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Background: Myocardial ischemia/reperfusion injury (MIRI) refers to the more
severe damage that occurs in the previously ischemic myocardium after a
short-term interruption of myocardial blood supply followed by restoration of
blood flow within a certain period of time. MIRI has become a major challenge
affecting the therapeutic efficacy of cardiovascular surgery.
Methods: A scientific literature search on MIRI-related papers published from
2000 to 2023 in the Web of Science Core Collection database was conducted.
VOSviewer was used for bibliometric analysis to understand the scientific
development and research hotspots in this field.
Results: A total of 5,595 papers from 81 countries/regions, 3,840 research
institutions, and 26,202 authors were included. China published the most
papers, but the United States had the most significant influence. Harvard
University was the leading research institution, and influential authors included
Lefer David J., Hausenloy Derek J., Yellon Derek M., and others. All keywords
can be divided into four different directions: risk factors, poor prognosis,
mechanisms and cardioprotection.
Conclusion: Research on MIRI is flourishing. It is necessary to conduct an in-depth
investigation of the interaction between different mechanisms and multi-target
therapy will be the focus and hotspot of MIRI research in the future.

KEYWORDS

myocardial ischemia/reperfusion injury, reperfusion therapy, myocardial infarction,

mechanism, multi-target therapy, bibliometric analysis

Introduction

The heart is a vital organ in maintaining the body’s circulatory system, and the heart

muscle requires an adequate supply of blood and oxygen to maintain its function.

Myocardial infarction (MI) is a consequence of coronary artery occlusion, resulting in

irreversible damage to the myocardium due to ischemia and hypoxia, and poses a severe

threat to human health, with high rates of disability and mortality worldwide (1–3).

As early as the 1970s, Ginks et al. (4) performed myocardial ischemia-reperfusion

mapping in dogs and found that reperfusion therapy was effective in restoring blood flow

and reducing myocardial injury after MI. After years of research and observation,

reperfusion therapy such as percutaneous coronary intervention (PCI) and coronary

artery bypass grafting (CABG) have become the first-line treatment strategy for MI (5, 6).

However, it has also been found that these therapies may induce myocardial, vascular, or

electrophysiological dysfunction, leading to worsened cardiac function, and is responsible

for up to 50% of the final infarct size. This phenomenon is known as myocardial
01 frontiersin.org
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ischemia/reperfusion injury (MIRI), which reduces the efficacy of

myocardial reperfusion therapy (7–10).

Although more effective reperfusion techniques and drugs that

improve MIRI have emerged, the incidence of secondary

myocardial damage after blood flow restoration remains high due

to narrow intervention windows and individual differences in

susceptibility to reperfusion injury (11, 12). Therefore, the

pathogenesis and prevention of MIRI remain a research hotspot

in the cardiovascular field.

Bibliometrics presents the knowledge structure and frontier

trends of a research field by modern techniques to visualize

countries, institutions, authors, journals, documents and

keywords (13, 14). Therefore, we reviewed the literature on

Myocardial Ischemia-Reperfusion in the Web of Science Core

Collection (WoSCC) database to provide a reference for future

research on Myocardial Ischemia-Reperfusion.
Methods

Data sources

The data for this study was obtained from WoSCC. In order to

more accurately capture the topic, we conducted subject searches in

SCI-Expanded, SSCI, CCR-Expanded, IC, and ESCI. The search

formula for this study was set as follows: TS = (myocardial NEAR/

1 “reperfusion injur*”) OR TS = (Cardiac NEAR/1 “reperfusion
FIGURE 1

Flowchart of literature selection.
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injur*”). The search was conducted from January 1, 2000 to

January 7, 2023, with article and review types selected, and

English language limited. A total of 5,595 papers were obtained.

The results were exported in txt. format as “Full Record and Cited

References”. To prevent data deviation due to database updates,

the data search and export were completed on January 7, 2023.
Analysis method

We primarily employed VOSviewer for data visualization, in

conjunction with Excel, CiteSpace 6.1.R6, and Pajek 5.16

(15, 16). Firsty import the data into the CiteSpace software and

check the duplicate data. Second, Synonyms are modified and

merged before each visualization to show results more accurately.

Third, we selected an appropriate number of nodes and set

corresponding “Layout” parameters in VOSviewer, while leaving

other options at their default values. We select the appropriate

number of nodes for data visualization.
Results

Analysis of annual publications distribution

According to the search results, a total of 5,595 papers related

to MIRI were collected by WoSCC from January 1st, 2000 to
frontiersin.org
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January 7th, 2023, as shown in Figure 1. Among them, there were

4,732 articles and 863 reviews, with a total citation count of 160,289

(excluding self-citations), an average citation frequency of 33.51

times per article, and an h-index of 165. Figure 2 shows the

annual publication and citation volume. Overall, research related

to MIRI showed an increasing trend, with the highest number of

publications (589) and citations (24,492) in 2021.
Contribution of countries/regions

A total of 81 countries/regions participated in research on

MIRI. Table 1 and Figure 3A show the top 10 countries/regions

in terms of publication volume, as well as their citation counts,

centrality, and annual publication volume. According to the

statistics, China (2,845 papers) surpassed the United States (1,325

papers) in publication volume since 2011, followed by Germany

(305 papers), Japan (278 papers), and England (233 papers). The

United States had the highest citation count (75,508 times),

followed by China (56,807 times), England (18,535 times),

Germany (15,967 times), and Japan (13,349 times). The citation

frequency of other countries was less than 10,000. Centrality of

countries/regions is an important indicator of their importance.

