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Background: ST-segment elevation myocardial infarction (STEMI) patients are at a
high residual risk of major adverse cardiovascular events (MACEs) after
revascularization. Risk factors modify prognostic risk in distinct ways in different
STEMI subpopulations. We developed a MACEs prediction model in patients with
STEMI and examined its performance across subgroups.
Methods: Machine-learning models based on 63 clinical features were trained in
patients with STEMI who underwent PCI. The best-performing model (the iPROMPT
score) was further validated in an external cohort. Its predictive value and variable
contribution were studied in the entire population and subgroups.
Results:Over 2.56 and 2.84 years, 5.0% and 8.33% of patients experienced MACEs in
the derivation and external validation cohorts, respectively. The iPROMPT score
predictors were ST-segment deviation, brain natriuretic peptide (BNP), low-density
lipoprotein cholesterol (LDL-C), estimated glomerular filtration rate (eGFR), age,
hemoglobin, and white blood cell (WBC) count. The iPROMPT score improved the
predictive value of the existing risk score, with an increase in the area under the
curve to 0.837 [95% confidence interval (CI): 0.784–0.889] in the derivation cohort
and 0.730 (95% CI: 0.293–1.162) in the external validation cohort. Comparable
performance was observed between subgroups. The ST-segment deviation was the
most important predictor, followed by LDL-C in hypertensive patients, BNP in
males, WBC count in females with diabetes mellitus, and eGFR in patients without
diabetes mellitus. Hemoglobin was the top predictor in non-hypertensive patients.
Conclusion: The iPROMPT score predicts long-term MACEs following STEMI and
provides insights into the pathophysiological mechanisms for subgroup differences.
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1. Introduction

Despite the improvement in prognosis achieved by reopening occluded vessels via

percutaneous coronary intervention (PCI), patients with ST-segment elevation

myocardial infarction (STEMI) are at a high risk of subsequent major adverse

cardiovascular events (MACEs) (1, 2). The Global Registry of Acute Coronary Events
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(GRACE) risk score, which includes age, systolic blood pressure,

heart rate, serum creatinine concentration, Killip class, cardiac

arrest, elevated cardiac biomarkers, and ST-segment deviation,

is a guideline-recommended risk stratification tool for patients

with STEMI that is used to determine short-term prognosis

(3). However, vital in patients with STEMI is the long-term

prognosis, with 7.9%–10.1% of patients experiencing MACEs

within 1 year (2, 4). Between 6 months and 2 years after

myocardial infarction (MI) onset, cardiac mortality accounts

for half of the total mortality, whereas cardiovascular death

due to reinfarction (median 8 months) is the most frequent

cause of mortality (5). The prediction of long-term

prognosis is critical for risk stratification and disease

management in patients with STEMI who undergo PCI. After

revascularization, patients with STEMI experience a series of

pathophysiological changes, including inflammation,

neuroendocrine deregulation, coagulation abnormalities, and

metabolic alterations, leading to long-term MACEs (1).

Therefore, long-term prediction models based on the

pathophysiological processes that follow STEMI are needed.

STEMI represents a heterogeneous disease that originates

from a complex interaction between genetic and

environmental factors. The prognosis of STEMI varies among

patients and is largely dependent on risk factors (6). Previous

studies have demonstrated that multiple risk factors and their

interactions are associated with the long-term prognosis of

patients with STEMI treated with primary PCI (7, 8). Patients

with STEMI who are stratified into subgroups according to

these risk factors have distinct clinical profiles, resulting in

different MACEs risks (9–11). Therefore, additional subgroup-

specific evaluation to predict the long-term prognosis of patients

following STEMI is required to achieve effective management in

different patient subgroups.

Early assessment and risk stratification during the acute

phase of STEMI are essential. Clinical and biochemical

characteristics can be obtained rapidly after admission at both

primary and tertiary hospitals. These indicators reflect

inherent pathophysiological processes and can be instrumental

in predicting the long-term risk of MACEs in patients with

STEMI (12). Numerous correlated clinical variables are

considered, which adds to the complexity of the assessment

and the difficulty in making decisions about individual

patients. To overcome these limitations, data-driven

approaches using machine learning (ML) algorithms have been

proposed. These algorithms can process and learn from large,

complex, and multidimensional clinical data to develop

effective predictive models (13).

