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TRABD2A locus to be associated
with carfilzomib-related
cardiotoxicity among patients with
multiple myeloma
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Background: Proteasome inhibitor Carfilzomib (CFZ) is effective in treating
patients with refractory or relapsed multiple myeloma (MM) but has been
associated with cardiovascular adverse events (CVAE) such as hypertension,
cardiomyopathy, and heart failure. This study aimed to investigate the
contribution of germline genetic variants in protein-coding genes in CFZ-CVAE
among MM patients using whole-exome sequencing (WES) analysis.
Methods: Exome-wide single-variant association analysis, gene-based analysis,
and rare variant analyses were performed on 603,920 variants in 247 patients
with MM who have been treated with CFZ and enrolled in the Oncology
Research Information Exchange Network (ORIEN) at the Moffitt Cancer Center.
Separate analyses were performed in European Americans and African
Americans followed by a trans-ethnic meta-analysis.
Results: The most significant variant in the exome-wide single variant analysis was
a missense variant rs7148 in the thymosin beta-10/TraB Domain Containing 2A
(TMSB10/TRABD2A) locus. The effect allele of rs7148 was associated with a
higher risk of CVAE [odds ratio (OR) = 9.3 with a 95% confidence interval of 3.9
—22.3, p= 5.42*10−7]. MM patients with rs7148 AG or AA genotype had a higher
risk of CVAE (50%) than those with GG genotype (10%). rs7148 is an expression
quantitative trait locus (eQTL) for TRABD2A and TMSB10. The gene-based
analysis also showed TRABD2A as the most significant gene associated with
CFZ-CVAE (p= 1.06*10−6).
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Conclusions: We identified a missense SNP rs7148 in the TMSB10/TRABD2A as associated
with CFZ-CVAE in MM patients. More investigation is needed to understand the underlying
mechanisms of these associations.
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1. Introduction

Multiple Myeloma (MM) is a malignancy of the plasma cells.

According to yearly incidence rates and prevalence figures, it ranks

third among hematologic cancers in the United States (1).

Proteasome inhibitors (PIs) are one of the most effective drugs for

the treatment of MM and are the backbone therapies for MM

treatment (2). Three PIs have been approved by the United States

Food and Drug Administration: bortezomib, carfilzomib, and

ixazomib (3). Carfilzomib (Kyprolis®) is a second-generation,

irreversible PI approved for treating relapsed and refractory MM

due to its survival benefit and overall response rate in refractory

MM patients (4, 5). The National Comprehensive Cancer Network

(NCCN) Guideline recommends carfilzomib-based therapy for

newly diagnosed MM patients with pre-existing neuropathy or

high-risk patients and patients with relapsed and refractory disease

(6). Despite its effectiveness, carfilzomib (CFZ) has been shown to

have significant cardiovascular adverse events (CVAE) (20%–25%),

including 7.2% incident HF, in the clinical trials that excluded

patients with pre-existing cardiovascular disorders (7). In the

previous two meta-analyses studies, CFZ was associated with a

high incidence of CVAE (8%–18%) (2, 3) including hypertension,

heart failure, cardiomyopathy, and arrhythmia (8, 9). The rate of

CVAE was even higher (∼50%) in an observational study when

MM patients with pre-existing cardiovascular conditions were not

excluded (10). A severe clinical implication developed from this

cardiotoxicity is treatment interruption, which could lead to

disease progression (11).

Studies have shown that early detection of and early intervention

for cardiotoxicity induced by other therapies (i.e., anthracyclines,

Trastuzumab) can improve long-term outcomes (12, 13).

Therefore, stratifying patients before the carfilzomib treatment

might provide opportunities for early intervention to optimize

patient outcomes. Pharmacogenomics, or the identification of

genetic determinants of drug response and adverse effects, is a tool

that has been useful in individualizing medication therapy (14,

15). This study aims to identify germline genetic variants in

protein-coding genes associated with CFZ-CVAE in MM patients

using whole-exome sequencing (WES) analysis.
2. Material and methods

2.1. Patients

Patients included in this study were admitted to the Moffitt

Cancer Center’s Total Cancer Care (TCC) Protocol with IRB
02
approval (MCC#14690; Advarra IRB Pro00014441) (16). Patients

consented to contribute blood specimens and medical

information for research purposes in collaboration with the

Oncology Research Information Exchange Network (ORIEN), a

network of seventeen cancer centers that have agreed to

implement a common TCC biospecimen collection protocol to

follow patients throughout their lifetime (17). Clinical and

epidemiological data were collected for select TCC-consented

patients, and the molecular data were produced as described

below. This study included a total of 247 patients who have been

diagnosed with MM and treated with carfilzomib at the H. Lee

Moffitt Cancer Center and have germline DNA WES data

available through ORIEN. This study was also approved by the

University of Florida Institutional Review Board (IRB202003031).
2.2. Cardiovascular adverse events