From the perspective of centrality, the United States, China,

England, Italy, and Germany have high centrality and play

important roles in this field.

Figure 3B shows a visualization analysis of 52 countries/

regions with publication volume exceeding 5 papers. The size of

the nodes corresponds to the publication volume, and the lines

represent the connections between countries/regions. The

countries/regions are roughly divided into six clusters based on
FIGURE 2

Trends in the growth of publications and the number of cited papers worldw
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the degree of cooperation, which are represented by different

colors. The connections between countries/regions are mainly

focused on the cooperation between the US and other countries,

including China, Germany and Japan.
Contribution of institutions

A total of 3,840 institutions participated in research on MIRI

after merging and eliminating meaningless nodes. Statistics and

visual analysis were performed on 134 institutions with a

publication volume of more than 15. Table 2 shows the top 10

institutions by publication volume, of which 9 are from China,

but their centrality is low (<0.1). Harvard University is the only

research institution that exceeds 0.1 and has the highest citation

volume (7,372 times). It is worth noting that although University

College London has only 59 publications, it ranks third in terms

of citation volume (6,295 times). According to Figure 4A and

Figure 4B, it can be seen that European and American countries,

represented by Harvard University with relatively stable

publication volume, began research in this area earlier; while

Chinese research institutions have shown a significant fluctuating

growth trend in the past decade.

In this field, the cooperation between institutions is relatively

close and international exchanges are frequent. For example, the

Fourth Military Medical University has cooperated with other

institutions 80 times, especially with Temple University (14

times). In addition, two academic groups have been formed, one

represented by Fudan Univ, Chinese Acad Med Sci and Nanjing

Med Univ, and the other by Wuhan Univ and Huazhong Univ

Sci & Technol, as shown in Figure 4C.
ide from 2000 to 2023. The data for 2023 are not complete.
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TABLE 1 Top 10 productive countries/regions in the field of MIRI.

Rank Country/Region Publications Citations Centrality
1 CHINA 2,845 56,807 0.19

2 USA 1,325 75,508 0.31

3 GERMANY 305 15,967 0.13

4 JAPAN 278 13,349 0.01

5 ENGLAND 233 18,535 0.19

6 ITALY 182 9,002 0.16

7 CANADA 135 8,834 0.03

8 NETHERLANDS 117 6,749 0.11

9 FRANCE 109 4,486 0.1

10 AUSTRALIA 108 3,337 0.02

USA, the United States of America.

FIGURE 3

Distribution of countries/regions involved in MIRI. (A) The annual number of papers published by the top 10 countries. (B) Cooccurrence diagram of
countries/regions with more than 5 publications. The size of the nodes corresponds to the publication volume of countries/regions. The lines
represent the connections between countries/regions, and their thickness represents the link strength. Different colors represent different clusters.

TABLE 2 Top 10 productive institutions in the field of MIRI.

Rank Institution Publications Citations Centrality
1 Fourth Mil Med Univ 153 6,427 0.04

2 Wuhan Univ 127 2,969 0.05

3 Chinese Acad Med Sci 115 2,279 0.09

4 Harvard Univ 108 7,372 0.28

5 Nanjing Med Univ 98 2,145 0.03

6 Capital Med Univ 96 1,729 0.04

7 Fudan Univ 91 1,971 0.08

8 Huazhong Univ Sci &
Technol

91 1,840 0.06

9 Shanghai Jiao Tong Univ 89 2,461 0.03

10 Cent S Univ 84 1,640 0.02

Wang et al. 10.3389/fcvm.2023.1180792
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FIGURE 4

Distribution of institutions involved in MIRI. (A) The annual number of papers published by the top 10 institutions. (B) The time-overlay map of the
cooperation network among the institutions. The color of an item is determined by the average year, where colors range from blue (2000y) to green
to yellow (2023y). (C) Cooccurrence diagram of institutions with more than 15 publications. The size of the nodes corresponds to the publication
volume of institutions. The lines represent the connections between institutions, and their thickness represents the link strength. Different colors
represent different clusters. (continued)
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Authors and co-cited authors

Over the past 20 years, a total of 26,202 authors have

participated in research related to MIRI. Among them, 168

authors with more than 10 publications were selected for

visualization analysis. The largest number of papers was

published by Lefer, David J. and Xia, Zhengyuan (45), followed

by Gao, Erhe and Yang, Jian (42). The most co-cited author was
Frontiers in Cardiovascular Medicine 05
Yellon, Derek M. (6,774), followed by Hausenloy, Derek

J. (6,601), as shown in Table 3.

The collaboration among the authors of MIRI-related literature

was displayed in VOSviewer. The same cluster often represents

close collaboration and provides information for finding research

partners. Several academic groups with relatively fixed

collaborations have emerged in this field, as shown in Figure 5A.

