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Introduction: As the life expectancy of children with congenital heart disease
(CHD) is rapidly increasing and the adult population with CHD is growing, there
is an unmet need to improve clinical workflow and efficiency of analysis.
Cardiovascular magnetic resonance (CMR) is a noninvasive imaging modality for
monitoring patients with CHD. CMR exam is based on multiple breath-hold
2-dimensional (2D) cine acquisitions that should be precisely prescribed and is
expert and institution dependent. Moreover, 2D cine images have relatively thick
slices, which does not allow for isotropic delineation of ventricular structures.
Thus, development of an isotropic 3D cine acquisition and automatic
segmentation method is worthwhile to make CMR workflow straightforward and
efficient, as the present work aims to establish.
Methods: Ninety-nine patients with many types of CHD were imaged using a non-
angulated 3D cine CMR sequence covering the whole-heart and great vessels.
Automatic supervised and semi-supervised deep-learning-based methods were
developed for whole-heart segmentation of 3D cine images to separately
delineate the cardiac structures, including both atria, both ventricles, aorta,
pulmonary arteries, and superior and inferior vena cavae. The segmentation
results derived from the two methods were compared with the manual
segmentation in terms of Dice score, a degree of overlap agreement, and atrial
and ventricular volume measurements.
Results: The semi-supervised method resulted in a better overlap agreement with
the manual segmentation than the supervised method for all 8 structures (Dice
score 83.23 ± 16.76% vs. 77.98 ± 19.64%; P-value ≤0.001). The mean difference
error in atrial and ventricular volumetric measurements between manual
segmentation and semi-supervised method was lower (bias≤ 5.2 ml) than the
supervised method (bias≤ 10.1 ml).
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Discussion: The proposed semi-supervised method is capable of cardiac segmentation and
chamber volume quantification in a CHD population with wide anatomical variability. It
accurately delineates the heart chambers and great vessels and can be used to accurately
calculate ventricular and atrial volumes throughout the cardiac cycle. Such a
segmentation method can reduce inter- and intra- observer variability and make CMR
exams more standardized and efficient.
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1. Introduction

Congenital heart disease (CHD) affects nearly 1% of live births

in the United States and Europe (1, 2). It is the leading cause of

perinatal and infant death, and accounts for about 4% of all

neonatal deaths in the United States (3). Luckily, 83% of babies

with CHD now survive infancy and reach adulthood in the

United States, due to medical, surgical, and intensive care

advances (4). Despite these advances, there is no cure for CHD,

and thus, these patients must be monitored lifelong. In addition

to echocardiography, cardiovascular magnetic resonance (CMR)

is one of the primary imaging modalities for monitoring CHD

patients since it is non-invasive and does not require ionizing

radiation (5). Although CMR can provide high spatial and

temporal resolution images to calculate cardiac function, these

measurements are traditionally based on multiple 2-dimensional

(2D) cine image acquisitions that are precisely prescribed. For

instance, 2D cine images are planned in a short-axis view to

calculate cardiac function. However, defining the short-axis view

is expert and institution dependent, and serial examinations may

prescribe slightly different planes resulting in measurement

variability. Furthermore, 2D cine images have a relatively large

slice thickness which precludes isotropic delineation of the left

and right ventricle for a more accurate measurement of cardiac

function. An isotropic 3-dimensional (3D) cine sequence can

mitigate these problems. Because it is non-angulated, prescription

is independent from the expert and institution. Isotropic 3D cine

images also allow for isotropic segmentation of the heart.

Manual segmentation of 3D cine images is, however, time

consuming and impractical. Therefore, an automatic

segmentation method is necessary to delineate the heart

chambers and great vessels and to evaluate cardiac function. At

present, artificial intelligence (AI) and, specifically, deep learning

(DL) is making strong progress in automatic segmentation of

CMR images (6–11). AI-based methods have been successfully

utilized to delineate adult heart disease and CHD using 2D cine

images (8, 10, 12). However, they are not designed for

segmenting 3D cine CMR images. Prior work has also addressed

the physical distortions and appearance changes that arise when

segmenting the right and left ventricles in adult patients (7, 13–

15). Method development regarding automated image analysis

for CHD is very limited and has mostly been aimed towards

computer-aided diagnosis (16–18), ventricular function

quantification (19–23), 2D cine (9, 18, 24), or 3D static imaging
02
(20, 25–29). Recently, more novel AI-based segmentation

methods are proposed in the literature (30–35) which are based

on vision transformers (36) but their performance on whole-

heart segmentation have not been investigated. To date, there is

no automatic DL-based segmentation method available that

works on 3D cine datasets for delineating whole-heart and great

vessels, nor is there work addressing cardiac segmentation in a

wide range of CHD lesions.

In this article, we sought to develop fully automatic supervised

and semi-supervised DL-based segmentation methods for a wide

range of CHD lesions that delineate the heart and great vessels

including left atrium (LA), left ventricle (LV), aorta (AO),

superior vena cava (SVC), inferior vena cava (IVC), right atrium

(RA), right ventricle (RV), and pulmonary arteries (PA), from

3D cine images. We hope the proposed technique enables

isotropic delineation of cardiac anatomy and great vessels

throughout the cardiac cycle and can be used for the assessment

of cardiac function and anatomy.
2. Materials and methods

We have developed two 3D DL-based segmentation methods: a

fully automatic supervised method and a fully automatic semi-

supervised method. The objective was to evaluate and compare

their performances in delineating the whole-heart and great

vessels with respect to each other and to manual segmentation.