In this study, we aimed to design an accurate prediction model

that incorporates variables that are readily available in clinical

practice to assess the individual risk of long-term MACEs in

patients with STEMI who undergo PCI. Moreover, we aimed to

assess the model performance and variable contribution in

various subgroups stratified by different risk factors to broaden

the understanding of the pathophysiological processes following

STEMI, especially in specific subgroups.
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2. Materials and methods

2.1. Study design and participants

The retrospective cohort with 1,007 STEMI patients who

underwent PCI was designated as the derivation cohort to

develop the ML models. The retrospective cohort was obtained

from the Coronary artery disease database of Beijing Anzhen

Hospital from August 2018 to August 2019 (Supplementary

Figure S1). To assess the performance of the ML models, an

external validation cohort of 240 patients with STEMI who

attended the First Hospital of Ji Lin University from January

2014 to January 2017 was included. These patients were

identified from the Registry Study of Genetics and Biomarkers of

Acute Coronary Syndrome (ARSGB-ACS, NCT03752515). The

study protocol conformed to the ethical guidelines of the 1975

Declaration of Helsinki as reflected in a priori approval by the

human research committee of Beijing Anzhen Hospital. In the

present study, we reported our findings following the guidelines

of the Transparent Reporting of a Multivariable Prediction

Model for Individual Prognosis or Diagnosis (TRIPOD)

statement (14). Data were routinely collected from the electronic

medical records database by a multicenter research platform.

All patients aged >18 years with a definite discharge diagnosis

of STEMI who underwent PCI were included. The diagnostic

criteria followed the Joint European Society of Cardiology/

American College of Cardiology Foundation/American Heart

Association/World Heart Federation Task Force for the Universal

Definition of Myocardial Infarction (15). Patients with in-

hospital death; abnormal left ventricular function [left ventricular

ejection fraction (LVEF) of ≤30%]; severe kidney dysfunction

[estimated glomerular filtration rate (eGFR) of ≤30 ml/min]; or

missing data on LVEF, eGFR, or GRACE score were excluded.

The study inclusion and exclusion criteria are summarized in

Supplementary Figure S1.
2.2. Outcomes

The primary outcome was MACEs, including all-cause

mortality, non-fatal MI, and non-fatal ischemic stroke. We

obtained outcome data from patient visits, medical records, and

telephone interviews. A total of 136 patients without available

follow-up information due to lack of contact information or

withdrawal were excluded.
2.3. Feature selection and data
preprocessing

We selected reliable and easily collectable candidate risk factors

that were present before or during the index hospitalization based

on literature reviews. Sixty-three candidate variables were collected,

including clinical characteristics, echocardiographic parameters,
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and laboratory indices. As the availability of brain natriuretic

peptide (BNP) and N-terminal proBNP (NT-proBNP)

concentration analyses differ between institutions, BNP and NT-

proBNP concentrations were log-transformed and converted

using a previously cited formula (16), as follows: log BNP =

0.28 + 0.66 × log NT-proBNP. The GRACE risk score was used

(3, 17). Data quality control was performed before data analysis,

and missing values were imputed using multiple imputations

with 10 imputations (missing values are shown in

Supplementary Tables S1, S2). The final imputed value was an

average of 10 imputations.
2.4. Model development and validation

The derivation cohort was randomly split into the training

[n = 705 (70%)] and testing [n = 302 (30%)] datasets (Figure 1).

The model was trained on each imputed training dataset. The

forward stepwise, backward stepwise, Least Absolute Shrinkage

and Selection Operator (LASSO) regression and XGBoost

methods were used to screen the variables, and the logistic

regression analysis was used for modeling. Continuous variables

were modeled with restricted cubic splines to relax the

assumption of the linear effect and flexibly allow for non-linear

effects. Receiver operating characteristic (ROC) curves and the
FIGURE 1

Analysis overview for identifying best-performing risk prediction model. AU
discrimination index.
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area under the ROC curve (AUC) were used to estimate model

discrimination. We compared the diagnostic performance

between the selected model and the GRACE score by calculating

the AUC, net reclassification improvement (NRI), and integrated

discriminatory index (IDI). The model calibration was further

explored by comparing the predicted and observed probabilities

across predicted risk quintiles. The decision curve analysis

(DCA) was also performed to estimate the clinical usefulness and

benefits. The model with the best performance and

comprehensive evaluation in both the training and testing

datasets was chosen for further external validation in the

validation cohort.
2.5. Subgroup analysis and variable
contribution in the model

Subgroup analyses were conducted based on prespecified

covariates, including sex, hypertension, and diabetes mellitus.