Furthermore, we can see that academic groups represented by
frontiersin.org
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Continued.
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Xia Zhengyuan, Gao Erhe, Yang Jian have more frequently with the

outside world, while academic groups represented by Lefer David

J. and Schulz Rainer are relatively isolated.

When two or more authors are cited by the same article, a co-

citation relationship exists. The size of the node in the map

represents the total frequency of co-citation. The larger the node,

the more frequently it is co-cited, indicating greater influence in

the field. Figure 5B shows that the research hotspots of the

authors are highly homogeneous. The authors are mainly divided
TABLE 3 Top 10 productive authors and co-cited authors in the field of MIR

Rank Author Publication Country Institution

1 Lefer David J. 45 USA Louisiana State University H
Sciences Center New Orlean

2 Xia
Zhengyuan

45 Hong Kong,
China

University of Hong Kong

3 Gao Erhe 42 USA Pennsylvania Commonweal
of Higher Education

4 Yang Jian 42 China China Three Gorges Univer

5 Yang Yang 38 China Fourth Mil Med Univ

6 Schulz Rainer 33 Germany Univ Giessen

7 Hausenloy
Derek J.

31 ENGLAND University of London

8 Zhang Jing 30 China Fourth Mil Med Univ

9 Yellon Derek
M.

29 ENGLAND University of London

10 Ma Xinliang 28 USA Jefferson University

Frontiers in Cardiovascular Medicine 06
into 4 clusters: Hausenloy Derek J, Heusch Gerd etc. (blue); Bolli

Roberto, Zhao ZQ etc. (green); Zhou Hao, Zhang Y etc. (red);

Halestrap AP, Murry CE etc. (yellow).
Highly co-cited references

Co-citation analysis is a dynamic process that changes over

time. It is used to study the internal connections between
I.

Co-cited
Author

Citation Country Institution

ealth
s

Hausenloy, Derek
J.

2,100 ENGLAND University of London

Heusch, Gerd 1,180 Germany University of Duisburg
Essen

th System Yellon, Derek M. 944 ENGLAND University of London

sity Bolli Roberto 592 USA Univ Louisville

Zhao Zq 536 USA Emory Univ

Zhou, Hao 482 China Chinese Peoples Liberat
Army Gen Hosp

Kloner Ra 468 USA University of Southern
California

Frangogiannis Ng 459 USA Albert Einstein Coll Med

Zhang Y 445 China Peking Univ

Ferdinandy, Peter 393 Hungary Univ Szeged

frontiersin.org
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FIGURE 5

Distribution of authors involved in MIRI. (A) Cooccurrence diagram of authors. with more than 10 publications. The size of the nodes corresponds to the
publications by the author, and the connections between the nodes reflect the collaboration relationship. Different colors represent different clusters. (B)
Cooccurrence diagram of co-cited authors. The size of the node in the map represents the total frequency of co-citation. The larger the node, the more
frequently it is co-cited.

Wang et al. 10.3389/fcvm.2023.1180792
literature and depict the dynamic structure of scientific

development.

The top 10 co-cited papers, totaling 11 papers, are listed in

Table 4. In addition, 94 papers with co-citations exceeding 60

times were subjected to visual analysis, where the size of the

nodes was proportional to the number of co-citations (Figure 6).
Frontiers in Cardiovascular Medicine 07
The papers were divided into three clusters. The green cluster

was led by “Mechanisms of disease: Myocardial reperfusion

injury” (Yellon DM, 2007), with the highest number of co-

citations (631 times). It mainly described four types of cardiac

dysfunction caused by reperfusion injury, and summarizes the

reasons for the discrepancies in outcomes of single-target
frontiersin.org
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TABLE 4 Top 10 co-cited references.

Rank Title Author Year Journal IF
1 Mechanisms of disease: myocardial reperfusion injury Yellon, Derek M. 2007 NEW ENGLAND JOURNAL OF MEDICINE 176.082

2 Myocardial ischemia-reperfusion injury: a neglected therapeutic target Hausenloy, Derek J. 2013 JOURNAL OF CLINICAL INVESTIGATION 19.477

3 Preconditioning with ischemia: a delay of lethal cell injury in ischemic
myocardium

Murry, Charles E. 1986 CIRCULATION 39.922

4 Inhibition of myocardial injury by ischemic postconditioning during
reperfusion: comparison with ischemic preconditioning

Zhao, ZQ 2003 AMERICAN JOURNAL OF PHYSIOLOGY-
HEART AND CIRCULATORY PHYSIOLOGY

5.125

5 Evolving Therapies for Myocardial Ischemia/Reperfusion Injury Ibanez, Borja 2015 JOURNAL OF THE AMERICAN COLLEGE OF
CARDIOLOGY

27.206

6 Mechanisms underlying acute protection from cardiac ischemia-
reperfusion injury

Murphy, Elizabeth 2008 PHYSIOLOGICAL REVIEWS 46.513

7 Ischemia and reperfusion-from mechanism to translation Eltzschig, Holger K. 2011 NATURE MEDICINE 87.244

8 Myocardial reperfusion: a double-edged sword? Braunwald, Eugene 1985 JOURNAL OF CLINICAL INVESTIGATION 19.477

9 New directions for protecting the heart against ischaemia-reperfusion
injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway

Hausenloy, Derek J. 2004 CARDIOVASCULAR RESEARCH 14.239

10 Distinct roles of autophagy in the heart during ischemia and reperfusion—
roles of AMP-activated protein kinase and Beclin 1 inmediating autophagy

Matsui, Yutaka 2007 CIRCULATION RESEARCH 23.218

10 Effect of cyclosporine on reperfusion injury in acute myocardial
infarction

Piot, Christophe 2008 NEW ENGLAND JOURNAL OF MEDICINE 176.082

Wang et al. 10.3389/fcvm.2023.1180792
interventions for MIRI in animal models and clinical studies. The

study also confirmed new strategies to prevent lethal reperfusion

injury by reperfusion injury salvage kinase (RISK) pathway and

mitochondrial permeability transition pore (mPTP) (1).