Both methods employ the same network architecture and

prediction pipeline; the only difference lies in their training

processes.
2.1. The 3D cine datasets

2.1.1. CMR imaging protocol and patient
population

We retrospectively identified 99 patients who had undergone 3D

cine CMR imaging at our institution. For each patient, clinically

indicated 3D cine images were acquired about 2 min after

injection of 0.15 mmol/kg of gadobutrol contrast agent using a

1.5 T Philips scanner (Philips, Best, The Netherlands). The

imaging parameters for the 3D cine acquisition were as follows:

field-of-view of 512 (frequency-encode) × 170 (phase-encode) ×

170 (slice-encode) mm, Cartesian k-space trajectory, profile
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ordering centra, isotropic resolution of 1.51 × 1.48 × 1.51 mm

reconstructed to 1.0 × 1.0 × 1.0 mm, 20 acquired heart phases

reconstructed to 30 phases, parallel imaging technique (SENSE)

with reduction factor of 2 (phase-encode) × 2 (slice-encode), TFE

factor 11, and TFE shots 310, flip angle 60°, repetition time of

4.5 ms, echo time of 2.3 ms, nominal scan time of approximately

5:12 min assuming heartrate of 60 bpm and a 100% scan

efficiency. A respiratory navigator was used for minimizing the

respiratory motion of the heart. The images were reconstructed

online on the scanner. After acquisition, the 3D cine images were

de-identified for analysis. This retrospective study was reviewed

and approved by the institutional review board of Boston

Children’s Hospital, Boston, MA, USA (IRB-P00011748).

The patient cohort had an age range of 0.8–72 years (median

16), heart rate range of 57–131 bpm (median 83), and weight

range of 5.8–113.6 kg (median 55.3). The patient population was

imaged to assess CHD (n = 81), acquired heart disease (n = 2),

connective tissue disease or aortopathy (n = 6), cardiomyopathy

(n = 5), arrhythmia (n = 3), or a family history of inheritable

heart disease (n = 2). With consideration to what features of

abnormal cardiac anatomy would make automatic segmentation

of the heart more difficult, we devised a set of rules to categorize

patients into 3 complexity classifications of normal, mild/

moderate, and severe (Table 1).

Table 2 illustrates further details about final patient

categorization into normal anatomy, mild/moderate, and severely

complex groups. Supplementary Table S2 provides detailed

information about all the subjects in this study.
2.1.2. Pre-processing
All the 3D frames of every 3D cine image were cropped around

the heart so that all 30 frames were the same size for each patient.

Per patient, a specific 3D bounding box containing the whole heart

was visually chosen and the cropping occurred accordingly. This

was done to lower computational costs and standardize the fields

of view. Moreover, the frames corresponding to the end-diastole

(ED) and end-systole (ES) were visually selected for each 3D cine

dataset. Because intensity distributions vary across CMR images,

intensity normalization is required. Therefore, we created an
TABLE 1 Method for classifying subjects’ cardiac anatomies into 3 categories o
mild/moderate and severely complexity.

Category Segmental
anatomy

Ventricles Shunts

Normal Normal Two Patent foramen ovale

Mild/
moderate

Double-outlet right
ventricle (DORV),
unrepaired D-TGA

Two/Two, but
unequal

Arterial septal defect (ASD), v
septal defect (VSD), Patent Du
Arteriosus (PDA), coronary fis
aortopulmonary (AP) window
total anomalous pulmonary ve
connection (PAPVC/TAPVC)

Severe Levo Transposition of
the great arteries
(L-TGA), more
complex arrangements

One
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intensity normalization scheme based on the estimated blood

pool and lung intensities in each image of the 3D cine dataset (24).
2.1.3. Manual annotation and ground truth labels
From the 99 total cases analyzed in this study, 74 cases were

utilized for training, 13 cases were chosen as validation images

for optimizing the networks during the deep learning training,

and 12 cases were selected as test images. The test and validation

patients were selected in a balanced manner from the 3 anatomy

complexity categories (normal, mild/moderate, and severe) to

maintain generalizability as much as possible. Supplementary

Table S1 shows the distribution of the 3D cine datasets based on

their severity classes. The training and validation images were

manually annotated on the ED and ES frames, i.e., only two out

of thirty 3D frames contained manual annotations for training

the DL-based segmentation methods. However, the test images

were manually annotated on all 30 frames to serve as a reference,

and to evaluate the DL-based segmentation methods throughout

the cardiac cycle. A 3D U-Net (37, 38) convolutional neural

network trained on 3D static CMR images (25, 25, 39) was used

to pre-segment the ED and ES phases for the training and

validation datasets. The output of the network was then refined

using 3DSlicer toolkit (40) via generic segmentation tools such

island relabeling, further painting, or erasing. The segmentation

results were supervised and, if necessary, modified by a pediatric

cardiologist with expertise in CMR imaging. A similar procedure

was performed to segment all 30 phases of test datasets.

Specifically, each of the 30 frames underwent pre-segmentation

using the 3D U-Net convolutional neural network (37, 38) to

segment all 30 phases of the test datasets individually. The pre-

segmentation results were then manually adjusted for each phase

by a single observer using 3DSlicer and its generic segmentation

modules. Finally, a clinician reviewed and supervised the final

segmentation results.

Two DL-based segmentation methods were developed for

fully automatic segmentation of 3D cine images: 1. Supervised

DL-based segmentation method and 2. Semi-supervised

segmentation method. In the supervised DL-based

segmentation method only the manual annotation of ED and
f complexity. The 3 categories of complexity include normal anatomy and

Valve
abnormalities

Miscellaneous

Bicuspid aortic valve (BAV) Cardiomyopathy, coarctation,
interrupted aortic arch,
aortopathy, anomalous coronaries

entricular
ctus
tula,
, partial/
nous

Common atrioventricular valve
(AVV), any valvular stenosis, any
prosthetic valve, AVV straddle,
Tetralogy of fallot (TOF), truncus,
Ebstein

Dextro transposition of the great
arteries (D-TGA) status post (S/P)
arterial switch, S/P Glenn of
Fontan, dextrocardia, 2× mild

Any valvular atresia S/P atrial switch, 2× moderate
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TABLE 2 Details of the subjects according to cardiac diagnosis.

