helsinki. The Ethics Committee of Tehran

University of Medical Sciences and Endocrine & Metabolism

Research Institute approved the study protocol with the ID

number IR.TUMS.EMRI.REC.1395.00141, and written informed

consent was obtained before participation.
Blood sampling and laboratory assessment

The blood was sampled from peripheral venous following at

least 12 h of overnight fasting and stored in sodium fluoride plus

EDTA tubes. A part of the whole blood was used for HbA1c

measurement and the plasma of the remaining blood was

isolated for other biochemical laboratory testing using

commercial Roche kits (Roche Diagnostics, Mannheim,

Germany) and Cobas C311 auto analyzer.
Plasma metabolic profiling

The concentration of 30 acylcarnitines and 20 amino acids

were measured in plasma using flow injection tandem mass
frontiersin.org
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spectrometry (triple quadrupole SCIEX API 3,200 with

electrospray ionization) equipped with a Thermo Scientific

Dionex UltiMate 3,000 standard HPLC system and a

derivatization method with butanol-HCL (15). Briefly, the

mixture of plasma samples and internal standard were

centrifuged at 4°C. Supernatant fluids were collected in new

vials and dried with nitrogen 99.9% at 45°C. Derivatization

solution, a combination of 1-butanol and acetyl chloride, was

then added to the vials with the aim of protein precipitation.

Also, derivatization with butanol-HCL has the benefit of

simultaneous derivatization of amino acids and acylcarnitines

which makes the measurement, faster and cheaper. After

vortexing, they were incubated at 65°C for 15 min with the

advantage of the effective destruction of phospholipids. The

samples were dried with nitrogen 99.9% at 45°C, then dissolved

in 100 µl of mobile phase solution, a mix of water and

acetonitrile, before injection. Ratios of the signals of the

metabolites relative to the internal standards were used to make

calibration curves and calculate analyte concentrations in the

QC materials and samples.
10-year ASCVD risk score assessment

The 10-year risk for primary atherosclerotic cardiovascular

disease was calculated based on pooled cohort equations in the

2013 ACC/AHA Guidelines (16). The equation predicts the

risk of stroke, nonfatal myocardial infarction, and coronary

artery disease death within 10 years in subjects aged between

40 and 79 years old with LDL < 190 mg/dl and no pre-existing

ASCVD events. The equation takes into account age,

gender, race, HDL cholesterol, total cholesterol, systolic blood

pressure, the use of hypertension drugs, smoking habits, and

diabetes. The individuals were stratified into four groups

according to their 10-year ASCVD risk score and the threshold

was determined based on the special report from AHA/ACC

(6): (1) Low-risk group (n = 620) with a score of 0% to 5%,

(2) Borderline-risk group (n = 110) with a score of 5% to 7.5%,

(3) Intermediate-risk group (n = 225) with a score of 7.5% to

20%, and (4) High-risk group (n = 147) with a score of 20%

or more.
Statistical analysis

SPSS version 19.0 was used for statistical analyses. The

workflow diagram of the statistical analysis is presented in

Additional File S1. After checking the normality by

Kolmogorov–Smirnov test, mean (± standard deviation) and

median (interquartile range) were applied to describe

continuous variables with and without normal distributions,

respectively. Number and percentage (%) were applied to

describe categorical variables. Chi-squared test was used

to compare the frequency of categorical variables between the

groups. ANOVA test and Bonferroni post hoc test were used to

compare normally distributed variables between the groups.
Frontiers in Cardiovascular Medicine 03
The Kruskal-Wallis and Mann–Whitney U tests were used

to compare non-normally distributed variables between the

groups. Benjamini-Hochberg method was applied for the

adjustment of p-values obtained from the Kruskal-Wallis H test

of the metabolite concentrations. The correlation between the

metabolite concentrations and the 10-year ASCVD risk was

determined using the Spearman correlation coefficient and the

stepwise multiple linear regression analysis methods. To

standardize the data on metabolite level, we calculated the

natural logarithm of metabolite concentration and considered

their Z value for logistic regression analysis and factor analysis.

Binary logistic regression analysis was used to determine the

odds ratio (OR) of metabolite profile in the borderline/

intermediate/high-risk groups compared to the low-risk one.

For factor analysis, the Kaiser-Meyer-Olkin (KMO) test and

Bartlett’s Test of Sphericity were used to investigate the

adequacy of sample size and for statistical comparison of the

correlation matrix with the identity matrix. KMO values ≥ 0.80

were considered credible. Principal component analysis (PCA)

with varimax rotation was performed to reduce the metabolites

into a smaller subclass of orthogonal (uncorrelated) factors.