The red cluster was led by “Myocardial ischemia-reperfusion

injury: a neglected therapeutic target” (Hausenloy DJ, 2013),

with the highest number of co-citations (529 times). The

article identified four recognized forms of MIRI, namely,

reperfusion-induced arrhythmias, myocardial stunning,
FIGURE 6

Cooccurrence diagram of references with co-citations exceeding 60 times. Th
and the link reflects the cooccurrence relationship. The color of the node rep

Frontiers in Cardiovascular Medicine 08
microvascular obstruction (MVO), and lethal myocardial

reperfusion injury. It discussed in detail pathological

mechanisms such as oxidative stress, calcium overload, pH

value correction, mPTP, inflammation, and cell apoptosis, as

well as new therapies. However, the article did not affirm the

view that MI area would increase with prolonged reperfusion

time. In addition, the study confirmed the position of cardiac

magnetic resonance (CMR) imaging in the diagnosis and

efficacy evaluation of MIRI (17).
e size of the node indicates the cooccurrence frequencies of references,
resents the respective cluster.
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The blue cluster was led by “Preconditioning with ischemia: a

delay of lethal cell injury in ischemic myocardium” (Murry CE,

1986), followed by “Inhibition of myocardial injury by ischemic

postconditioning during reperfusion: comparison with ischemic

preconditioning” (Zhao ZQ, 2003) with 322 and 238 co-citations,

respectively. The former was proposed by Murry et al. (18) using

a canine model, which found that multiple brief ischemic

episodes over a period of time could protect the heart from

subsequent sustained ischemic injury, thereby introducing the

concept of ischemic preconditioning. The latter, proposed by

Zhi-Qing Zhao et al. (19), compared the effects of ischemic

postconditioning and ischemic preconditioning and demonstrated

that both were equally effective in reducing infarct size and

protecting endothelial function.
TABLE 5 Top 20 keywords in the field of MIRI.

Rank Keywords n Rank Keywords n
1 MIRI 2,918 11 heart 205

2 myocardial ischemia 734 12 ROS 203

3 apoptosis 700 13 diabetes mellitus 162

4 MI 612 14 PI3K/AKT 158

5 cardioprotection 431 15 NO 150

6 oxidative stress 395 16 H/R injury 120

7 inflammation 336 17 antioxidants 112

8 cardiac myocytes 261 18 cardiovascular diseases 105

9 mitochondria 224 19 heart failure 102

10 autophagy 212 20 ER stress 91
Distribution of journals

The dual-map overlay of journals reveal the relatives position

of the topic of study to the main research disciplines. Each point

on the map represents a journal, with the citation graph on the

left and the cited graph on the right. The curve represents the

validation line, with different colors representing different

citation relationships.

Figure 7 identifies three main paths, indicating that papers

published in the “4 Molecular Biology, Biology, and Immunology”

journal primarily reference papers in the fields of “8 Molecular

Biology, Biology, and Genetics” and “5 Health, Nursing, and

Medicine”. In addition, papers published in journals such as “8

Molecular Biology, Biology, and Genetics” are also commonly

cited in papers in the “2 Medicine, Medicine, and Clinical” field.

Currently, research on MIRI is mainly focused on clinical and

molecular biology aspects.
FIGURE 7

The dual-map overlay of journals. Each node on the map represents a journa
curve represents the validation line, with different colors representing differen
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Analysis of research hotspots

The keywords summarize the research topic of a paper and can

be used to analyze the research hotspots and directions in the field

of MIRI. Before visualization, synonyms (e.g., salvia miltiorrhiza

and danshen), different spellings (e.g., ischemia, ischemic, and

ischaemic), abbreviations (eg, IL-6 and interleukin-6), and singular/

plural forms (e.g., arrhythmia and arrhythmias) should be merged.

In VOSviewer, the keyword threshold was set at 15, resulting in a

total of 142 keywords. The most frequent keyword was “MIRI”

(2,918 times), followed by “myocardial ischemia” (734 times) and

“apoptosis” (700 times), as shown in Table 5. These keywords can

be divided into four different directions: (1) keywords related to

risk factors are diabetes mellitus, hyperlipidemia, hypertension, and

aging; (2) keywords related to poor prognosis, such as arrhythmia,

myocardial stunning, cardiac function, and heart failure; (3) the

study of pathological and physiological mechanisms mainly revolves

around cell death, oxidative stress, inflammation, endoplasmic

reticulum and mitochondria, non-coding RNAs (miRNA, lncRNA),

and biomarkers, involving hot signaling pathways such as the PI3K/
l, with the citation graph on the left and the cited graph on the right. The
t citation relationships.
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FIGURE 8

VOSviewer overlay visualization of keywords. Each column represents a cluster, and the color represents the average time. The closer the blue item is, the
earlier it appears.

Wang et al. 10.3389/fcvm.2023.1180792
AKT pathway, Nf-κB pathway, and TLRs signaling pathway; (4)

the main treatment-related keywords are cardiac protection,

ischemic preconditioning, ischemic postconditioning, melatonin,

dexmedetomidine, resveratrol, and Danshen, among others.