Normal 26
Cardiomyopathy 5

Hypertrophic cardiomyopathy 3

Arrhythmogenic right ventricular cardiomyopathy (ARVC) 1

Left ventricular non-compaction cardiomyopathy 1

Arrhythmia 3

Rule out (R/O) ARVC 2

Wolff-Parkinson-White 1

Family history 2

Ventricular fibrillation arrest 1

Aortopathy 1

Coarctation/BAV 8

Isolated coarctation of the aorta (CoA) 3

CoA + BAV 2

Isolated BAV 3

Connective tissue disease (CTD) 6

Marfan’s syndrome 4

CTD, aortopathy nitric oxide synthesis (NOS) 2

Miscellaneous 2

ARCAPA 1

Lipomatous hypertrophy of the interatrial septum 1

Mild/moderate 39
Left-to-right shunt 8

Repaired VSD + arch repair 3

Repaired ASD 1

Repaired TAPVC 1

Repaired AP window + arch repair 1

Left coronary artery to RV fistula 1

Sinus venosus defect 1

Prosthetic valve 4

Congenital aortic stenosis, S/P aortic valve replacement (AVR) 3

Rheumatic heart disease, S/P mitral valve regurgitation & AVR 1

Congenital aortic valve disease 9

Congenital pulmonary valve disease 2

D-TGA, S/P arterial switch operation 1

Repaired TOF 7

Repaired truncus arteriosus 2

Ebstein anomaly 2

DORV 2

D-TGA, S/P Rastelli repair 2

Severe 34
Single ventricle 5

Double-inlet left ventricle 2

Hypoplastic left heart syndrome, S/P Fontan 1

Tricuspid atresia S/P Fontan 1

Double-inlet/double-outlet RV 1

Complex segmental anatomy 3

Superior-inferior ventricles, S/P Glenn 2

Dextrocardia, D-TGA, crisscrossed AV valves, S/P Glenn 1

L-TGA 5

valvular atresia 11

TOF/PA 4

DORV/PA 4

PA/interventricular septum 2

Ebstein/PA 1

Atrial switch 2

2× Moderate Lesions 8

DORV, right-dominant atrioventricular canal 3

(continued)

TABLE 2 Continued

DORV, S/P Glenn 2

TOF, S/P Fontan 1

Dextrocardia, D-TGA 1

D-TGA, S/P Glenn 1

Tayebi Arasteh et al. 10.3389/fcvm.2023.1167500
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ES frames were used for training. In the semi-supervised DL-

based segmentation method, the manual annotation of ED and

ES frames were automatically propagated to other 28 frames in

the cardiac cycle, and manual annotation of ED and ES frames

and propagated annotation of other 28 frames were used for

training.
2.2. The supervised DL-based segmentation
method

2.2.1. Approach
The supervised DL-based segmentation method has a 3D U-Net

structure (Figure 1). Like the standard U-Net structure (37) and

benefiting from nnU-Net (41) configurations, it has a contracting

and an expanding path, each with four resolution levels (37, 38).

In the contracting path, each layer contains two 3 × 3 × 3

convolutions, each followed by a rectified linear unit (ReLU) (42),

a batch normalization (43), and then a 2 × 2 × 2 max pooling layer

with strides of two in each dimension. In the expanding path,

each layer consists of a nearest neighbor up-sampling of 2 × 2 × 2

in each dimension, followed by two 3 × 3 × 3 convolutions each

followed by a ReLU and a batch normalization layer. Shortcut

connections from layers of equal resolution in the contracting

path provide high-resolution features to the expanding path. In

the last layer, a 1 × 1 × 1 convolution, which reduces the number

of output channels to the number of labels, followed by a SoftMax

layer, is used for the voxel-wise classification.
2.2.2. Supervised training
We followed a supervised approach and solely utilized the

manually annotated ED and ES frames of the 3D cine datasets for

training. The model was optimized using the AMSGrad (44)

optimizer with a learning rate of 3 × 10−4. As loss function, we

chose the weighted cross-entropy with inverted class frequencies of

the training data as loss weights to counteract the imbalanced class

frequencies, with higher weights for smaller structures. To minimize

the overhead and make maximum use of the graphics processing

unit memory, we favored large input tiles over a large batch size

and reduce the batch to a single 3D image (37). Consequently, the

batch normalization acted like instance normalization in our

implementation. We performed data augmentation by applying

random affine transformations including rotation, shearing,

translation, intensity scaling, and nonlinear transformations

including left-right and anteroposterior flips (which are helpful for

dextrocardia and other cardiac malposition in CHD), constant

intensity shifts, and additive Gaussian noise on the datasets.
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FIGURE 1

Schematic representation of the modified 3D U-Net (37,38) architecture used in this study for segmentation. Up-sampling is performed through nearest-
neighbor interpolation. Each arrow denotes a 3 × 3 × 3 convolutional layer, subsequently followed by a rectified linear unit (ReLU) and batch normalization
(BN). The channel numbers are mentioned on top of the feature maps. The concluding layer employs a 1 × 1 × 1 convolution to streamline to 9 output
channels. These channels are then subjected to voxel-wise classification via a SoftMax layer.
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2.3. The semi-supervised DL-based
segmentation method

2.3.1. Approach
In each 3D cine dataset, only the ED and the ES phases of

every 3D cine training image were manually annotated.