We queried the electronic health records data of Moffitt’s health

research informatics platform to determine if a CVAE had occurred

after initiation of carfilzomib treatment. We used the International

Classification of Disease (ICD) revisions 9 and 10 to define

cardiovascular events. A complete list of the ICD-9 and -10 codes

used is listed in the supplementary materials Supplementary

Table S1. Moffitt’s Pentecost Myeloma Research Center clinical

database was utilized to identify if the eligible TCC patients

receiving carfilzomib as part of their treatment had one of these

cardiac events between the start and end date. We performed a

manual chart review on 10% of patients to verify the accuracy of

the billing records in terms of the definition of the CVAE. All

records reviewed for cardiovascular adverse events matched the

determination by the billing codes.
2.3. Whole-Exome sequencing and quality
control

Germline DNA was extracted from peripheral blood samples

with buffy coat using the QIAsymphony SP instrument

(QIAGEN, Hilden, Germany) following standard protocols

implemented across the ORIEN. The WES of germline DNA was

performed for each patient using SeqCap EZ Exome Enrichment

Kit v3.0 (Roche NimbleGen, Pleasanton, CA) or xGen Exome

Hybridization Panel with supplement probes (integrated Data

Technologies, Inc., Coralville, IA), with 100 × coverage. Capture

kits covered variants for limited regions; each captured library

was loaded onto Illumina-HiSeq 4,000 (Illumina, San Diego,
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CA). Over 26,000 protein-coding genes were sequenced. The raw

sequencing data underwent a rigorous analysis pipeline for

alignment, variant calling, quality control steps, and annotation

algorithms (18–20). Before the genetic association analysis, the

WES data underwent additional quality control steps: variant call

rate > 95%, sample call rate > 95%, sex check, and Hardy

Weinberg Equilibrium analysis. Principle component analysis was

performed on a subset of variants after more stringent quality

control steps [variant rate and sample call rate > 99% and minor

allele frequency (MAF) >10%] to evaluate the genetic ancestry of

these patients.

Germline WES data was available on 605,446 variants in 247

patients. Of the 247 patients, 228 were genetically clustered with

individuals of European ancestry, and 19 were clustered with

African ancestry. A total of 603,920 variants passed the quality

control steps and were included in the WES analysis.
TABLE 1 Demographics and clinical characteristics of patients.

Characteristics Overall
(n = 247)

CVAE
(n = 38)

No CVAE
(n = 209)

P

Age (years) 58.9 ± 9.8 60.6 ± 9.4 58.6 ± 9.8 0.27

Sex (male) 141 (57.1%) 21 (55.3%) 120 (57.4%) 0.81

Race
European American 228 (92.3%) 35 (92.1%) 193 (92.3%) 0.96
2.4. Whole-Exome sequencing data analysis

All association analyses were performed in genetically clustered

European Americans and African Americans separately, adjusting

for age, gender, and principal components for ancestry. Trans-

ethnic meta-analyses were then performed to combine the results

from both groups.

Exome-wide association analysis of single variants with a

MAF≥ 1% was performed to estimate the odds ratio (OR) and

95% confidence interval (CI) for each variant on chromosomes

1–22 for the development of CFZ-CVAE using multivariable

logistic regression assuming an additive model of inheritance

using PLINK (21). All variants with p < 5*10−8 were considered

statistical significance. Variants with p < 5*10−4 were considered

suggestive (22).

Following the exome-wide association analysis, the summary

statistics were functionally annotated using Functional Mapping

and Annotation of Genome-Wide Association Studies (FUMA

GWAS) for a gene-based and gene set analysis to recognize

potential genes of interest (23). The Genotype-Tissue Expression

(GTEx) database was queried to identify tissue-specific gene

expression and regulation. ANNOVAR (24) was used to annotate

the genetic variants appropriately.