The importance of a selected variable describes how much the

variable contributes to the improvement in the model, which was

assessed by examining the decrease in the AUC of the fitted

model when the test variable was replaced. A greater decrement

in the AUC was considered to indicate a greater contribution of

the replaced variable to the model performance.
C, area under the curve; NRI, net reclassification index; IDI, integrated
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TABLE 1 Clinical characteristics between MACEs group and non-MACEs
group.

Non-MACEs
(N = 957)

MACEs
(N = 50)

P value

Demographic characteristic
Male gender, n (%) 791 (82.7%) 33 (66.0%) 0.003

Age, years 57.31 ± 10.86 65.88 ± 11.25 <0.001

BMI, kg/m2 25.86 ± 3.16 25.14 ± 3.12 0.153

Admission status
SBP, mmHg 121.43 ± 17.59 125.78 ± 19.48 0.128

DBP, mmHg 74.49 ± 11.46 74.64 ± 14.39 0.944

Heart rate, bpm 73.22 ± 11.62 77.02 ± 17.19 0.128

ST-segment deviation, n (%) 311 (32.5%) 33 (66.0%) <0.001

Killip classification, n (%)

1 833 (87.0%) 39 (78.0%) 0.33

2 93 (9.72%) 8 (16.0%)

3 9 (0.94%) 1 (2.00%)

4 22 (2.30%) 2 (4.00%)

Cardiac arrest, n (%) 18 (1.88%) 2 (4.00%) 0.295

Multivessel disease, n (%) 714 (74.6%) 36 (72.0%) 0.806

Personal history
Hypertension, n (%) 543 (56.7%) 39 (78.0%) 0.003

Diabetes mellitus, n (%) 300 (31.3%) 21 (42.0%) 0.115

Hyperlipidemia, n (%) 840 (87.8%) 46 (92.0%) 0.37

Prior myocardial infarction, n (%) 61 (6.37%) 3 (6.00%) 1

Prior CVD, n (%) 109 (11.4%) 8 (16.0%) 0.321

Prior ischemic stroke, n (%) 64 (6.69%) 9 (18.0%) 0.007

Atrial fibrillation, n (%) 27 (2.82%) 3 (6.00%) 0.183

Prior PCI, n (%) 70 (7.31%) 5 (10.0%) 0.412

Prior CABG, n (%) 6 (0.63%) 0 (0.00%) 1

Smoking, n (%) 510 (53.3%) 17 (34.0%) 0.008

Laboratory tests
cTnI, ng/L 0.78 (0.05–11.6) 2.63 (0.10–12.0) 0.418

CK-MB, ng/ml 56.17 ± 93.23 48.74 ± 73.73 0.497

BNP, pg/ml 213.02 ± 240.81 396.29 ± 349.84 0.02

Urea, mg/dl 6.03 ± 3.45 6.83 ± 3.35 0.109

eGFR (CKD-EPI) 95.57 ± 15.14 82.95 ± 19.83 <0.001

Creatinine, μmol/L 76.5 (65.8–87.4) 79.5 (67.8–103) 0.075

ALT, U/L 39.99 ± 36.93 29.96 ± 24.20 0.007

AST, U/L 61.90 ± 75.42 54.68 ± 61.42 0.427

Plasma sodium, mmol/L 139.20 ± 5.05 138.68 ± 3.11 0.269

Plasma potassium, mmol/L 4.12 ± 0.45 4.21 ± 0.45 0.186

Plasma chloride, mmol/L 100.59 ± 3.82 101.12 ± 4.37 0.404

HbA1c, % 6.58 ± 1.56 6.79 ± 1.58 0.406

Fasting glucose, mmol/L 8.53 ± 5.94 9.32 ± 3.92 0.185

Total cholesterol, mmol/L 4.36 ± 1.12 4.08 ± 1.21 0.125

Triglyceride, mmol/L 1.82 ± 1.46 1.77 ± 2.14 0.86

HDL-C, mmol/L 1.01 ± 0.25 1.00 ± 0.29 0.659

LDL-C, mmol/L 2.71 ± 0.94 2.41 ± 0.74 0.009

Homocysteine, mmol/L 15.96 ± 9.04 17.14 ± 8.18 0.369

Uric acid, μmol/L 360.42 ± 97.47 355.74 ± 114.90 0.779

White blood cell count, n/dl 9.03 ± 2.94 8.94 ± 3.59 0.864

Red blood cell count, n/dl 4.85 ± 4.15 4.47 ± 0.61 0.017

Platelet, n/dl 238.19 ± 66.19 240.76 ± 59.49 0.768

Hemoglobin, g/L 146.91 ± 15.47 137.08 ± 18.76 0.001

Neutrophil count, n/dl 6.65 ± 2.87 6.58 ± 3.35 0.883

Lymphocyte count, n/dl 1.79 ± 0.73 1.75 ± 0.79 0.719

hsCRP, mg/L 4.60 (1.63–15.2) 11.7 (2.46–25.0) 0.021

(continued)