Successive frames were not very different from each other. As

such, inspired by Fan et al. (45), we utilized a label

propagation algorithm to generate pseudo-labels for the

intermediate frames which were not manually annotated to

enhance our training. For each 3D cine image, we trained a

separate DL-based segmentation neural network from scratch,

using the ED and ES labels. We called this type of DL network

the propagator network. This network was responsible for

generating pseudo-labels for the remaining unlabeled 28 phases

of the cine images.

The label propagation procedure is explained in more detail in

Algorithm 1. Firstly, for each patient, we trained a propagator

network, i.e., a supervised 3D U-Net (Figure 1) using only the

ground truth labels, i.e., the ED and the ES traces.

Consequently, in this stage, we had only two 3D images as the

training data. Subsequently, this trained propagator network

was used to automatically segment adjacent 3D volumes;

specifically, we chose to segment three consecutive frames

directly preceding and directly following both the ED and ES

frames. In this way, we segmented 12 frames using the

propagator network trained on only the ED and ES volumes

(Figure 2). This process resulted in 1 manually annotated ED

frame, 1 manually annotated ES frame, and 12 frames with

pseudo-labels. As shown in Figure 2, we pooled the original ED
Frontiers in Cardiovascular Medicine 05
and ES frames with the newly segmented 12 frames and trained

another propagator network using these images. This second

propagator network followed the same procedure as the first,

with the only exception that it segmented two consecutive

frames of the training volumes. Likewise, we repeated this

iterative procedure, segmenting two consecutive frames per

iteration, until all the frames were segmented.

2.3.2. Weighted-probabilistic semi-supervised
training

After performing the label propagation on all the

available training images and generating all the pseudo-labels

for the 28 intermediate non-annotated frames corresponding to

each training patient, we trained the semi-supervised

DL-based segmentation method. To be consistent with the

supervised training method for comparison, we used the same

U-Net structure and training parameters as the supervised

DL-based segmentation method with the following

modifications. Firstly, the loss weights, i.e., the inverted

class frequencies, were updated according to the new

distribution of data for each trained 3D U-Net. Secondly, we

introduced a weighted-probabilistic training process to

compensate for the accumulated error during the label

propagations.

To reduce error propagation during training, we performed an

iteration-based probabilistic training. We assigned a different

weight to each 3D frame based on its distance from the ED and

ES frames. The closer the frame was to either the ES or ED

frame, the greater its weight. For each 3D cine image, we divided

the 30 frames into 4 sets. The ED and ES frames, which had the
frontiersin.org
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ALGORITHM 1

Label propagation strategy of the semi-supervised DL-based segmentation method. Here, k can be chosen according to the available dataset and the
amount of motion between successive 3D frames of every 3D cine image. According to the 3D cine datasets and the average motion between
successive 3D frames of every 3D cine image, we selected k = 3 for all the 3D cine training images.

Tayebi Arasteh et al. 10.3389/fcvm.2023.1167500
highest certainty of correctness for their labels, were assigned to set

number 1 (D1) and called level-1 frames. The frames that were

segmented using the first 3D U-Net of the label propagation

process were assigned to set number 2 (D2) and called level-2
FIGURE 2

Label propagation process, to generate pseudo-labels for all the intermediate
described by using one of the 3D cine datasets. (A) In the first step, the 3-neare
15, 16, 12, 11, and 10), shown in yellow, are segmented using the propagator ne
(B) In the second step, the 2-nearest neighbors of the segmented frames, from
9, and 8), shown in yellow, are segmented using the propagator network traine
and ES volume (13) and its 3-nearest neighbors (14, 15, 16, 12, 11, and 10), sh
segmented frames, from the ED volume side (4, 5, 22, and 21) and from the
the propagator network trained on the rest of the frames (3, 2, 1, 0, 29, 28
green, which concludes the segmentation of all the time frames.

Frontiers in Cardiovascular Medicine 06
frames. We followed a similar strategy in dividing the remaining

frames, until all 30 frames were assigned to a Di set where, i ∈

(1,2,3,4). Consequently, we derived a training pool ordered

according to the certainty of the annotation labels. To train the
non-annotated frames to be used during weighted-probabilistic training,
st neighbors of the ED volume (29, 0, 1, 27, 26, and 25) and ES volume (14,
twork trained only on ED volume (28) and ES volume (13), shown in green.
the ED volume side (2, 3, 24, and 23) and from the ES volume side (17, 18,
d on ED volume (28) and its 3-nearest neighbors (29, 0, 1, 27, 26, and 25)
own in green. (C) In the last step, the 2-nearest neighbors of the newly-
ES volume side (19, 20, 7, and 6), shown in yellow, are segmented using
, 27, 26, 25, 24, 23, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18), shown in
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network during each iteration, we randomly selected a 3D cine

dataset from the 74 training datasets based on a uniform

distribution. Then, we sampled two 3D volumes out of 30 frames

of the chosen 3D cine dataset. The sampling occurred based on

their certainty level (D1, D2, D3, and D4). The higher the level of

a frame, the less its weight. Consequently, the highest weights

were assigned to the D1 set, i.e., the ED and ES frames had

higher chance of getting chosen for a training batch during each

training iteration.
2.4. The all-frames supervised DL-based
segmentation method

2.4.1. Approach
To assess the effectiveness of the label propagation approach

and weighted-probabilistic training, we devised a method

involving a comparable 3D U-Net structure, as depicted in

Figure 1. We trained this network using all the ED and ES

frames from the training subjects. Afterward, we utilized the

trained network to predict all unannotated frames within the

training set, totaling 28 frames per training subject. The newly

predicted 2,072 frames (28 × 74) were then combined with the

ED and ES frames from the training subjects, resulting in a novel

training set comprising 2,220 (30 × 74) 3D frames. Finally, we

trained a new 3D U-Net structure using all frames from this

augmented training set.
2.4.2. Supervised training
We adopted a supervised learning approach to train a new 3D

U-Net, as depicted in Figure 1, using all 30 frames from the 74

training datasets. Each 3D frame, whether manually annotated

(ED and ES) or automatically annotated, was assigned an equal

probability of selection during each training iteration. This

ensured that all frames in the training datasets were treated

equally during the training process.