The extracted factors with eigenvalues higher than 1.0 and

metabolites with loading scores more than 0.4 were considered

important for the given PCA. The factor score was calculated

through the sum of obtained metabolite concentrations

multiplied by their loading matrix which was obtained from

the rotated component matrix with the rotation method of

Varimax with Kaiser Normalization (Additional File S2).

Furthermore, MetaboAnalyst (Version 5.0) based on the

metabolic Kyoto Encyclopedia of Genes and Genomes

(KEGG) database was used for enrichment pathway analysis

of metabolic alterations between study groups that were

identified from logistic regression analysis. The enrichment

ratio is calculated based on the observed hits divided by

expected hits. A p-value less than 0.05 was considered

significant in all analyses.
Results

General characteristics of the study
population

The study population comprised 1,102 participants with a

mean age of 54.41 ± 10.22 years and a female percentage of

53.27%. The sociodemographic and laboratory characteristics of

the low/borderline/intermediate/high ASCVD risk groups are

shown in Table 1. The groups had no significant difference with

regard to BMI and cholesterol levels (p-value≥ 0.056).
Metabolite profile as a 10-year ASCVD risk
score predictor

Tables 2, 3 demonstrate the median (interquartile range) of

plasma concentration of 30 acylcarnitines and 20 amino acids in
frontiersin.org
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TABLE 1 The general characteristics of participants stratified by 10-year ASCVD risk score.

Variables Low-risk (n = 620) Borderline-risk (n = 110) Intermediate-risk (n = 225) High-risk (n = 147) p-value
Age (year) 48.32 ± 5.98 55.15 ± 7.05 60.34 ± 7.33 70.53 ± 6.64 <0.001

Female, n (%) 425 (69) 47 (43) 72 (32) 43 (29) <0.001

BMI (kg/m2) 28.24 ± 5.32 28.17 ± 4.97 27.15 ± 4.73 27.50 ± 4.81 0.056

WC (cm) 93.92 ± 13.27 96.17 ± 13.00 96.11 ± 12.89 98.03 ± 13.02 <0.001

HC (cm) 103.54 ± 11.59 103.27 ± 10.84 101.25 ± 9.79 101.13 ± 10.82 0.002

WC/HC 0.91 ± 0.09 0.93 ± 0.09 0.95 ± 0.08 0.97 ± 0.10 <0.001

SBP (mm Hg) 124.44 ± 16.01 131.25 ± 18.53 138.80 ± 21.37 151.34 ± 20.31 <0.001

DBP (mm Hg) 78.79 ± 10.63 80.19 ± 11.20 84.21 ± 12.63 84.79 ± 13.33 <0.001

HDL-C (mg/dl) 42.91 ± 11.31 39.51 ± 10.88 38.82 ± 11.37 39.16 ± 11.56 <0.001

TG (mg/dl) 126.19 ± 74.98 147.81 ± 85.08 166.96 ± 158.20 138.94 ± 79.30 <0.001

Cholesterol (mg/dl) 167.24 ± 33.65 169.13 ± 33.84 171.78 ± 38.93 167.92 ± 38.95 0.414

Non-HDL-C (mg/dl) 124.34 ± 33.22 129.62 ± 34.27 132.96 ± 39.57 128.76 ± 36.12 0.025

HbA1c (%) 5.56 ± 0.71 5.93 ± 1.26 6.15 ± 1.35 6.57 ± 1.53 <0.001

FPG (mg/dl) 95.80 ± 23.37 109.16 ± 53.20 110.13 ± 44.08 119.07 ± 51.05 <0.001

10-year ASCVD risk 2.05 ± 1.26 6.11 ± 0.68 12.70 ± 3.65 33.67 ± 12.09 <0.001

Area of living, n (%) Rural 201 (32) 36 (33) 85 (38) 45 (31) <0.001

Urban 419 (68) 74 (67) 140 (62) 102 (69)

Education (years), n (%) <1 113 (18) 23 (21) 77 (34) 57 (39)

<0.001
1 to 6 216 (35) 39 (35) 74 (33) 51 (35)

7 to 12 215 (35) 37 (34) 46 (20) 17 (12)

>12 76 (12) 11 (10) 28 (12) 22 (15)

Smoking, n (%) 46 (7) 21 (19) 61 (27) 31 (21) <0.001

Diabetes, n (%) 36 (6) 22 (20) 52 (23) 71 (48) <0.001

BMI, body mass index; WC, waist circumference; HC, hip circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high density lipoprotein

cholesterol; TG, triglyceride; Non-HDL-C, non-high-density lipoprotein cholesterol; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose.

TABLE 2 The plasma concentration for acylcarnitines stratified by 10-year ASCVD risk score.