TABLE 1 Continued

Non-MACEs
(N = 957)

MACEs
(N = 50)

P value

Imaging variables
Ejection fraction, % 55.22 ± 8.46 53.74 ± 10.11 0.315

LVEDi, mm 48.82 ± 4.95 48.60 ± 5.92 0.799

For continuous variables, non-normal variables were expressed as the median

[interquartile range (IQR)], and normal variables were expressed as the mean

[standard deviation (SD)]. Categorical variables are expressed in N (%). P≤ 0.05

was considered statistically significant. BMI, body mass index; SBP, systolic blood

pressure; DBP, diastolic blood pressure; PCI, percutanous coronary intervention;

CABG, coronary artery bypass grafting; cTnI, cardiac troponin I; CK-MB, creatine

kinase MB; BNP, B-type natriuretic peptide; eGFR, estimate glomerular filtration

rate; ALT, alanine aminotransferase; AST, aspartate aminotransferase; HDL-C,

high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol;

HbA1c, glycated hemoglobin A1c; hsCRP, high sensitive C reaction protein;

LVEDi, left ventricle end-diastolic volume index.

Chen et al. 10.3389/fcvm.2023.1181424
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2.6. Statistical analysis

Categorical variables are presented as percentages. Normally

distributed continuous variables are presented as the mean

(standard deviation), while non-normally distributed continuous

variables are presented as the median (interquartile range).

Continuous variables were compared using the bilateral

independent t-test or the Wilcoxon rank-sum test, while

categorical variables were compared using the chi-square test or

Fisher’s exact test. We analyzed the predictor variable effects

using the odds ratio values and beta coefficients in the model. In

addition, a web-based dynamic nomogram was developed

(Supplementary Figure S4). Statistical analyses were performed

using Stata 16.1 (Stata Corp., College Station, TX, US) and R

v4.0.3 (R Foundation for Statistical Computing, Vienna, Austria;

packages: pROC, PredictABEL, ggDCA, rms, DynNom, Shiny).
3. Results

3.1. Baseline characteristics

After applying the inclusion and exclusion criteria, 1,007

patients were included in the derivation cohort. During the

median follow-up period of 2.56 years, 50 patients (5.0%)

experienced MACEs, including 30 patients (3.0%) with all-cause

death, 9 patients (0.9%) with non-fatal MI, and 11 patients

(1.09%) with non-fatal stroke.

Patients were divided into two groups according to their

clinical outcomes during follow-up. Compared with the non-

MACEs group, the MACEs group had a greater burden of

cardiovascular risk factors, including older age, and a higher

prevalence of smoking, hypertension, and ischemic stroke.

Moreover, these patients experienced a greater injury at onset.

Descriptive statistics for the continuous and categorical variables

are summarized in Table 1.
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3.2. Predictor variables and ML model
construction

The risk prediction models were developed using XGBoost,

forward stepwise, backward stepwise, and LASSO regression in

the training dataset. Overall, all models yielded good

discrimination (AUC: 80.3%–85.1% and 74.7%–81.9% in the

training and testing datasets, respectively). The model

performance is displayed in Supplementary Figure S1 and

Supplementary Table S3. The best-performing model (the

iPROMPT score) was established based on the features selected

by the LASSO algorithm.
3.3. Performance of the iPROMPT score in
the derivation cohort

The iPROMPT score demonstrated good predictive value, with

an improvement in the AUC compared with the GRACE risk score

{from 0.736 [95% confidence interval (CI): 0.667–0.805] to 0.839

[95% CI: 0.786–0.892]} in the entire derivation cohort (P = 0.001,

Figure 2A). The iPROMPT score also demonstrated better

reclassification [NRI = 0.872 (95% CI: 0.616–1.127), P < 0.001;