For optimization, we utilized the AMSGrad (44) optimizer with

a learning rate of 3 × 10−4, along with the weighted cross-entropy

loss function. The class frequencies of the training data were

inverted and used as weights during training. This approach

considered all the 2,220 frames in the training data to ensure an

effective learning process.
2.5. Quantitative evaluation of the method

As our evaluation metric, we used the “Dice score” to quantify

segmentation accuracy. The Dice score evaluates the overlap

between automated segmentation A and manual segmentation B

and is defined as,

DSC ¼ 2jA> Bj
jAj þ jBj (1)
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It is a value between 0 and 1, with 0 denoting no overlap and 1

denoting 100% overlap between the segmentation results. The

higher the Dice score, the better the agreement (9). We report

the Dice score values in percentage. In addition to the Dice score

calculation for individual structures, we used average Dice score

over the 8 cardiac structures analyzed as,

DSCtotal ¼ 1
8

X
i[s

DSCi, (2)

where, S = {AO, LV, PA, RA, SVC, IVC, LA, RV}.
2.6. Ventricular and atrial volume
measurement

We compared the ventricular and atrial volumes throughout

the cardiac cycle among the manual, supervised, and semi-

supervised segmentation results from the test datasets. We also

reported the mean volume difference and mean volume

difference expressed as a percentage over all 30 frames of the

cardiac cycle.

In addition, we reformatted the 3D cine images into a short-

axis view, creating a series of multiple 2D cine images that

covered the ventricles from base to apex. The slice thickness of

the 2D images was set at 7 mm, with no slice gap. Subsequently,

the 2D cine images were manually traced to accurately

outline the end-systolic and end-diastolic volumes of both the LV

and RV, allowing for the calculation of ejection fractions. These

calculated volumes and ejection fractions were then compared

[using intraclass correlation coefficient (ICC)] to those obtained

from the manual segmentation of 3D cine images and the

automatic segmentation of 3D cine images using supervised and

semi-supervised DL-based methods.
2.7. Statistical analysis of the method

Descriptive statistics are reported as median and range, or

mean ± standard deviation, as appropriate. Normality was tested

using Shapiro-Wilk test (46). Either a two tailed t-test or a

Wilcoxon signed-rank test (47) were used to compare two

groups of paired data with Gaussian and non-Gaussian

distributions, respectively. The two tailed t-test was used to

compare the volumetric measurements and the Wilcoxon signed-

rank test was used to compare the segmentation results in terms

of Dice score. A P-value ≤0.05 was considered statistically

significant.
2.8. Hardware

The utilized network architecture contained merely about 1.5

million parameters enabling fast and real-time segmentation of

3D volumetric images. Consequently, the hardware we used in

our experiments for training and testing the networks were Intel
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FIGURE 3

The 3D models generated from the ground truth labels (manual segmentation), the supervised, and the proposed semi-supervised DL-based
segmentation methods at end-diastole and end-systole from a 17-year-old patient with arrhythmogenic right ventricular cardiomyopathy (PAT-T11 in
normal category).
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CPUs with 8 cores and 16 GB RAM and Nvidia GPUs of RTX 2060

with 6 GB memory.
3. Results

It took approximately 10 h to train the supervised DL-based

segmentation method and 24 h to train the semi-supervised

method. Supplementary Movie Files S1–S3 show the

segmentation results of manual, supervised, and semi-supervised

segmentation methods over all time frames in one test dataset with

mild/moderate (subject PAT-T4 cf. Supplementary Table S2).

Supplementary Movie Files S4–S6 show the dynamic 3D models

of the whole-heart and great vessels from the segmentation results

of manual, supervised, and semi-supervised segmentation methods

over all time frames in the same test dataset. Figures 3–5, compare

the ground truth labels (manual segmentation), the supervised

segmentation method, and the semi-supervised segmentation

method results in three patients with normal anatomy (subject

PAT-T11 cf. Supplementary Table S2), mild/moderate (subject

PAT-T6 cf. Supplementary Table S2), and severe (subject PAT-T1

cf. Supplementary Table S2) complexity, at ED and ES frames.

Supplementary Figure S1 shows the Dice scores for 30 frames

in all the test datasets evaluating the degree of overlap between the

manual and supervised DL-based segmentation methods, and

manual and semi-supervised DL-based segmentation methods.

The semi-supervised DL-based segmentation method had a

higher average Dice score with the manual method in the

segmentation of all 8 cardiac structures across all cardiac

anatomy complexities, compared to the supervised DL-based
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segmentation method (Table 3). Supplementary Table S3

provides a comparative analysis between the proposed semi-

supervised DL-based segmentation method and the all-frames

supervised DL-based segmentation method. The results

demonstrate that the semi-supervised DL-based segmentation

method achieved significantly higher Dice scores for all

structures (P-value≤ 0.027) and across all three complexities

(P-value≤ 0.001). This indicates that the semi-supervised

approach outperforms the all-frames supervised method in terms

of segmentation accuracy.