Rare variants analysis was performed using the sequence kernel

association test (SKAT) using the SKAT package (25, 26) to

evaluate the association of the joint effect of multiple rare

variants (MAF < 1%) with CFZ-CVAE.

African American 19 (7.7%) 3 (7.9%) 16 (7.7%)

Medical History
Hyperlipidemia 78 (31.6%) 15 (39.4%) 63 (30.1%) 0.26

Hypertension 130 (52.6%) 25 (65.8%) 105 (50.2%) 0.077

Diabetes 22 (8.9%) 6 (15.8%) 16 (7.7%) 0.11

Ischemic Heart
Disease

5 (2.0%) 1 (2.6%) 4 (1.9%) 0.77

Myocardial
Infarction

12 (4.9%) 3 (7.9%) 9 (4.3%) 0.34

Continuous variables were summarized as mean ± standard deviation, and

categorical variables were presented as numbers (%). P values shown were from

a t-test for continuous variables and chi-squared test for categorical variables.

CVAE: cardiovascular adverse events.
2.5. Ingenuity pathway analysis (IPA)

Functional assignment and pathway analysis of the association

results was performed on the top variants from the WES analyses

(p < 0.001). IPA uses a network generation algorithm to create

multiple networks and uses hypergeometric distribution to create

scores for each network (27). The statistical significance level is

generated using Fisher’s Exact test. Any pathway enriched by

genes more than by chance would be statistically significant.
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3. Results

3.1. Patients characteristics

Overall, 247 MM patients were included in the analysis. The

mean age was ∼59 years, and 57% were men. Thirty-eight

(15.5%) developed CVAE after initiation and during carfilzomib-

based therapy. Table 1 summarizes the characteristics of the 38

patients who developed CVAE and the 209 who did not. The

baseline demographics and medical history were similar between

the two groups of patients. A total of 228 (92.3%) patients were

genetically clustered with individuals of European ancestry (EA),

and 19 clustered with individuals of African ancestry (AA). The

baseline characteristics and medical history of the 228 EA MM

patients were summarized in Supplementary Table S2.
3.2. Exome-wide common variant analysis

The results of the exome-wide association analysis of the

common variants in the EA patients are summarized in the

Manhattan plot (Figure 1A) and the QQ plot (Figure 1B). None

of the variants were genome-wide significant. However, eleven

SNPs from five loci reached the suggestive significance level with

p < 5*10−4 (Table 2). The top SNP rs7148 is a missense variant

in the thymosin beta-10 (TMSB10) gene, with OR of 9.33% and

95% CI of 3.90 – 22.35 (p = 5.42*10−07) (Table 2, Figure 2). The

minor allele frequency rs7148 was ∼7% in EA patients. Amongst

patients with the rs7148 variant, 50% (99/198) of patients with

the AG or AA genotype developed a CVAE compared with

10.1% (20/198) with the GG genotype (p < 0.0001). GTEx

analysis revealed that the rs7148 A allele was associated with

higher TraB Domain Containing 2A (TRABD2A) gene

expression in the left ventricle tissue with a p-value 1.9 × 10−7

(Supplementary Figure S1). The second most significant SNP,

rs12471929, is an intronic variant in the TMSB10 gene that is in
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FIGURE 1

Results of exome-wide association analysis in European Americans. (A) Manhattan plot representing the association between single-nucleotide
polymorphism (SNP) genotype and CVAE in MM patients. (B) The quantile-quantile (QQ) plot of association results.
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perfect linkage disequilibrium (LD) (r2 = 1, D’=1) with rs7148, with

OR of 8.95 (3.78–21.18), p = 6.17*10−7 (Table 2, Figure 2). A few

other SNPs in LD with rs7148 in the 1,000 genomes database are

shown in Supplementary Table S3.

Among the other SNPs with a suggestive level of significance

were: five SNPs in the PDZD2 gene, which encodes PDZ

Domain Containing Protein 2; an intronic variant in the

Prominin 1, CD133 (PROM1) gene; a synonymous variant on

GREB1 (Growth Regulating Estrogen Receptor Binding 1) gene

on Chromosome 2, and two variants in WASHC5/SQLE gene on

Chromosome 8 (Table 2). The minor allele frequencies, allele

counts, and Hardy Weinberg Equilibrium test results by CVAE

status are summarized in Supplementary Table S4.

We also performed an exploratory analysis on AA patients.