Acylcarnitines (μmol/l) Low-risk Borderline-risk Intermediate-risk High-risk FDR*
C0 54.251 (45.854–61.755) 56.876 (48.720–66.211) 58.995 (50.103–66.252) 55.313 (47.701–66.281) <0.001

C2 13.547 (11.317–16.249) 14.232 (11.583–16.534) 13.665 (11.762–16.310) 14.752 (12.163–17.516) 0.014

C3 0.734 (0.571–0.955) 0.856 (0.666–1.180) 0.878 (0.695–1.117) 0.934 (0.697–1.172) <0.001

C3DC 0.072 (0.055–0.099) 0.079 (0.063–0.101) 0.080 (0.057–0.106) 0.090 (0.067–0.117) <0.001

C4 0.363 (0.286–0.490) 0.393 (0.307–0.556) 0.412 (0.334–0.515) 0.437 (0.346–0.536) <0.001

C4OH 0.049 (0.038–0.065) 0.053 (0.043–0.065) 0.052 (0.040–0.067) 0.057 (0.045–0.075) <0.001

C4DC 0.062 (0.048–0.078) 0.070 (0.057–0.084) 0.071 (0.058–0.087) 0.075 (0.059–0.101) <0.001

C5 0.197 (0.155–0.256) 0.221 (0.174–0.269) 0.239 (0.187–0.304) 0.237 (0.192–0.296) <0.001

C5:1 0.035 (0.027–0.052) 0.040 (0.029–0.052) 0.037 (0.030–0.054) 0.041 (0.031–0.058) 0.002

C5OH 0.060 (0.051–0.072) 0.068 (0.056–0.078) 0.066 (0.057–0.077) 0.069 (0.061–0.079) <0.001

C5DC 0.283 (0.229–0.366) 0.318 (0.266–0.386) 0.325 (0.253–0.401) 0.351 (0.277–0.449) <0.001

C6 0.164 (0.120–0.239) 0.169 (0.129–0.230) 0.170 (0.123–0.242) 0.183 (0.136–0.260) 0.140

C8 0.245 (0.167–0.353) 0.253 (0.188–0.372) 0.251 (0.175–0.370) 0.275 (0.192–0.415) 0.080

C8:1 0.284 (0.199–0.408) 0.329 (0.258–0.458) 0.290 (0.216–0.416) 0.322 (0.225–0.408) 0.009

C10 0.315 (0.215–0.481) 0.331 (0.245–0.491) 0.323 (0.212–0.483) 0.358 (0.242–0.567) 0.057

C10:1 0.320 (0.230–0.441) 0.340 (0.257–0.453) 0.315 (0.224–0.458) 0.340 (0.251–0.502) 0.150

C12 0.120 (0.092–0.173) 0.135 (0.101–0.172) 0.137 (0.104–0.183) 0.151 (0.104–0.207) <0.001

C14 0.049 (0.039–0.064) 0.055 (0.043–0.068) 0.056 (0.045–0.073) 0.061 (0.045–0.081) <0.001

C14:1 0.109 (0.081–0.162) 0.116 (0.090–0.158) 0.111 (0.082–0.167) 0.125 (0.088–0.187) 0.080

C14:2 0.085 (0.063–0.116) 0.086 (0.071–0.115) 0.088 (0.065–0.121) 0.096 (0.072–0.135) 0.161

C14OH 0.011 (0.008–0.014) 0.012 (0.009–0.015) 0.013 (0.010–0.016) 0.014 (0.010–0.018) <0.001

C16 0.168 (0.142–0.203) 0.175 (0.157–0.214) 0.184 (0.152–0.224) 0.189 (0.160–0.231) <0.001

C16OH 0.010 (0.008–0.012) 0.011 (0.008–0.013) 0.012 (0.010–0.014) 0.013 (0.010–0.016) <0.001

C16:1OH 0.015 (0.012–0.020) 0.016 (0.013–0.021) 0.017 (0.013–0.024) 0.018 (0.014–0.026) <0.001

C16:1 0.042 (0.032–0.058) 0.044 (0.033–0.056) 0.044 (0.034–0.061) 0.050 (0.036–0.068) 0.005

C18 0.060 (0.049–0.073) 0.065 (0.052–0.077) 0.067 (0.056–0.086) 0.068 (0.056–0.084) <0.001

C18:1 0.169 (0.135–0.218) 0.177 (0.138–0.222) 0.177 (0.143–0.231) 0.174 (0.145–0.230) 0.068

C18OH 0.008 (0.006–0.010) 0.008 (0.007–0.010) 0.009 (0.007–0.011) 0.010 (0.008–0.012) <0.001

C18:1OH 0.011 (0.009–0.014) 0.012 (0.010–0.015) 0.012 (0.010–0.016) 0.013 (0.010–0.017) <0.001

C18:2OH 0.027 (0.021–0.035) 0.029 (0.022–0.037) 0.029 (0.022–0.038) 0.029 (0.024–0.039) 0.015

*FDR: False Discovery Rate (Adjusted P-value).
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TABLE 3 The plasma concentration for amino acids stratified by a 10-year ASCVD risk score.