Figure 6 compares the supervised and semi-supervised

segmentation method in delineating different structures of the

heart and great vessels over 30 frames in the cardiac cycle. As

shown in Table 3, the semi-supervised method had a significantly

higher Dice score compared to the supervised method for AO

(P-value = 0.034), PA (P-value = 0.027), RA (P-value = 0.002), SVC

(P-value = 0.008), and LA (P-value = 0.009); but not for LV

(P-value = 0.115), IVC (P-value = 0.176), and RV (P-value = 0.186).

On average over all structures, the performance of semi-supervised

DL-based segmentation method was significantly better than that

of the supervised method (P-value = 0.003).

Figures 7, 8 compare the LV and RV volumes computed from

the manual segmentation and semi-supervised segmentation

method in the test datasets. Similarly, Supplementary Figures S2,

S3 compare the LV and RV volumes computed from the manual

segmentation and supervised segmentation method in the test

datasets. As shown in Table 4, the overall mean volume difference

error between the manual and semi-supervised segmentation was

less than the mean difference error between the manual and

supervised segmentation for LV and RV.
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FIGURE 4

The 3D models generated from the ground truth labels (manual segmentation), the supervised, and the proposed semi-supervised DL-based
segmentation method at end-diastole and end-systole from a 22-year-old patient with truncus arteriosus (PAT-T6 in mild/moderate category).

FIGURE 5

The 3D models generated from the ground truth labels (manual segmentation), the supervised, and the proposed semi-supervised DL-based
segmentation method at end-diastole and end-systole cardiac frames from a 5-year-old patient with double-inlet left ventricle (PAT-T1 in severe
category).
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Figures 9, 10 compare the LA and RA volumes between the

manual segmentation and semi-supervised segmentation method,

and Supplementary Figures S4, S5 compare the LA and RA

volumes between the manual segmentation and supervised

segmentation method in the test datasets. As shown in Table 4,

the overall mean volume difference error between the manual
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and semi-supervised segmentation was less than the mean

difference error between the manual and the supervised

segmentation for LA and RA.

Table 5 presents a comparison of ventricular volumes and

ejection fractions obtained through various segmentation

methods, including manual segmentation of reformatted 2D cine
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TABLE 3 Statistical results comparing performance of the proposed semi-
supervised segmentation method with the supervised method based on
anatomic complexity category as well as structure in delineating heart
chambers and great vessels in 12 3D cine test datasets.

Dice score [%] P-value

Supervised vs.
3D manual

Semi-supervised
vs. 3D manual

Complexity
Normal 89.71 ± 7.63 93.82 ± 4.11 0.001

Mild/moderate 87.52 ± 8.75 89.88 ± 6.10 0.001

Severe 67.71 ± 22.11 72.88 ± 20.95 0.001

Structure
AO 87.19 ± 9.98 90.12 ± 6.40 0.034

LV 75.22 ± 31.50 79.22 ± 29.18 0.115

PA 76.88 ± 13.72 82.65 ± 12.49 0.027

RA 78.31 ± 26.67 83.04 ± 26.08 0.002

SVC 72.37 ± 15.32 83.92 ± 7.99 0.008

IVC 75.48 ± 9.01 78.28 ± 11.04 0.176

LA 76.84 ± 19.95 84.17 ± 11.04 0.009

RV 81.52 ± 15.31 84.48 ± 10.92 0.186

Over all structures 77.98 ± 19.64 83.23 ± 16.76 0.001

P-values corresponding to significant differences are indicated in bold.
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images, manual segmentation of 3D cine images, and both

automatic supervised and semi-supervised DL-based

segmentation methods. The results demonstrate a strong

agreement between ventricular volumes and ejection fractions

obtained from the manual segmentation of 3D cine images and

the automatic segmentation of 3D cine images using a semi-

supervised DL-based algorithm (p-value > 0.087; ICC > 0.94). The

manual 3D segmentation also exhibited good agreement with

manual 2D segmentation in measuring ventricular volumes and

ejection fractions (ICC > 0.96). However, the end-diastolic

volumes of the LV and RV, calculated from manual

segmentation of 3D cine images, were significantly larger than

those measured from manual segmentation of reformatted 2D

images (P-value < 0.05). Consequently, this difference resulted in

distinct ejection fractions when comparing manual segmentation

of 3D cine and reformatted 2D cine images (P-value < 0.05).
5. Discussion

We developed automatic supervised and semi-supervised DL-

based segmentation methods for delineating great vessels (AO,

PA, SVC, and IVC) and cardiac chambers (LV, RV, LA, and RA)

from 3D cine whole-heart CMR images acquired from patients

with a wide range of CHD lesions, based on a 3D U-Net

structure (37, 38) and benefiting from the nnU-Net (41)

configurations, one of the state-of-the-art frameworks for

volumetric segmentation. We divided the patients into 3

categories based on complexity of cardiac anatomical variations

(normal anatomy, and mild/moderate and severely complex) and

investigated the performance of the automatic DL-based

segmentation methods for each group. The semi-supervised

segmentation method performed significantly better than the

supervised method in each complexity category. However, the
Frontiers in Cardiovascular Medicine 10
performance of the supervised and semi-supervised segmentation

methods significantly decreased as anatomical complexity

increased.

On average, the semi-supervised DL-based segmentation

method outperformed the supervised DL-based segmentation

method in delineating the great vessels and heart chambers. This

likely stems from the fact that the semi-supervised segmentation

method was trained on all 30 phases in the cardiac cycle while

the supervised method was trained only on the ES and ED

cardiac phases. In order to further explore the implications of

training on all 30 frames, we compared our proposed

semi-supervised DL-based segmentation method against the all-

frames supervised DL-based segmentation method. The all-

frames supervised DL-based segmentation method was also

trained on all 30 phases without incorporating our novel label

propagation technique. As anticipated, the semi-supervised

DL-based segmentation method demonstrated significantly

superior segmentation results, thus validating its effectiveness.