IDI = 0.067 (95% CI: 0.036–0.097), P < 0.001; Supplementary
FIGURE 2

Performance evaluation of iPROMPT score and GRACE score in derivation coh
curve analysis. The accuracy for MACEs between the iPROMPT score and the
cohort (D). (B,E) The calibration plot shows the relationship between the obs
the in derivation cohort (B) and external validation cohort (E). (C,F) DCA
previous model. AUC, area under the curve; GRACE, the Global Registry of
events; DCA, decision curve analysis.
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Table S4]. Calibration plots showed acceptable agreement

between the iPROMPT score prediction and the actual

observation in the derivation cohort (Figure 2B). Furthermore,

we established a decision analysis curve to assess the net benefit

to the decision, observing a higher net benefit of the iPROMPT

score at all threshold probabilities (Figure 2C).
3.4. Variable importance and their
association with MACEs

To further ascertain how each variable contributed to the

model, we assessed the variable importance according to the

decrement in the AUC when the variable was replaced

(Figure 3A). Seven variables were included in the iPROMPT

score, including ST-segment deviation, BNP concentration, low-

density lipoprotein cholesterol (LDL-C) concentration, eGFR,

age, hemoglobin concentration, and white blood cell (WBC)

count, which were ranked in descending order of importance.

The regression-adjusted association of continuous risk factors

with MACEs following STEMI helped to interpret the complex

ML models (Figures 3B–G). The risk increased with age and

decreased with LDL-C concentration. However, the negative

correlation observed between the eGFR and MACEs risk
ort and external validation cohort. (A,D) Receiver-operating characteristic
GRACE risk score in the in derivation cohort (A) and external validation
erved and predicted proportion of events, grouped by quintile of risk in
curves for validating the clinical utility of the iPROMPT score and the
Acute Coronary Events risk score; MACEs, major adverse cardiovascular
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FIGURE 3

Association between continuous predictors and MACEs and importance
of selected variables in iPROMPT. (A) The contribution of each selected
variables in the iPROMPT score. (B–G) Regression-adjusted effects of
selected continuous covariates in iPROMPT showed their association
with MACEs following STEMI. The top of each figure shows the
observed values of the continuous risk predictor among STEMI
patients in the derivation cohort who experienced MACEs and the
bottom shows the observed values of the predictor among those who
did not experience MACEs. MACEs risk increased with age (B) and
decreased LDL-C (C). MACEs risk declined with eGFR (D), and
plateaued at over 100 ml/min/1.73 m2. (E) The risk associated with log
(BNP) remained flat and increased when log(BNP) >5. The U-shaped
association observed between hemoglobin (F), and WBC (G) and
MACEs. AUC, area under the curve; BNP, B-type natriuretic peptide;
eGFR, estimate glomerular filtration rate; WBC, white blood cell count.

Chen et al. 10.3389/fcvm.2023.1181424
plateaued at an eGFR of >100 ml/min/1.73 m2. In contrast, the risk

remained stable at log-transformed BNP concentration less than or

equal to 5, and was inversely associated with MACEs risk as the

slope increased. The association between the hemoglobin

concentration and MACEs risk was U-shaped. Moreover, with an

increase in the WBC count, MACEs risk increased initially and
Frontiers in Cardiovascular Medicine 06
gradually decreased until leveling out at a WBC count of >12 ×

109/L.
3.5. Performance and variable contribution
in subgroups

Relevant risk factors, including sex, hypertension, and diabetes

mellitus, were not included in the model. Thus, we conducted

subgroup analyses based on these covariates. The performance of

the iPROMPT score across predetermined subgroups was

comparable (Figure 4A).

In each subgroup, the relative importance ranking of the variables

was displayed in an alluvial plot (Figures 4B–D). The ST-segment

deviation was the most important variable for risk prediction in

both sexes, followed by the WBC count and eGFR in female

patients, and BNP concentration and hemoglobin concentration in

male patients. Hemoglobin concentration, WBC count, and eGFR

showed a greater contribution in non-hypertensive patients, while

ST-segment deviation and LDL-C concentration were more

important predictors in patients with hypertension. Similar to sex

stratification, ST-segment deviation was the top contributor in the

subgroup stratified by diabetes mellitus. Compared with patients

without diabetes mellitus, the WBC count, BNP concentration, age,

and hemoglobin concentration were better predictors in patients

with diabetes mellitus, but this was not the case for eGFR and

LDL-C concentration. All aforementioned subgroup analysis results

are shown in Supplementary Table S5.
3.6. Performance of the iPROMPT score in
the external validation cohort

For external validation, we analyzed 240 patients with STEMI

who attended the First Hospital of Jilin University. Of these

patients, 20 (8.33%) experienced MACEs over the 2.84-year

follow-up period. Several differences existed in clinical

characteristics between the external validation and derivation

cohorts (Supplementary Table S6).