Amino acids (μmol/l) Low-risk Borderline-risk Intermediate-risk High-risk FDR*
Alanine 401.30 (337.65–471.10) 426.40 (363.60–494.50) 426.50 (374.40–479.20) 423.00 (373.20–499.10) <0.001

Aspartic acid 12.45 (10.10–14.75) 12.65 (10.40–15.00) 12.50 (10.60–14.70) 12.40 (10.00–14.60) 0.844

Glutamic acid 65.50 (57.90–72.20) 68.55 (62.50–75.20) 68.80 (61.90–77.20) 67.30 (61.90–76.00) <0.001

Leucine 118.65 (102.85–134.40) 131.95 (109.50–146.60) 130.20 (115.40–150.70) 126.40 (115.30–147.30) <0.001

Methionine 27.50 (24.60–31.70) 28.40 (24.50–31.90) 27.80 (24.80–31.90) 27.60 (24.40–30.50) 0.455

Phenylalanine 61.85 (55.00–69.20) 62.30 (55.30–69.30) 66.30 (59.20–73.50) 67.40 (60.20–73.60) <0.001

Tyrosine 68.70 (59.80–79.10) 71.75 (65.10–80.30) 70.70 (63.90–82.00) 70.80 (63.30–80.50) 0.005

Valine 249.75 (220.95–282.30) 266.80 (236.50–303.60) 274.70 (239.00–310.10) 269.50 (237.80–299.20) <0.001

Arginine 67.95 (56.00–83.65) 72.00 (60.10–82.30) 70.30 (54.40–83.50) 68.10 (55.50–80.70) 0.694

Citrulline 35.65 (30.20–40.70) 39.85 (34.50–45.20) 39.60 (33.20–45.10) 40.80 (35.30–48.20) <0.001

Glycine 256.80 (211.0–327.55) 253.25 (222.60–298.00) 233.90 (203.10–284.00) 240.30 (206.40–293.60) 0.003

Ornithine 85.70 (73.20–100.00) 88.30 (76.00–105.60) 93.00 (81.30–111.50) 89.50 (76.70–104.40) <0.001

Proline 230.30 (191.50–278.60) 253.75 (206.90–305.60) 257.60 (208.50–310.10) 251.00 (206.50–307.30) <0.001

Threonine 138.24 (116.70–158.40) 136.45 (117.90–156.40) 138.24 (117.10–157.10) 123.90 (105.10–146.70) 0.005

Serine 102.05 (84.50–122.00) 99.65 (86.80–111.90) 96.90 (80.40–116.30) 93.80 (78.70–108.00) 0.002

Histidine 83.65 (74.85–94.60) 84.75 (76.40–96.20) 81.70 (71.90–92.90) 77.60 (69.30–87.00) <0.001

Lysine 179.65 (148.25–204.45) 179.05 (155.80–206.90) 177.30 (148.60–207.50) 173.50 (145.00–206.30) 0.848

Tryptophan 69.85 (60.25–80.05) 71.30 (60.20–83.60) 71.60 (61.20–83.20) 66.60 (56.90–77.40) 0.034

Asparagine 46.70 (35.30–57.40) 47.51 (40.70–58.60) 44.70 (33.00–54.70) 44.00 (31.30–55.80) 0.087

Glutamine 516.95 (430.25–578.80) 506.65 (446.50–590.10) 518.07 (439.60–578.90) 512.90 (431.30–598.20) 0.925

*FDR: False Discovery Rate (Adjusted P-value).
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the four study groups, respectively. For ease of visualization of the

data scatter, the concentration of acylcarnitines/amino acids in the

four study groups is plotted in Additional File S3. The correlation

matrix between metabolites and general features of participants is

shown in Figure 1. The significantly altered metabolites between

male and female participants for the four study groups are

shown in Additional File S4.