This outcome could potentially be attributed to the fact that

errors would accumulate more significantly in the all-frames

supervised DL-based segmentation method for frames that are

further away from the ED and ES frames, i.e., the frames

containing manual annotations.

In subjects where there was only one ventricle, the network had

difficulties determining whether the single ventricle was

anatomically left or right, leading to a decrease in Dice scores for

either the LV or RV. Consequently, the fact that the LV and RV

Dice scores were not significantly different between the

supervised and semi-supervised methods (Table 4) could be due

to lower Dice scores for the aforementioned reason. In terms of

volume measurements, there were no significant differences

between the volumes of LV, RV, or LA calculated from manual

segmentation (reference) and semi-supervised segmentation

method. However, the volumes measured by the supervised

method were significantly different compared to manual

segmentation, except for the LA. This could be due to less

dynamic motion of LA between ED and ES frames compared to

the ventricles so that the supervised method (which was trained

only on ED and ES frames) could perform as well as the semi-

supervised method (which was trained on all 30 frames).

Like ours, previously described DL-based segmentation

approaches can perform automatic delineation of great vessels

and heart chambers. Pace et al. (25, 39) investigated the potential

of active learning to automatically solicit user input in areas

where segmentation error is likely to be high with an interactive

algorithm. The objective was to segment the great vessels and

heart chambers from static whole-heart 3D CMR images in

patients with CHD. However, their algorithm was trained on one

cardiac phase (i.e., ED phase). Since there is relatively large

cardiac motion from ED to ES frames, it is not clear how their

segmentation method would perform throughout the cardiac

cycle. Qin et al. (24) presented a DL-based segmentation method

for combined motion estimation and delineation of heart

chambers from CMR images. However, their method is

developed for 2D (not 3D) cine images. Bai et al. (48) proposed

a CMR image segmentation method which combines fully
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FIGURE 6

Dice scores comparing the performance of (A) supervised and (B) proposed semi-supervised DL-based segmentation methods in delineating heart
chambers and great vessels throughout the cardiac cycle in 12 3D cine test datasets. Confidence intervals are shown for each graph.
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convolutional and recurrent neural networks. They utilized a

nonrigid registration algorithm for label propagation that

accounts for motion of the heart in all cardiac frames. However,
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their method utilized a non-rigid registration algorithm for label

propagation as opposed to our DL-based label propagation

method. The performance of DL-based label propagation method
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FIGURE 7

Volumes of left ventricle (LV) throughout the cardiac cycle calculated from 12 3D cine test datasets using the ground truth labels (manual segmentation)
and the semi-supervised segmentation method. (A) Values are given in mL, representing absolute volumes. (B) Values are given in percentages,
representing volume differences between the manual and the semi-supervised segmentation methods, normalized to the end-diastolic volume per
subject.
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FIGURE 8

Volumes of right ventricle (RV) throughout the cardiac cycle calculated from 12 3D cine test datasets using the ground truth labels (manual segmentation)
and the semi-supervised segmentation method. (A) Values are given in mL, representing absolute volumes. (B) Values are given in percentages,
representing volume differences between the manual and the semi-supervised segmentation methods, normalized to the end-diastolic volume per
subject.
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TABLE 4 Statistical results comparing LV, RV, LA, and RA volumes computed from the manual segmentation and supervised and semi-supervised
segmentation methods in 12 3D cine test datasets using all 30 frames of the cardiac cycles.

Structure Supervised vs. 3D manual Semi-supervised vs. 3D manual

Difference [ml] Difference [%] P-value Difference [ml] Difference [%] P-value
LV 10.0 ± 15.0 21.2 ± 76.8 0.030 5.2 ± 11.8 4.0 ± 40.8 0.114

RV 8.1 ± 11.1 24.1 ± 38.7 0.017 2.4 ± 8.1 7.1 ± 18.9 0.212

LA 3.9 ± 9.0 1.9 ± 32.6 0.137 1.9 ± 5.1 4.9 ± 16.3 0.205

RA 10.1 ± 10.2 32.5 ± 52.1 0.003 4.2 ± 4.0 13.1 ± 19.5 0.003

P-values corresponding to significant differences are indicated in bold.
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needs to be compared with non-rigid label propagation methods.

Furthermore, their method was developed for segmenting only

AO. Recently, Cao et al. (30), Liu et al. (31), Hatamizadeh et al.

(32), and Chen et al. (33) have proposed further general-purpose

vision-transformer-based [Dosovitskiy et al. (36)] network

architectures for 3D medical image segmentation. However,

vision transformer architectures are known for their high

computational resource requirements which would not suit our

iterative algorithm (49). In addition, their performances have not

yet been validated on the segmentation of CMR images.

Our study has several limitations. A large number of patients

had a coronary sinus close to their RA and it was not included in

our segmentation labels due to its small size, significant motion,

and difficulty in identification and manual segmentation.

Furthermore, pulmonary veins were included in the

segmentation of LA. Consequently, future work could consider

the coronary sinus and pulmonary veins as additional structures

that may require manual segmentation for training DL-based

segmentation methods. In our manual segmentation of AO, we

allowed the descending AO to have different lengths for each

patient, as determined by the DL-based segmentation method.

Similarly, SVC and IVC have different lengths for each patient

in our manual segmentation, and for patients with an

interrupted IVC, the hepatic veins were often segmented as

IVC. We let the DL-based segmentation methods decide where

the starting point of SVC and IVC would be. Hence, the

lengths of AO, SVC, and IVC were different between the results

of manual and automatic DL-based segmentation methods

causing slightly lower Dice scores for the AO, SVC, and IVC.