Patients in the external validation cohort were assessed using the

iPROMPT score. As expected, the iPROMPT score demonstrated

improved model performance than the GRACE risk score [increase

in the AUC to 0.730 (95% CI: 0.611–0.849), P = 0.010; NRI = 0.727

(95% CI: 0.293–1.162), P = 0.001; IDI = 0.062 (95% CI: 0.020–

0.103), P = 0.004; Figure 2D]. When stratified by quintiles of event

probability, similar predicted and observed frequencies indicated

good score calibration (Figure 2E). Furthermore, the DCA showed

higher clinical utility of the iPROMPT score in the external

validation cohort (Figure 2F).
3.7. Development of the online dynamic
nomogram

For physicians and patients alike, a web-based tool would be

attractive to avoid tedious and time-consuming calculation. Thus,
frontiersin.org
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FIGURE 4

Performance and relative importance of variables in subgroups. (A) Forest plot for AUC and 95% confidence interval depicting overall discriminative
efficacy of the iPROMPT score across pre-determined subgroups; (B–D) Alluvial plot of predictors for prognosis prediction identified by variables’
contribution in sex (B), hypertensive (C) and diabetic subgroup (D). AUC, area under the curve; BNP, B-type natriuretic peptide; eGFR, estimate
glomerular filtration rate; WBC, white blood cell count.

Chen et al. 10.3389/fcvm.2023.1181424
we built a web-based calculator (https://rebaccacwy.shinyapps.io/

iPROMPTscore/) to predict MACEs risk in individual patients

with STEMI (Supplementary Figure S4).
4. Discussion

In this study, seven practical variables were identified from

routine clinical data to develop an ML-based risk prediction model

(the iPROMPT score). The iPROMPT score demonstrated

improved performance than the GRACE risk score in predicting

MACEs following STEMI in the entire cohort and in subgroups.

Moreover, distinct contributions of the selected variables among sex,

hypertension, and diabetes mellitus subgroups were observed. To

improve the clinical utility, we constructed a personalized and user-

friendly web-based nomogram to help physicians with earlier

individualized management in patients with STEMI.
4.1. Selected variables mirror critical
pathophysiological processes following
STEMI

The iPROMPT score uses seven clinical variables, including

ST-segment deviation, BNP concentration, LDL-C concentration,

eGFR, age, hemoglobin concentration, and WBC count, which
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are routinely assessed and readily available from electronic

medical records. The chosen variables included in the iPROMPT

score may mirror underlying pathological processes following

STEMI, including cardiac injury, aging, renal damage, metabolic

disorder, neuroendocrine deregulation, and inflammation,

amongst others.

ST-segment deviations caused by loss of the cell membrane in

the injured myocardium (18) had the greatest contribution in our

model. Of note, ST-segment deviations are essential in

standardized guidelines for the diagnosis of myocardial ischemia,

the assessment of ischemia severity, and the prognosis evaluation

(19). Consistent with a previous report (20), we demonstrated

that age is a risk factor for MACEs prediction in patients with

STEMI. Previous studies have demonstrated that renal

dysfunction is an important risk factor after acute MI (21). We

selected eGFR as a key index of renal function, which was

corrected for age and sex, and more objectively replaced the

creatinine concentration evaluated in the GRACE score.

The predictive value of the hemoglobin concentration in MI

prognosis has been reported (22, 23). Here, a similar U-shaped

association between the hemoglobin concentration at admission

and MACEs following STEMI was observed (24). A reduction in

the hemoglobin concentration lowers the oxygen-carrying

capacity of the blood, which is compensated for by an increase

in cardiac output (25). Such compensatory mechanisms are

partly regulated by sympathetic activation (26), which is
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detrimental in patients with coronary artery disease. In addition, as

cardiac output increases, mortality increases following left

ventricular systolic dysfunction. Moreover, hemoglobin scavenges

endogenous nitric oxide, leading to vasoconstriction and

cardiovascular complications (27). In addition, excess cell-free

hemoglobin is toxic because of its pro-oxidant and pro-

inflammatory activity (28).