The result of the logistic regression on metabolites to

discriminate borderline/intermediate/high ASCVD risk patients

from low-risk ones is presented in Additional File S5. Patients

with high ASCVD risk score were more likely to have an

increase in the concentration of 24 acylcarnitines and nine

amino acids (p-value≤ 0.041) and were less likely to have an

increase in five amino acids than low ASCVD risk group
FIGURE 1

Correlation matrix between metabolites and general features of participants.
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(p-value≤ 0.010). Furthermore, an increase in 18 acylcarnitines

and 13 amino acids was more likely to occur in intermediate

ASCVD risk patients than in low ASCVD risk patients

(p-value≤ 0.044). However, an increase in two amino acids was

less likely to occur in intermediate ASCVD risk patients than in

low ASCVD risk patients (p-value≤ 0.013). Patients with

borderline ASCVD risk score were more likely to have an

increase in 24 acylcarnitines and nine amino acids than low

ASCVD risk patients (p-value≤ 0.041) and were less likely to

have an increase in five amino acids than low ASCVD risk

patients (p-value≤ 0.010). The logistic regression analysis was

repeated after adjustment for BMI; in the new analysis, the

significant p-values remained significant, and non-significant

ones remained non-significant.
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TABLE 5 The logistic regression between the factors extracted by PCA and
10-year ASCVD risk score.

Indices Groups OR 95% CI p-value*
Factor 1 Borderline-risk 1.021 (0.984–1.059) 0.271

Intermediate-risk 1.061 (1.034–1.089) 0.000

High-risk 1.103 (1.072–1.134) 0.000

Factor 2 Borderline-risk 1.040 (0.984–1.099) 0.164

Intermediate-risk 1.011 (0.965–1.060) 0.645

High-risk 1.063 (1.015–1.112) 0.009

Factor 3 Borderline-risk 1.082 (1.020–1.147) 0.009

Intermediate-risk 1.106 (1.058–1.156) 0.000

High-risk 1.074 (1.019–1.132) 0.008

Factor 4 Borderline-risk 1.033 (0.960–1.112) 0.384

Intermediate-risk 0.985 (0.930–1.042) 0.593

High-risk 0.971 (0.907–1.039) 0.395

Factor 5 Borderline-risk 1.146 (1.061–1.238) 0.001

Intermediate-risk 1.193 (1.125–1.265) 0.000

High-risk 1.205 (1.128–1.287) 0.000

Factor 6 Borderline-risk 1.195 (1.077–1.327) 0.001

Intermediate-risk 1.146 (1.055–1.245) 0.001
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Metabolite profile and 10-year ASCVD risk

Additional File S6 shows the correlation between the metabolite

profile and the 10-year ASCVD risk score. Thirty acylcarnitines and

nine amino acids were positively associated with the ASCVD risk

score (p≤ 0.034) and four amino acids were inversely related to it

(p≤ 0.026). The strongest associations belonged to 3-OH-

hexadecanoylcarnitine (C16OH, r = 0.279, p < 0.001), propionyl

carnitine (C3, r = 0.262, p < 0.001), leucine (r = 0.256, p < 0.001),

isovaleryl carnitine (C5, r = 0.251, p < 0.001), and 3-OH-

isovalerylcarnitine (C5OH, r = 0.250, p < 0.001). The multiple linear

regression on all measured metabolites is summarized in Table 4.

Three acylcarnitines (methylmalonyl-/succinyl carnitine [C4DC],

octenoyl carnitine [C8:1], and 3-OH-hexadecanoylcarnitine

[C16OH]) and 11 amino acids (citrulline, histidine, alanine,

threonine, glycine, glutamine, tryptophan, phenylalanine, glutamic

acid, arginine, aspartic acid) were concluded as possible predictors

of the 10-year ASCVD risk score.

High-risk 1.229 (1.121–1.348) <0.001

Factor 7 Borderline-risk 1.346 (1.121–1.617) 0.001

Intermediate-risk 1.294 (1.123–1.491) <0.001

High-risk 1.343 (1.140–1.582) <0.001

Factor 8 Borderline-risk 1.184 (1.004–1.396) 0.045

Intermediate-risk 1.275 (1.127–1.443) <0.001

High-risk 1.188 (1.025–1.377) 0.022

Factor 9 Borderline-risk 0.922 (0.795–1.070) 0.286

Intermediate-risk 0.828 (0.737–0.930) 0.001

High-risk 0.741 (0.642–0.856) <0.001

Factor 10 Borderline-risk 1.473 (1.231–1.762) <0.001

Intermediate-risk 1.534 (1.336–1.762) <0.001

High-risk 1.570 (1.338–1.841) <0.001

Factor 11 Borderline-risk 1.101 (0.801–1.513) 0.554

Intermediate-risk 0.980 (0.770–1.247) 0.868

High-risk 0.918 (0.690–1.223) 0.560

The reference category is the low-risk group.