In the overlay visualization of keyword time series (Figure 8),

each column represents a cluster, and the color represents the

average time. The closer the color is to blue, the more frequently

the keyword appeared in the early stage, and the closer to yellow,

the more frequently the keyword appeared in recent years, which

can reflect the research hotspot in a field to some extent. Keywords

such as ferroptosis (2021.472), pyroptosis (2021.095), NLRP3

(2020.4), lncRNA (2020.25), mitochondrial dynamics (2020.2353),

exosomes (2019.9643), mitophagy (2019.804), sirtuins (2019.7273),

and necroptosis (2019.6522) have been frequently appearing in

recent years, indicating that they are hotspots in the field of MIRI

in recent years. It is worth noting that traditional Chinese medicine

(TCM) (2019.2727) has gradually attracted attention worldwide for

its role in treating MIRI. Representative drugs and effective

ingredients include danshen, berberine, flavonoids and so on.
Discussion

General distribution

In terms of publications, the quantity of papers on myocardial

ischemia- reperfusion injury has surpassed 100 papers per year
Frontiers in Cardiovascular Medicine 10
since 2003. Since 2021, it has further increased to over 500 papers

per year, indicating that research on MIRI remains a major focus

in the cardiovascular field. Among them, the total number of

papers published in China is more than 2,850, accounting for

more than half of the total publication output. Especially since

2013, the number of publications has rapidly increased, indicating

that research on MIRI has received increasing attention from the

Chinese in the past decade. However, there is still a problem of

insufficient influence. As one of the earliest institutions to begin

research on myocardial ischemia reperfusion injury, the United

States is another country with more than 1,000 publications, with

the highest centrality. Among the top 10 most co-cited authors, 4

are from the United States.

In terms of cooperative relationships, frequent collaborations

exist between countries/regions and institutions. For example,

European and American academic institutions represented by

Harvard University and University College London, and Chinese

academic institutions represented by Fudan University and the

Chinese Academy of Medical Sciences, all maintaining frequent

collaborative relationships with other institutions.
Hotspots and frontiers

In risk factors
In risk factors, the most common keywords related to MIRI are

diabetes mellitus, hyperlipidemias, hypertension, and aging, all of

which have been reported to be associated with MIRI (20–23).
frontiersin.org
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Diabetes mellitus is a common comorbidity in cardiovascular disease

patients and increases the risk of cardiovascular disease by 2–4 times

compared to non-diabetic patients (24, 25). However, the

controversy remains as to whether it increases the susceptibility of

the heart to ischemia-reperfusion injury (26). In the co-morbidity

study of MIRI and diabetes mellitus, a popular target is AMPK,

which has been found to improve cardiovascular complications

related to diabetes mellitus by stimulating AMPK. The mechanism

mainly involves the downregulation of AMPK in the heart tissue

of animals and humans with type 2 diabetes mellitus or metabolic

syndrome, leading to energy metabolism disorder, aggravated

inflammation, and intensified cellular autophagy, apoptosis,

ferroptosis, and necroptosis pathways (27–30).

In addition, MVO as a potentially preexisting risk factor

worsens within minutes after reperfusion and persists for at least

1 week (31), resulting in myocardial damage due to inadequate

perfusion, known as the “no-reflow” phenomenon (32–34).

Approximately 50% of acute MI patients experience ischemia-

reperfusion injury in cardiac microvascular endothelial cells

(CMECs), which is the main factor leading to the final infarct

size and adverse cardiovascular outcomes (35, 36).

On the prognosis
On the prognosis, research indicates that reperfusion injury

accounts for up to 50% of the final myocardial damage in acute

MI (37). Common sequelae of reperfusion injury include heart

failure, remodeling, arrhythmias, and myocardial stunning, which

are consistent with our survey results.

Acute ST-segment elevation myocardial infarction (STEMI)

patients who undergo primary PCI are prone to develop

ventricular arrhythmias following ischemia-reperfusion injury,

which are usually easily managed or self-terminated (38). The

underlying cause may be related to the instability of action

potential resulting from the inability of mitochondria to recover or

maintain their inner membrane potential after prolonged ischemia

(39–41). Moreover, this phenomenon is more common and severe

in elderly female rats (42), which may be associated with the

decline of estrogen receptors and antioxidant activity in their

myocardium, rather than the decrease in serum estrogen levels (43).

Myocardial stunning refers to systolic and diastolic dysfunction

in patients with acute myocardial ischemia after reperfusion, and

the severity is proportional to the duration of ischemia (17). The

mechanism of myocardial stunning is relatively mature. It mainly

attributes to the massive formation of reactive oxygen species and

calcium overload in cardiomyocytes and microvascular endothelial

cells after reperfusion, which leads to endothelial dysfunction and

decreased responsiveness to calcium in the excitation-contraction

coupling mechanism. However this process is entirely reversible

and generally lasts for several hours or days (44–46).

Infarct size is the main determinant of patient prognosis, and

MIRI may further increase the infarct size (47, 48). There are

two recognized forms of irreversible MIRI: MVO and lethal

myocardial reperfusion injury (17, 49, 50). In the early stages of

MI, ventricular compensatory mechanisms are activated, and

cardiac function remains normal or slightly reduced. As the

infarct size expands and non-infarcted areas remodel, the risk of
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developing heart failure or death remains high (51, 52). A

questionnaire survey involving 850 patients showed that 2 out of

every 5 patients had heart failure-related quality of life

impairment after MI, causing a significant social and economic

burden (53).