BNP and its counterpart NT-pro-BNP are neurohormones that

are synthesized predominantly in the ventricular myocardium, and

increases in their concentration reveal cardiac neurohormonal

activation after myocardial damage (26). As an important

indicator of cardiac function, a higher BNP concentration reflects

impaired ventricular function and indicates the degree of

myocardial injury (29). Consistent with previous reports, a

higher BNP concentration upon admission is a powerful

prognostic marker associated with an increased risk of MACEs

following STEMI.

A U-shaped relationship was observed between the WBC

count and long-term MACEs after STEMI. Leukocytes carry

information about systemic inflammation, and MI triggers an

intense inflammatory response that is essential for cardiac repair.

However, exaggerated inflammation is detrimental to cardiac

repair. Excessive inflammation indicated by increased leukocytes

is harmful in patients with STEMI. Several hypotheses

underlying such associations have been postulated such as

leukocyte-mediated microcirculatory malperfusion (30), excessive

thrombus formation (31), and indirect cardiotoxicity through

pro-inflammatory cytokines (32).

Elevated LDL-C is a well-established risk factor for

cardiovascular disease. However, despite having a higher LDL-C

at admission, patients paradoxically had better outcomes, which

is supported by previous reports (33). Such paradoxes may be

explained by the following factors. First, lipid concentrations are

significantly influenced by body mass index, presenting a similar

“obesity paradox” (34, 35), which is largely explained by reverse

causation. Second, low LDL-C reflects a poor nutritional status,

which is associated with a decline in functional performance or

increased frailty (36). Third, LDL-C is critical for cell membrane

synthesis, and an extremely low LDL-C concentration is harmful

to cell survival (37). Meanwhile, the greater sympathetic activity

triggered by acute MI directly provokes hydrolyzation of

lipoprotein triglycerides by activated lipoprotein lipase (38). In

addition, inflammation-induced lipid reduction underlies the

lipid paradox postulated in previous studies (39).
4.2. The iPROMPT score provides
complementary information to
pre-existing models

The ML algorithms provided additional pathophysiologic

information to the standard regression analysis alone. The

variables included in the iPROMPT score overlapped with

the predictors in previous models. Additional parameters in the

iPROMPT score that describe pathways, such as WBC count

(inflammatory response), hemoglobin concentration, and BNP
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concentration (neurohormonal activation), provide

complementary information to the GRACE score. Recently

D’Ascenzo and colleagues proposed an ML-based predictive

model for acute coronary syndrome (ACS) (the PRAISE score)

that stratifies patients according to ischemic and bleeding risk (40).

Hemoglobin concentration, age, and eGFR emerged as overlapping

features in both the iPROMPT and PRAISE scores and

demonstrated critical processes for recurrent ischemic events.

Nevertheless, the PRAISE score was developed based on a

heterogeneous population of patients with ACS, in whom complete

revascularization as a covariate increased the risk of ischemic

events. We focused on the prediction in patients with STEMI

undergoing PCI to understand the residual risk after

revascularization. Several investigations have focused on risk

stratification in patients with STEMI using ML algorithms (41, 42).

Nevertheless, only a few studies have focused on the long-term

risk following MACEs (43, 44). An ML model to predict 1-year

mortality after acute STEMI was developed and

outperformed the existing risk score, with an AUC of 0.84 (95%

CI: 0.798–0.872) (43). The model included 12 clinical features that

did not represent a valid simplification in clinical decision-making

Conversely, the iPROMPT score can be computed with only seven

variables that are largely available in routine clinical practice and

that yield comparable performance.
4.3. Performance differences in the
iPROMPT score among subgroups

Given that STEMI patients who are stratified into subgroups

according to traditional risk factors, including sex, hypertension,

and diabetes mellitus, have distinct clinical profiles, resulting in

different MACEs risks. Whereas those risk factors, including sex,

hypertension, and diabetes mellitus, were not included in the

model. We further evaluated the performance of the iPROMPT

score in subgroups defined by confirmed risk factors, including

sex, hypertension, and diabetes mellitus. We identified distinct

contributions of the selected variables across subgroups, which

implicated different pathophysiological processes in prespecified

subgroups.

According to previous studies, the prognosis of women with

MI is worse than that of men (45, 46). However, the underlying

mechanisms explaining the increase in the cardiovascular

vulnerability of women are not yet understood. The adverse

effects of estrogen withdrawal on cardiovascular health probably

act via alterations in body fat distribution, endothelial

dysfunction, vascular inflammation, and sympathetic tone (45).