*After adjustment for BMI, the significant p-values remain significant and

non-significant p-values remain non-significant.
Metabolite-derived factors and ASCVD risk

In the factor analysis, the KMO coefficient was 0.874,

indicating adequate sampling of data. A p-value of <0.001 from

Bartlett’s sphericity test suggested a statistical difference between

the correlation and the identity matrix. Both tests revealed the

data to be appropriate for factor analysis.

PCA analysis on the standardized metabolites resulted in 11

factors with an eigenvalue of more than one in the screen plot

(Additional File S7). The logistic regression analysis of the

borderline/intermediate/high-risk groups compared to the low-risk

group is illustrated in Table 5. Patients with high ASCVD risk

score were more likely to have an increase in factors 1, 2, 3, 5, 6, 7,

8, and 10 than low ASCVD risk group (p-value≤ 0.009) and were

less likely to have an increase in factor nine (p-value < 0.001). The
TABLE 4 The multiple linear regression of the metabolites influencing 10-year ASCVD risk score.

Metabolites Unstandardized coefficients Standardized coefficients t p-value

β Standard error beta
(Constant) −0.265 2.922 −0.091 0.928

C4DC 27.122 10.384 0.079 2.612 0.009

C8:1 −5.143 1.886 −0.079 −2.727 0.007

C16OH 426.657 76.198 0.166 5.599 <0.001

Citrulline 0.281 0.037 0.239 7.515 <0.001

Histidine −0.14 0.025 −0.204 −5.503 <0.001

Alanine 0.015 0.004 0.129 4.232 <0.001

Threonine −0.037 0.011 −0.111 −3.37 0.001

Glycine −0.014 0.004 −0.098 −3.395 0.001

Glutamine 0.013 0.003 0.139 3.882 <0.001

Tryptophane −0.097 0.022 −0.144 −4.468 <0.001

Phenylalanine 0.109 0.032 0.114 3.405 0.001

Glutamic acid 0.089 0.031 0.099 2.901 0.004

Arginine −0.038 0.018 −0.065 −2.076 0.038

Aspartic acid −0.213 0.106 −0.069 −2.017 0.044

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2023.1161761
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Dehghanbanadaki et al. 10.3389/fcvm.2023.1161761
intermediate-risk group was more likely to have an increase in factors

1, 3, 5, 6, 7, 8, and 10 than the low-risk group (p-value≤ 0.001) and

was less likely to have an increase in factor 9 than the low-risk group

(p-value = 0.001). Patients with borderline ASCVD risk score were

more likely to have an increase in factors 3, 5, 6, 7, and 10 than

the low-risk group (p-value≤ 0.009).
The enriched metabolic pathways mediated
between study groups

The results of pathway enrichment analysis of altered

metabolites in low ASCVD risk group with borderline/

intermediate/high ASCVD risk groups are summarized in

Additional File S8. The differential metabolites between the low

ASCVD risk group and borderline/intermediate/high ASCVD

risk groups were mainly associated with the biological processes

of “aminoacyl-tRNA biosynthesis”, “arginine biosynthesis”,

“D-glutamine and D-glutamate metabolism”, “valine, leucine and

isoleucine biosynthesis”, and “phenylalanine, tyrosine, and

tryptophan biosynthesis” (Figures 2A–C). The metabolic

pathways with the highest enrichment ratio in explaining the

differences in metabolic profile between the low ASCVD risk

group and the borderline/intermediate/high ASCVD risk groups

were “D-glutamine and D-glutamate metabolism”,

“phenylalanine, tyrosine, and tryptophan biosynthesis”, and

“valine, leucine, and isoleucine biosynthesis”, respectively. The

working model of the metabolic perturbance is shown in Figure 3.
Discussion

It has been discovered that the metabolite profile has a

significant correlation with ASCVD risk such as coronary artery
FIGURE 2

Pathway enrichment analysis between (A) low ASCVD risk group and borderline
group, and (C) low ASCVD risk group and high ASCVD risk group. The color o
Fisher’s test p-value].
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disease. Moreover, certain metabolic features can be considered

independent and valuable predictors of cardiovascular events

with regard to early diagnosis, treatment strategies, and better

risk stratification (13). In this study, the 10-year ASCVD risk

score was used to classify individuals into four groups: low-,

borderline-, intermediate-, and high-risk of ASCVD events.

Consequently, their metabolite profile (the plasma concentration

of 30 acylcarnitines and 20 amino acids) was measured to

determine the association between metabolite profile and the risk

of 10-year ASCVD events.