Regarding the mechanisms
Regarding the mechanisms, we found that the research fields

with higher output focus on regulated cell death, oxidative stress,

inflammatory response, non-coding RNA, as well as

mitochondrial and endoplasmic reticulum stress. They form an

intertwined association between different pathways that affect

MIRI by regulating common pathway molecules. As the main

type of cell death during reperfusion, regulated cell death plays

an important role in the pathogenesis of MIRI (54). In our

VOSviewer visualization, apoptosis has received the most

attention. Nevertheless, non-apoptotic forms of regulated cell

death, such as ferroptosis, pyroptosis, necroptosis, and autophagy

have increasingly received the attention of researchers in recent

years. They can operate alone or coexist with other forms of cell

death, thereby playing a role in the enlargement of infarct size

and the deterioration of heart function caused by ischemia-

reperfusion (26, 55). The generation of reactive oxygen species

(ROS) is the central pathogenic mechanism of MIRI. Ferroptosis

is an iron overload and iron-dependent ROS accumulation

process, and its regulatory mechanisms involve multiple signaling

pathways and metabolic pathways, especially the glutathione

peroxidase 4 (GPX4) axis (10, 26, 56). During myocardial

ischemia-reperfusion, the increase in intracellular free iron levels

and the decrease in GPX4 activity lead to the massive release of

ROS within myocardial cells, causing lipid peroxidation (57–60).

In addition, under the chemotactic effect of ROS, neutrophils

accumulate in infarcted myocardial tissue several hours after

reperfusion, and ferroptosis also promotes this process through

Toll-like receptor 4-dependent signaling pathways, triggering

harmful inflammatory responses and ultimately leading to cell

death (17, 61). Studies have shown that this process mainly

occurs during the reperfusion phase of MIRI rather than the

ischemic phase (62, 63). It has been found that ferroptosis can be

effectively inhibited by ferrostatin 1, liproxstatin 1, iron chelators,

and antioxidants during reperfusion, which can protect against

myocardial injury, reduce infarct size, and improve cardiac

function in acute or chronic MIRI (62, 64–69).

Pyroptosis is a highly inflammatory form of cell death

contributing to ischemia-reperfusion injury when overactivated.

After reperfusion, the increased levels of calcium ions and ROS

lead to the formation of NLRP3 inflammasomes that activate

caspases, initiating the pyroptotic pathway (26, 70). On the hand,

activated caspase-1/11 can activate Gasdermin D (GSDMD), a

pore-forming protein that mediates cell death, increasing cell

permeability and resulting in cell lysis typically (71–73). On the

other hand, activated caspases cleave IL-1β and IL-18, releasing

them outside the cell through GSDMD membrane pores, further

triggering inflammation (26, 74). However, Shi et al. (75) found

that caspase-11 may be the only pathway to trigger pyroptosis in

cardiac myocytes. They also demonstrated that knocking out the
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1180792
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Wang et al. 10.3389/fcvm.2023.1180792
GSDMD gene significantly reduced the levels of LDH and IL-18

after hypoxia/reoxygenation, and reduced the area of MI induced

by ischemia-reperfusion in mice.

Necrosis has long been considered an uncontrolled form of cell

death, but it has been found to occur in a regulated manner as well,

known as necroptosis. Necroptosis involves the activation of the

RIPK1/RIPK3/MLKL pathway and is recognized as another major

programmed cell death type in MIRI now (76, 77). The process

involves ischemia and oxidative stress-induced cardiac injury, as

follows: the classical necroptotic pathway is usually initiated by the

phosphorylation of RIPK1, which further phosphorylates RIPK3.

The complex formed by RIPK1 and RIPK3 can induce MLKL

oligomerization and translocation to the plasma membrane,

leading to Ca2+ or Na+ ion influx and directly forming a pore,

releasing damage-associated molecular patterns and causing

membrane rupture (78, 79). However, RIPK3-induced myocardial

necrosis can also occur independently of RIPK1 (80). When MIRI

occurs, RIPK3 can be directly activated. Then through the RIPK3-

CaMKII or RIPK3-PGAM5-CypD cascade, promoting the opening

of the mPTP and participating in multiple signaling pathways that

induce myocardial death (26, 81–84).

Multiple studies prove autophagy is primarily a pro-survival

mechanism during short-term ischemia and hypoxia (9, 85).

When the supply of oxygen and nutrients to cardiomyocytes is

reduced and ATP is depleted quickly, the AMPK/mTOR pathway

is activated (86, 87). At this time, cardiomyocytes utilize

autophagy to degrade excessive or potentially dangerous cytosolic

entities, such as damaged organelles or misfolded proteins, and

acquire metabolic substrates to increase ATP production (88, 89).