In addition, we did not have a uniform number of subjects

assigned to each complexity category in the test. The test and

training datasets could have been better balanced across

complexity categories by increasing the number of patients.

Furthermore, the number of test subjects (n = 12) could be

increased. However, a major constraint in preparation of the

data was the fact that manual annotation of the 3D cine

datasets was extremely time-consuming, given that for each 3D

cine image in the test dataset, all the 30 frames needed to be

manually segmented. Cross-validation could be helpful in this

regard; however, this would require all 30 frames of training

and validation images to be manually segmented, which was

infeasible. Future work will consider increasing the number of

manually segmented datasets for training, validation, and test.

The performance of recurrent neural networks (RNN) (50–53)

in automatically segmenting the 30 time frames of cardiac cycle
Frontiers in Cardiovascular Medicine 14
in the 3D cine datasets should also be evaluated and compared

with the performance of proposed supervised and semi-

supervised DL-based segmentation methods.

Our study demonstrated the accurate segmentation of

ventricular volumes using the automatic semi-supervised DL-

based segmentation method compared to the manual

segmentation of 3D cine images. However, a bias was observed

between the manual segmentation of 3D cine images and

reformatted 2D cine images when calculating the end-diastolic

volumes of LV and RV. These biases, approximately 9 ml for LV

and 19 ml for RV, may be attributed to the challenge of

accurately delineating the atrial and ventricular cavity in the

basal region during the manual segmentation of reformatted

short-axis 2D cine images. In our future study, we plan to

investigate the underlying reasons for this bias between manual

3D segmentation and manual segmentation of reformatted 2D

images.

Finally, our DL-based segmentation methods did not take

advantage of known patient diagnoses, which could provide

significant information about the locations of great vessels and

heart chambers. For instance, in cases where there was only one

atrium (subject PAT-T9 cf. Supplementary Table S2), the

networks had difficulty assigning left or right descriptors to the

atrium present, e.g., subject PAT-T9 cf. Supplementary Table S2

did not have RA. The absence of RA had affected the

neighbouring structure, i.e., RV and the network assigned a very

small part of the RV to RA as well. Many cases of single

ventricle, dextrocardia, and common atrium resulted in the

networks mistakenly assigning LV to RV or LA to RA, leading to

a significant decrease in Dice score. For subject PAT-T2 cf.

Supplementary Table S2, which had inverted ventricles,

although the network was able to segment the ventricles almost

perfectly, it had difficulties in differentiating between LV and RV

and assigned a part of the LV to RV. In Fontan patients (subject

PAT-T9 cf. Supplementary Table S2), the networks struggled to

differentiate between the IVC and Fontan conduits, resulting in a

low Dice score. Similarly, the networks failed to accurately

identify where to stop the SVC in Glenn patients (subject PAT-

T2 cf. Supplementary Table S2). By incorporating diagnosis

information into the training and decision-making phases of the

networks, the networks’ performance in correctly assigning

segment labels could be significantly improved.

Supervised and semi-supervised DL-based segmentation

methods were presented for delineating the whole-heart and

great vessels from 3D cine CMR images of patients with different
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FIGURE 9

Volumes of left atrium (LA) throughout the cardiac cycle calculated from 12 3D cine test datasets using the ground truth labels (manual segmentation) and
the semi-supervised segmentation method. (A) Values are given in mL, representing absolute volumes. (B) Values are given in percentages, representing
volume differences between the manual and the semi-supervised segmentation methods, normalized to the largest atrial volume per subject.
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types of CHD. The performance of the semi-supervised method

was shown to be better than the supervised segmentation

technique. The semi-supervised DL-based segmentation method
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accurately delineates the heart chambers and great vessels and

can be used to calculate ventricular and atrial volumes

throughout the cardiac cycle. Such a segmentation technique can
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FIGURE 10

Volumes of right atrium (RA) throughout the cardiac cycle calculated from 12 3D cine test datasets using the ground truth labels (manual segmentation)
and the semi-supervised segmentation method. (A) Values are given in mL, representing absolute volumes. (B) Values are given in percentages,
representing volume differences between the manual and the semi-supervised segmentation methods, normalized to the largest atrial volume per
subject. PAT-T9 refers to a Fontan patient without RA.
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TABLE 5 Statistical results comparing ventricular volumes computed from the manual segmentation of reconstructed 2D cine images with the manual
segmentation of 3D cine images and automatic segmentation of 3D cine images using supervised and semi-supervised methods in 12 3D cine test
datasets.

Left ventricle (LV) Right ventricle (RV)

End-diastole
[ml]

End-systole
[ml]

Ejection fraction
[%]

End-diastole
[ml]

End-systole
[ml]

Ejection fraction
[%]

Manual (2D) 86.4 ± 51.9 31.8 ± 18.6 62.4 ± 5.6 87.0 ± 55.1 42.1 ± 27.5 47.4 ± 15.7

Manual (3D) 95.1 ± 55.1 32.0 ± 19.9 66.4 ± 7.4 106.5 ± 68.2 43.5 ± 31.8 56.4 ± 14.0

Supervised (3D) 109.2 ± 64.7 35.7 ± 26.0 71.2 ± 9.5 115.9 ± 72.6 48.8 ± 30.2 51.2 ± 15.6

Semi-supervised (3D) 104.7 ± 63.7 33.9 ± 22.7 68.4 ± 7.9 108.8 ± 67.2 43.4 ± 30.4 55.0 ± 18.3
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reduce inter- and intra-observer variability and make CMR exams

more standardized and efficient.
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