The results of our study indicated a positive correlation between

all 30 acylcarnitines, alanine, glutamic acid, leucine, phenylalanine,

tyrosine, valine, citrulline, ornithine, and proline and the 10-year

ASCVD risk score and a negative correlation of glycine, threonine,

serine, and histidine with this score. In accordance with our

findings, Würtz P et al. (12) showed a positive correlation between

the circulating concentrations of phenylalanine and tyrosine and

cardiovascular risk. Ruiz-Canela M et al. (17) in a case-cohort

study have shown the direct correlation between higher

concentrations of branched-chain amino acids (BCAAs) including

leucine and valine, and higher CVD risk. The important role of

BCAAs as the predictive markers of cardiovascular events has been

also suggested in another study by Hu W et al. (18). Vaarhorst AA

et al. (19) reported that blood concentrations of valine, ornithine,

and glutamate were associated with coronary heart disease. Shah

SH et al. (13) found a considerable association between the plasma

levels of glutamate, leucine, isoleucine, citrulline, C2, C8, C10:1, C14:2

and CVD risk in the same direction that we found in the current

study. Besides, the elevated levels of serum C2 and C8

acylcarnitines are in relation to higher cardiovascular death risk.

They could also be correlated with a modest increase in the risk of

fatal/nonfatal acute myocardial infarction in patients with stable

angina pectoris (20). As shown in Table 6, these findings from the

previous studies are in line with our findings.
ASCVD risk group, (B) low ASCVD risk group and intermediate ASCVD risk
f each pathway is based on the p-value [-log(p): logarithm of the p-value,
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FIGURE 3

Working model of metabolomic perturbance and ASCVD.

TABLE 6 Comparisons between results of metabolomic studies and current study.

Metabolomic study Metabolite alteration in high CVD risk Results of current study
Würtz P et al. (12) Higher phenylalanine and tyrosine Higher phenylalanine and tyrosine

Ruiz-Canela M et al. (17) Higher leucine and valine Higher leucine and valine

Hu W et al. (18) Higher leucine, isoleucine, valine Higher leucine and valine

Vaarhorst AA et al. (19) Higher valine, ornithine, and glutamate Higher valine, ornithine, and glutamic acid

Shah SH et al. (13) Higher glutamate, leucine, isoleucine, citrulline, C2, C8, C10:1, C14:2 Higher glutamic acid, leucine, citrulline, C2, C14.2

Strand E et al. (20) Higher C2, C8, and C16 Higher C2 and C16
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This study has also found from multiple linear analysis that

C4DC, C8:1, and C16OH, citrulline, histidine, alanine, threonine,

glycine, glutamine, tryptophan, phenylalanine, glutamic acid,

arginine, and aspartic acid could be considered as new candidate

biomarkers for the 10-year ASCVD risk. Based on a study by Hu

W et al. (18), there is an independent association between

BCAAs and intima-media thickness as a marker of coronary

artery disease. Several other studies have also indicated a strong

association between acylcarnitines and cardiovascular events (21,

22). In addition, metabolite disturbances can also contribute to

the CVD risk factors such as diabetes mellitus as found in many

studies (23–27). In this regard, plasma levels of BCAA and

aromatic amino acids (AAAs) particularly tyrosine,

phenylalanine, and isoleucine can predict both diabetes mellitus

and CVD events (28, 29).

Metabolomics can help us identify new intermediate

metabolites to better understand the underlying mechanisms

responsible for higher 10-year ASCVD risk. For instance, the

odds ratio between low- and high/intermediate-risk patients can

be explained by certain underlying pathways including aminoacyl-
Frontiers in Cardiovascular Medicine 08
tRNA biosynthesis, valine, leucine, and isoleucine biosynthesis,

arginine biosynthesis, phenylalanine, tyrosine, and tryptophan

biosynthesis, D-glutamine and D-glutamate metabolism,

phenylalanine metabolism, and glutathione metabolism. The role

of these underlying mechanisms in the development of

cardiovascular events has been stated in previous studies (30–32).

For instance, the aminoacyl-tRNA synthetases are found to have

an important role in modifying the function of regulatory

proteins in different cellular processes. The effects of aminoacyl-

tRNA synthetase pathways on coronary arteries, aorta,

cardiomyocytes, and fibroblasts and their strong association with

angiogenesis and cardiomyopathy have been identified previously,

and it suggested the potential role of aminoacyl-tRNA synthetase

pathways as therapeutic/diagnostic targets of ASCVDs (30). In

addition, the disturbed mechanisms of valine, leucine, isoleucine,

and their α-keto acids were reported in animals suffering from

cardiac events (31, 32). Arginine is another amino acid with an

important role in different cellular processes such as protein

biosynthesis. Furthermore, it is also involved in vascular tone and

endothelial function affecting cardiovascular function (33).
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Another study has also introduced phenylalanine, tyrosine, and

tryptophan biosynthesis (using multi-omics approaches) to be

involved in vascular function alterations (34). Phenylalanine

metabolism has also been shown to have considerable effects on

predicting poor outcomes in critically ill patients presenting with

heart failure (35). The pathogenic role of high phenylalanine

levels in cardiac aging has also been found (36). On the other

hand, glutathione metabolism is also known to have considerable

effects on various cell functions during CVD events such as

cytokine production and protein synthesis. In this regard, it has

been stated that glutathione deficiency can be associated with

heart attack and stroke (37). Besides, glutathione metabolism is

associated with poor outcomes such as death or re-hospitalization

in heart failure patients (38).