At the same time, an appropriate level of autophagy can reduce

ROS production, decrease NLRP3-related inflammatory responses,

and decrease other types of cell death, including necroptosis and

apoptosis (90). However, research indicates that autophagy plays a

dual role in MIRI, depending on the degree of its activation (91,

92). Unlike the ischemic phase, ROS accumulation is deemed the

primary factor affecting autophagic flux during the reperfusion

phase (93, 94). Elevated levels of ROS during reperfusion cause

the opening of the mitochondrial permeability transition pore

(MPTP), which promotes ROS release, activates Bnip3 (95–97),

and induces the expression of the autophagy-related protein

Beclin1 (93, 98). In normal conditions, the anti-apoptotic protein

Bcl-2 binds to Beclin1, preventing autophagy. However, this

balance could be disrupted by Bnip3, promoting autophagosome

formation and increasing the autophagy rate (99, 100), eventually

leading to cell death caused by excessive degradation of cellular

components (54). Nevertheless, some perspectives propose that

ischemia-reperfusion injury is associated with deficiencies in

autophagosome-lysosome fusion (88, 101), which lead to cell

death by impaired clearance of autophagosomes.

As an entrance to molecular regulators, non-coding RNAs

(including miRNAs, lncRNAs, circRNAs) affect cellular function

through targeting various molecules in signalling pathways and

have been widely studied in cardiovascular disease (102, 103).

Among them, miRNAs are the most widely studied ncRNAs.

Elevated levels of ROS can cause DNA damage and regulate

miRNAs, which can negatively regulate gene expression by
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inducing mRNA degradation or inhibiting their translation (104,

105). Previous studies have shown that during MIRI, miR-29c and

miR-125a are significantly downregulated (106, 107), while miR-

135b-3p is upregulated (108), playing roles in promoting autophagy

and ferroptosis, respectively. In vivo/in vitro experiments showed

that modulation of miR-1, miR-126, miR-140-3p, miR-214-5p,

miR-125b and miR-24 could exert anti-apoptotic effects (109–114).

Regulation of miR-133a, miR-15 exert anti-apoptotic effects (115–

117). Moreover, miRNAs can bind to several mRNA molecules,

allowing them to play multiple cellular functions. For example,

miR-29b binds to PTEN. Its overexpression can reduce PTEN

expression level and increased the protein levels of p-Akt/Akt and

p-eNOS/eNOS, thereby exerting Anti-oxidative stress, Anti-

inflammatory and Anti-apoptosis effects (118). MiR-125a-5p targets

KLF13, TGFBR1, and DAAM1, promoting M2 macrophage

polarization, inhibiting fibroblast proliferation and activation, and

promoting angiogenesis, subsequently improving myocardial cell

apoptosis and inflammation (107). Table 6 provides a summary of

some important miRNAs. Table 6 provides a summary of some

important miRNAs.

Cardioprotection
MI commonly causes two processes of myocardial injury, the

first occurring during ischemia and the second possibly after

reperfusion. The following treatment strategies can be

summarized in light of these two processes. The first is

mechanical ischemic conditioning, including brief ischemia-

reperfusion cycles in the heart or tissues away from the heart,

which can be achieved by ischemic preconditioning or

postconditioning methods (138–141).

The second strategy involves drug therapy proven to protect the

myocardium. For patients with pre-existing coronary artery disease,

long-term and standardized treatment has been shown to effectively

prevent major adverse cardiovascular events (MACE). Such as

aspirin and ticagrelor, which can prevent reperfusion injury when

given before reperfusion and effectively limit the area of MI (142,

143). The protective effect of simvastatin on contractile function in

acute MIRI models may be related to the inhibition of the RhoA/

ROCK pathway. Research shows SGLT2 inhibitors can alleviate

the damage of MI in diabetic and non-diabetic hearts (144–146),

reduce MIRI by inhibiting cardiomyocyte autophagy and

protecting mitochondrial function, and reduce cardiovascular

mortality and heart failure (HF) rehospitalization rate of patients

after myocardial ischemia-reperfusion by targeting multiple

pathways (26, 146–148). Nicorandil is widely used in the

treatment of coronary heart disease and has a dual effect as a

nitric oxide (NO) donor and increases cell membrane permeability

to potassium ions. It has been shown to alleviate oxidative stress,

inflammation, and apoptosis induced by ischemia-reperfusion

(149, 150). A recent randomized double-blind controlled trial

showed that nicorandil administered before primary PCI could

improve the myocardial perfusion grade and increase the ejection

fraction, and reduce myocardial infarct size in patients with ST-

segment elevation MI (151). In addition, the soluble guanylate

cyclase (sGC) stimulator vericiguat has been shown to reduce

MIRI by improving microcirculation (152). Moreover, there are
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TABLE 6 The regulatory role of MicroRNAs in MIRI.

MicroRNAs Species Expression Targeted genes Mechanism Refs.
miR-1 rat ↓ Hsp90aa1 Pro-apoptosis (109)

miR-125a rat/H9c2 ↓ DRAM2 Anti-oxidative stress, Anti-autophagy (107)

miR-125a-5p mice ↓ KLF13, TGFBR1, DAAM1 Anti-inflammatory, Anti-apoptosis (119)

miR-125b rat ↓ SIRT7 Anti-apoptosis (113)

miR-126 rat ↑ ERRFI1 Anti-apoptosis (110)

miR-128 mice/H9c2 ↓ Plk2 Anti-apoptosis (120)

miR-128 rat/H9c2 ↓ TXNIP Anti-oxidative stress, Anti-apoptosis (121)

miR-128-1-5p rat/H9c2 ↓ Gadd45g Anti-apoptosis (122)

miR-129 rat/H9c2 ↓ PTEN Anti-apoptosis (123)

miR-129 cardiomyocytes ↓ TLR4 Anti-inflammatory (124)