Such processes may correlate with the eGFR and/or WBC count,

which were of higher importance in female patients in our

subgroup analysis. In addition, emotional stress-induced

amygdalar activity leading to upregulated inflammatory states

negatively affects myocardial function and perfusion in a sex-

dependent manner (47). Moreover, a detrimental association

between inflammation and adipose tissue has been speculated to

underlie worse outcomes in women (48, 49).
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Antecedent hypertension, which is a well-established

cardiovascular risk factor, is associated with adverse outcomes in

acute MI survivors. The clustering of traditional cardiovascular risk

factors, including hypercholesterolemia, partly explains the higher

risk of hard endpoints in hypertensive patients with STEMI (10).

LDL-C concentration revealed cardiometabolic disturbances and

showed great importance in hypertensive patients with STEMI in

the present study. A higher diastolic pressure leads to abundant

collateral circulation with a subsequent improvement in reperfusion

efficacy and limited myocardial salvage (49). Moreover,

microvascular damage within culprit arteries is a mechanism

underpinning the poor prognosis of hypertensive patients after

acute MI (50). The resolution of ST-segment deviation as a marker

of microvascular recovery (51) is associated with better outcomes

after STEMI. Therefore, it is no surprise that ST-segment deviation

had great importance in the hypertensive subgroup.

Compared with patients without diabetes mellitus, the WBC

count, BNP concentration, age, and hemoglobin concentration

suggested that inflammatory, neuroendocrine, and aging

pathways are essential in patients with diabetes mellitus after

acute STEMI onset. Increasing evidence suggests that diabetes

mellitus is associated with vascular inflammation (52). A positive

correlation between fasting glucose and BNP concentrations has

been reported previously (53). As speculated, a higher plasma

glucose concentration may induce a hypertonic state, increase

ventricular tension, increase BNP concentration, and eventually

accelerate neurohormonal changes after acute STEMI (53). Aging

is a primary risk factor for diabetes mellitus (54), and accelerated

aging may worsen the prognosis of patients with STEMI. The

role of hemoglobin has been discussed above; however, chronic

hyperglycemia in patients with diabetes mellitus can result in

abnormal erythrocytes, oxidative stress, and sympathetic

denervation of the kidney related to autonomic neuropathy (55),

resulting in impaired erythropoietin production and changes in

hemoglobin.
5. Strengths

Our findings highlight that the iPROMPT score, which uses

fewer routinely assessed clinical variables, provides individual

MACEs risk prediction in patients following STEMI, and has

incremental prognostic value to the GRACE score. Although

comparable performance between subgroups was observed, the

variable importance ranking highlights the distinct contributions

of cardiac injury (ST-segment deviation), age, hemoglobin

concentration, renal damage (eGFR), metabolic disorder (LDL-C

concentration), neuroendocrine deregulation (BNP concentration),

and inflammation (WBC count) in different subgroups. Such data

are valuable for planning of specific patient follow-ups and

counseling. Furthermore, clinical variables included in the

iPROMPT score are common in clinical practice and can be

obtained rapidly after admission at both primary and tertiary

hospitals. We constructed a web-based dynamic nomogram for

the iPROMPT score, which avoids tedious calculations and

potentially encourages the use of the model in clinical practice.
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Therefore, the clinician could pay close attention to patients with

high MACEs risk evaluated by iPROMPT score and provide more

frequent follow-up visits to improve their outcomes.
6. Limitations

Despite the significance of the findings, this study has some

limitations that should be noted. First, although the patients

included in this study were enrolled from two centers and the

iPROMPT score was validated externally, further validation in a

larger cohort is required for a higher level of confidence. Second,

this study was retrospective; therefore, prospective studies should be

performed in the future. Finally, only variables that are readily

available in clinical practice were used in this study, and some

potentially relevant variables, such as novel multi-omics biomarkers,

could further improve the predictive power of the model.
7. Conclusion

In conclusion, we developed the iPROMPT score using readily

available clinical variables to predict MACEs in patients following

STEMI. The iPROMPT score demonstrated incremental prognostic

value over the established GRACE risk score. We also observed

comparable model performance and distinct contributions of

selected variables in predetermined subgroups, which aids the

understanding of the pathophysiological processes involved in

different subgroups.
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