Published articles regarding the metabolomics analysis of

CVD risk, particularly those on amino acids or acylcarnitines

mainly utilize the Framingham risk score for risk estimation of

CVD events (13, 18). Despite the effectiveness of the ASCVD

risk score and its preference in many cases (39), there are not

many articles that have used the ASCVD risk score for that

purpose. On the other hand, there have been fewer

investigations on acylcarnitines compared with other

metabolites like amino acids. The other strength of this study is

its large population and broad list of investigated metabolites,

which makes its results more valuable. Besides, various

acylcarnitines generally showed a stronger association with

CVD risk in fasting subjects than in nonfasting subjects (20);

so, we measured the concentration of metabolites in fasting

plasma. However, this study also has some limitations. The

cross-sectional nature of the study prevents us from finding

any temporality and actual causality associations between the

10-year ASCVD risk and metabolite profile. This study was

conducted on Iranian individuals, which limits the

generalization of the results to different populations. Also, the

risk of actual ASCVD events according to the metabolic profile

was not investigated. Additionally, meaningful differences in

the studied patient groups might have affected the metabolite

levels. Although these variabilities were adjusted in the risk

score estimation equation, their existence is one of the

limitations of the present study. Despite all the benefits of

metabolic profiling in predictive strategies, its generalizability

and reproducibility have to be investigated through

comprehensive studies to establish its potential usefulness in

the clinical setting (40). Thus, longitudinal studies are needed

to confirm the predictive value of the metabolite profile on the

ASCVD risk.
Conclusions

This study identified many amino acids and acylcarnitines as

metabolite fingerprints of individuals at higher risk of 10-year

ASCVD events. Among them, our results suggest C4DC, C8:1,

C16OH, citrulline, histidine, alanine, threonine, glycine, glutamine,

tryptophan, phenylalanine, glutamic acid, arginine, and aspartic
Frontiers in Cardiovascular Medicine 09
acid be associated with the 10-year ASCVD risk score and thus

could be used as potential predictive biomarkers for the ASCVD

events. Furthermore, several metabolic pathways associated with

the development of 10-year ASCVD events were identified.

Among them, “D-glutamine and D-glutamate metabolism”,

“phenylalanine, tyrosine, and tryptophan biosynthesis”, and

“valine, leucine, and isoleucine biosynthesis” showed the most

influential pathways in this pathogenesis. These findings allow for

a better understanding of mechanisms underlying ASCVD events

and then were used in diagnostic and therapeutic strategies.

However, more studies are still required to confirm this

association in larger populations.

Acylcarnitines name: Free carnitine (C0), Acetyl carnitine

(C2), Propionyl carnitine (C3), Malonyl carnitine (C3DC), Butyryl

carnitine (C4), Methylmalonyl-/succinyl carnitine (C4DC),

3-OH-iso-/butyryl carnitine (C4OH), Isovaleryl carnitine (C5),

Tiglylcarnitine (C5:1), 3-OH-isovalerylcarnitine (C5OH), Glutaryl

carnitine (C5DC), Hexanoyl carnitine (C6), Octanoyl carnitine

(C8), Octenoyl carnitine (C8:1), Decanoyl carnitine (C10), Decenoyl

carnitine (C10:1), Dodecanoyl carnitine (C12), Tetradecanoyl carnitine

(C14), Tetradecenoyl carnitine (C14:1), Tetradecadienoyl carnitine

(C14:2), 3-OH-tetradecanoylcarnitine (C14OH), Hexadecanoyl

carnitine (C16), 3-OH-hexadecanoylcarnitine (C16OH), 3-OH-

hexadecenoylcarnitine (C16:1OH), Hexadecenoyl carnitine (C16:1),

Octadecanoyl carnitine (C18), Octadecenoyl carnitine (C18:1), 3-OH-

octadecanoyl carnitine (C18OH), 3-OH-octadecenoyl carnitine

(C18:1OH), Octadecadienoyl carnitine (C18:2).
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