No SNPs reached statistical significance as a result of the small

sample size. The four SNPs with nominal significance (p < 0.05)

are shown in Supplementary Table S5. The two most frequent
TABLE 2 Top SNPs in the WES analysis of CFZ-CVAE in the European Americ

CHR SNP BP Gene A1 A2 MAF OR

2 rs7148 85,13,3216 TMSB10 A G 0.068 9.33

2 rs12,47,1929 85,13,3320 TMSB10 T C 0.070 8.95

5 rs28,45,0841 32,09,3210 PDZD2 T C 0.077 5.25

5 rs22,91,113 32,07,4509 PDZD2 A G 0.057 6.17

4 rs17,38,7037 15,99,2783 PROM1 C A 0.057 5.84

2 rs75,34,8511 11,73,8951 GREB1 T C 0.037 8.30

8 rs22,72,682 12,60,49443 WASHC5 C T 0.094 3.83

8 rs11,54,2889 12,60,44527 WASHC5/SQLE T C 0.059 5.01

5 rs37,33,720 32,08,7808 PDZD2 C G 0.072 4.90

5 rs10,06,6063 32,09,0294 PDZD2 A G 0.072 4.90

5 rs16,88,9442 32,09,3070 PDZD2 A G 0.072 4.90

WES, whole exome sequencing; CFZ-CVAE, carfilzomib-related cardiovascular adverse

minor allele; A2: major allele; MAF, minor allele frequency; OR: odds ratio; CI, confide
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SNPs in EA (rs7148, rs1247192) were not observed in AA

patients (MAF = 0).

The top SNPs in the trans-ethnic meta-analysis combing EA and

AA are listed in Table 3. Only two of these eleven SNPs were

observed in AA. Therefore, the results of these SNPs in the meta-

analysis were almost identical to those in the EA analysis. The only

top EA SNPs observed in AA were the Chromosome 8 SNPs in the

WASCH5/SQLE locus. While these two SNPs had minor allele

frequencies of 6%–9% in EA, the frequencies were much higher in

AA (42%–45%). The directions of associations with CVAE were

consistent in AA patients compared to those in EA patients (Table 3).
3.3. Gene-based analysis

The gene-based analysis in EA patients using FUMA revealed

that the TRABD2A gene that encodes TraB Domain Containing
an patients.

95% CI P dbSNP functional
annotation

MAF
CVAE

MAC
CVAE

No Yes No Yes
3.90–22.35 5.42E-07 Missense 0.039 0.229 15 16

3.78–21.18 6.17E-07 Intronic 0.039 0.243 15 17

2.38–11.58 3.91E-05 Intronic 0.052 0.214 20 15

2.52–15.15 7.05E-05 Synonymous 0.036 0.171 14 12

2.44–139.5 7.32E-05 Intronic 0.036 0.171 14 12

2.90–23.77 8.08E-05 Synonymous 0.021 0.129 8 9

1.95–7.49 9.26E-05 Intronic 0.065 0.257 25 18

2.23–11.24 9.50E-05 Synonymous 0.034 0.200 13 14

2.20–10.87 9.55E-05 Synonymous 0.049 0.200 19 14

2.20–10.87 9.55E-05 Missense 0.049 0.200 19 14

2.20–10.87 9.55E-05 Intronic 0.049 0.200 19 14

events; Chr., chromosome; SNP, single nucleotide polymorphism; BP: base pair. A1:

nce interval, MAC, minor allele counts.
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FIGURE 2

Regional association plot for variant rs7148. The X-axis represents a 1Mb region, 500 kb on either side of the variant, and the y-axis shows –the log10
P-value for individual SNPs. Pairwise LD (r2) with the variant is based on 1,000 Genome phase 3 v5 European reference samples and described using
the color scale in the bar. The bottom panel shows the genes located within the region.
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2A is significantly associated with CFZ-CVAE (p = 1.06*10−6)