miR-129-5p H9c2 ↓ TRPM7 Anti-inflammatory, Anti-apoptosis (125)

miR-129-5p rat ↑ HMGB1 Anti-apoptosis (126)

miR-133a rat/H9c2 ↓ ELAVL1 Anti-pyroptosis (116)

miR-133a rat/H9c2 ↓ IGF1R Anti-apoptosis (115)

miR-135b-3p rat/H9c2 ↑ GPX4 Pro-Ferroptosis (108)

miR-138 mice ↓ EGR1 Anti-inflammatory (127)

miR-138-5p mice ↓ Ltb4r1 Anti-inflammatory (128)

miR-140 mice ↓ YES1 Anti-apoptosis (129)

miR-140-3p H9c2 ↓ PTEN Anti-oxidative stress, Anti-apoptosis (111)

miR-15b-5p rat/H9c2 ↑ Sirt3 Anti-pyroptosis (117)

miR-155-5p mice ↑ JAK2/STAT1 Pro-inflammation (130)

miR-155-5p mice ↑ NEDD4 Pro-apoptosis (131)

miR-181a-5p cardiomyocytes ↑ ADCY1 Pro-pyroptosis (132)

miR-182-5p rat/H9c2 ↑ STK17A Pro-oxidative stress (133)

miR-21 mice ↓ SPP1 Anti-oxidative stress, Anti-inflammatory, Anti-apoptosis (134)

miR-214-5p mice ↓ FASLG Anti-apoptosis (112)

miR-24 rat/H9c2 ↑ Keap1 Anti-apoptosis (114)

miR-29b rat/H9c2 ↓ PTEN Anti-oxidative stress, Anti-inflammatory, Anti-apoptosis (118)

miR-29b-3p rat/H9c2 ↓ HMCN1 Anti-oxidative stress, Anti-fibrosis, Anti-apoptosis (135)

miR-29c mice ↓ PTEN Anti-autophagy (106)

miR-30b mice ↓ CypD Anti-necrosis (136)

miR-486 mice ↓ PTEN, FoxO1 Anti-apoptosis (137)
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increasing studies and reports on the use of single or compound

traditional Chinese medicine in the prevention and treatment of

MIRI (153, 154). Resveratrol can reduce oxidative stress levels, Fe2

+ content and inhibit ferroptosis induced by ischemia-reperfusion

(155). Yang et al. (156) first reported that neocryptotanshinone

can promote autophagolysosome clearance of protein aggregates

via the ERK1/2-Nrf2-LAMP2 pathway, exerting therapeutic

advantages for MIRI. Other Chinese medicines and effective

ingredients, such as Madder, Calenduloside E, and Tubeimoside I,

can also reduce infarct size and alleviate MIRI through different

mechanisms, such as reducing inflammation, oxidative stress, or

inhibiting cell death (157–159).

Thirdly, with the advancement of technology, research on novel

therapeutic methods such as nanomedicine has gradually been

carried out. Compared to free drugs, nanomedicine has better

therapeutic effects and safety, attributed to its multifunctional

carrier selection, targeted and controlled drug release, and

improved bioavailability (160). Currently, common nanocarriers

include liposomes (161–163), polymer nanoparticles (164, 165),

inorganic nanoparticles (166) and extracellular vesicles (167–169).

Carvedilol, a nonselective β-blocker, was encapsulated into platelet

membrane vesicles (PMVs). Targeted administration of

PMVs@Carvedilol may be a promising treatment for myocardial
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reperfusion injury, as it significantly improves postinjury cardiac

function and increases drug utilization compared to other delivery

methods (170). MicroRNAs use exosomes as a carrier to enable

cell-to-cell communication (171). As previously mentioned, MIRI

is often accompanied by abnormal expression of miRNAs.

Enrichment of specific miRNAs by mesenchymal stem cell-

secreted extracellular vesicles has shown promising results in

regulating miRNA levels in cardiomyocytes in various preclinical

experiments, making it a potential therapeutic approach (102,

172). It is worth noting that some miRNAs are dysregulated in

multiple cardiovascular diseases. Therefore, selecting miRNAs that

are dysregulated throughout the entire disease process leading to

MIRI may have a stronger therapeutic effect. At the same time, it

is essential to consider the safe and effective translation of

preclinical experiments to clinical practice.
Limitations

Firstly, this study’s bibliometric analysis only includes papers in

the WoSCC database, while other databases such as PubMed,

Cochrane library, and Google Scholar are excluded. However, it

should be noted that WoSCC is widely recognized as one of the
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most authoritative scientific literature search platforms, covering the

vast majority of research on MIRI and still maintaining a certain

degree of representativeness. Secondly, papers published in recent

years are rarely cited, which may lead to the omission of some

recently published papers with significant contributions when

analyzing highly co-cited papers, indicating the necessity of

updating future research. In addition, changing job positions or

using different names within the same institution during an

author’s career can also have a significant impact on research results.
Conclusion

Using information visualization techniques, we have attempted

to elucidate the research progress, hot topics, and frontiers in MIRI

over the past two decades. Although the annual publication output

in China has far exceeded that in the United States in recent years,

its academic influence is far behind. In addition, we have identified

scholars, institutions, and representative literature that play

important roles in this field. Keyword analysis shows that the

main research direction is the pathogenesis of MIRI and

corresponding protective strategies, with ferroptosis and

pyroptosis as the latest hot topics.
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