(Figure 3).
3.4. Rare variant analysis performed using
SKAT

SKAT analysis was performed on 40,969 gene sets and 620,661

SNPs, and a significant association was determined by comparing

CFZ-CVAE after correcting for multiple testing. The genes—

Chromosome 1 Open Reading Frame 116 (C1orf116),

LOC102724084 (DYNLRB2 antisense RNA1), Diphosphoinositol

pentakisphosphate kinase 2 (PPIP5K2 (NM_0013)), and

Transmembrane Protein 183A (TMEM183A) were statistically

significantly associated with CFZ-CVAE (p-value = 1.1*10−5,

4.1*10−5, 6.2*10−5, and 6.2*10−5, respectively) (Supplementary

Table S6).
3.5. IPA analysis of WES results

Using IPA, the pathway enrichment analysis showed that the

lowest p-value and most significant genes overlapped with

cardiotoxicity. The functional toxicity annotation of genes related

to cardiotoxicity implicated cardiac arteriopathy with three

variants from WES results: rs3750765 located in leucine-rich
Frontiers in Cardiovascular Medicine 05
repeat-containing 20 (LRRC20) gene, rs72713436 in sterile alpha

motif domain-containing 4A (SAMD4A) gene, and rs75454001 in

CUB-Sushi multiple domains 1 (CSMD1) gene. All of these genes

were associated with human coronary artery disease (P < 0.001) (28).
4. Discussion

In this first genetic association analysis of CFZ-related CVAE

in MM patients, we conducted a WES of germline DNA samples

from patients who received CFZ in the ORIEN network. In this

retrospective cohort study of patients in a real-world clinical

setting, we identified a missense SNP rs7148 in the TMSB10/

TRABD2A gene locus on chromosome 2 to be associated with a

higher risk for CVAE in MM patients treated with CFZ.

In order to reflect real-world practices, all MM patients treated

with CFZ were included in this study regardless of their

cardiovascular disease history. We found that 15.4% of the MM

patients treated with CFZ developed CVAE, which is in line with

the event rates of 8%–18% reported in prior meta-analyses (2, 3).

Due to the retrospective nature of this study and a lack of

clinical guidelines on proteome inhibitor monitoring at the time

of this study, these patients were not actively monitored for

cardiotoxicity by cardiologists. Not surprisingly, the event rate we

observed is lower than the CFZ-CVAE event rate of 50%

reported in a prospective study, the Prospective Observation of
frontiersin.org
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Cardiac Safety with Proteasome Inhibitor (PROTECT) study (10).

The recently published 2022 Cardio-Oncology guideline by the

European Society of Cardiology (29) recommends testing and

surveillance of MM patients at baseline and every cycle during

the first 6 cycles under proteasome inhibitor treatment based on

the risk. The guideline recommends first stratifying MM patients

into low, moderate, high, or very high-risk groups based on

clinical factors prior to the treatment. Considering genetic

variants may improve the risk stratification of these patients.

To our knowledge, this is the first genetic association study of

CFZ-CVAE in humans. We found that the variant carriers of

missense SNP rs7148 in the TMSB10 gene were at higher risk for

CFZ-CVAE. We also identified an intronic variant rs12471929

which is in perfect LD with rs7148 in EA. Both of these SNPs

are also eQTLs for the nearby gene TRABD2A in that the variant

alleles are associated with higher expression of TRABD2A in the

left ventricle heart tissue (30).

Thymosins are a family of small peptides initially identified from

the thymus and consist of three groups, alpha-, beta-, and gamma-

thymosins, according to their isoelectric points (31). The beta-

thymosins (TMSB4, TMSB10, TMSB15), found in the cytoplasm,

interact with G-actin and produces a large pool of actin

monomers (32). TMSB10 has been reported to function in

cytoskeleton organization, cell morphology, proliferation, motility,

and interaction with Ras and angiogenesis, cell growth, and

apoptosis (33). The two isoforms, TMSB10 and TMSB4, are

identified as significant actin monomer sequestering proteins that

may regulate actin filament assembly (34). A recent study showed

that the actin-binding protein TMSB10 was upregulated in

dysfunctional endothelial dysfunction in acute myocardial

infarction (AMI), and endothelial dysfunction is considered one of

the primary factors in the progression of atherothrombosis in

AMI (35). Another study on mice found that TMSB10 can inhibit

vascular endothelial growth factor (VEGF) expression by inhibiting

the Ras-ERK signaling pathway leading to the suppression of

vascular formation, especially in tumor formation (36).

TRABD2A gene enables Wnt-protein binding activity and

metalloendopeptidase activity (37). A recent genome-wide

association study on cardiac troponin T (cTnT) in large cohorts

identified a genetic variant rs548487604 near the TRABD2A gene

to be associated with the elevation of cTnT level (38), which is

related to the incidence of cardiovascular diseases, cardiovascular

death, and heart failure in a general population (39, 40).

A previous study on mice proposed a pathway associated with

CFZ-CVAE. This study found that treatment with CFZ induced

the apoptosis pathway by activation of PP2A (protein phosphatase

2A), which inactivates AMPKα and the downstream signaling

related to autophagy phosphoinositide 3′-kinase (PI3K)-Akt-

endothelial nitric oxide synthase (eNOS) (PI3K/Akt/eNOS) axis.

This axis is responsible for myocardial cell growth and survival

and plays a vital role the cardiac dysfunction (41). Previous studies

have identified a specific subtype of hematopoietic stem cells in

peripheral blood called endothelial progenitor cells (EPCs) that

express numerous combinations of antigens associated with

hematopoietic stem and endothelial cells and play an essential role

in neovascularization of ischemic tissue and reversal of endothelial
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FIGURE 3

The gene-based association testing results from the FUMA analysis of CFZ-CVAE yielded TRABD2A as a significant gene (p= 1.06*10−6).
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dysfunction (42, 43), and in vivo studies showed that TMSB4

increases EPC migration and decreases EPC apoptosis under serum

deprivation via the (PI3K/Akt/eNOS) signal transduction pathway

(44, 45), and several studies showed that the telomerase length and

telomerase activity of circulating EPCs and decreased in patients

with coronary artery disease (46, 47). In a recent study that

included 48 patients with relapsed/refractory MM and received

CFZ, the brachial artery flow-mediated dilation (FMD) and 26s

proteasome activity were detected to evaluate the endothelial

function. This study concluded that patients who received CFZ and

with low potential for proteasome activity recovery may suffer

from both acute and long-term endothelial dysfunction (48).

Endothelial cell homeostasis depends on the ubiquitin-

proteasome system, which induces oxidative stress in the cells and

regulates the expression of endothelial nitric oxide synthase (49).

The proteasome inhibitor CFZ causes the plasma of cancer cells,

cardiomyocytes, and endothelial cells to accumulate with unfolded,

dysfunctional proteins, which may lead to impaired vasodilation,

excessive oxidative stress, inflammation, cell apoptosis, and

autophagy (50, 51). Other studies have shown that the endothelial

dysfunction caused by CFZ’s inhibition of proteasome activity may

result in CVAE or other endothelial dysfunction-related events like

hypertension, heart failure, and coronary artery disease (51–53). In

light of the literature, our finding of the genetic variants in the

TMSB10/TRABD2A locus appears to support the role of

endothelial dysfunction in CFZ-CVAE.

Among the other SNPs with a suggestive significance level, five

are located on the PDZ domain-containing protein 2 (PDZD2)

gene, which contains six PDZ domains and shares sequence

similarity with pro-interleukin-16 (pro-IL-16). SNPs in the

PDZD2 gene have been associated with heart rate in heart failure

patients with reduced ejection fraction (54). PROM1 has a role in

cell differentiation, proliferation, and apoptosis. PR1P is a small

peptide derived from the extracellular domain of PROM1-derived

peptide and improves cardiac function following ischemia. SQLE

encodes squalene epoxidase, which catalyzes the first oxygenation

step in sterol biosynthesis and is one of the rate-limiting

enzymes in this pathway.
Frontiers in Cardiovascular Medicine 07
It is important to recognize some limitations of our study.

Firstly, the patient population is predominantly European

Americans. The sample size of patients of African descent was

too small to have enough statistical power for any meaningful

discovery. Further investigation is required to explore this

phenotype and outcomes in MM patients of African ancestry.

Secondly, using WES means we may have missed critical genetic

variants outside the coding regions of the genome. Thirdly, using

ICD codes to identify CVAE has its limitations. Even though our

manual chart review of 10% of patients indicated 100% of CVAE

were confirmed, it would have been ideal to review all the charts

to confirm CVAE status. Fourthly, due to the small sample size,

we had to combine all the CVAEs. Lastly, our study findings

need to be replicated in an independent study before these

genetic variants can be incorporated into the risk stratification of

MM patients.

In summary, in this WES study of MM patients in a real-world

clinical setting, we identified a missense variant in the TMSB10/

TRABD2A locus to be associated with CFZ-CVAE among MM

patients. Once validated, this association could provide the basis

for a Precision Medicine approach to identify MM patients at

high risk for CFZ-CVAE.
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