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Ensemble learning of myocardial
displacements for myocardial
infarction detection in
echocardiography
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1VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, Vietnam, 2College of Engineering and
Computer Science, VinUniversity, Hanoi, Vietnam, 3Institute for Artificial Intelligence, VNU University of
Engineering and Technology, Hanoi, Vietnam, 4Cardiovascular Center, E Hospital, Hanoi, Vietnam,
5Vietnam National Heart Institute, Bach Mai Hospital, Hanoi, Vietnam, 6Faculty of Information Technology,
VNU University of Engineering and Technology, Hanoi, Vietnam

Background: Early detection and localization of myocardial infarction (MI) can reduce
the severity of cardiac damage through timely treatment interventions. In recent
years, deep learning techniques have shown promise for detecting MI in
echocardiographic images. Existing attempts typically formulate this task as
classification and rely on a single segmentation model to estimate myocardial
segment displacements. However, there has been no examination of how
segmentation accuracy affects MI classification performance or the potential
benefits of using ensemble learning approaches. Our study investigates this
relationship and introduces a robust method that combines features from multiple
segmentation models to improve MI classification performance by leveraging
ensemble learning.
Materials and Methods: Our method combines myocardial segment displacement
features from multiple segmentation models, which are then input into a typical
classifier to estimate the risk of MI. We validated the proposed approach on two
datasets: the public HMC-QU dataset (109 echocardiograms) for training and
validation, and an E-Hospital dataset (60 echocardiograms) from a local clinical site
in Vietnam for independent testing. Model performance was evaluated based on
accuracy, sensitivity, and specificity.
Results: The proposed approach demonstrated excellent performance in detecting
MI. It achieved an F1 score of 0.942, corresponding to an accuracy of 91.4%, a
sensitivity of 94.1%, and a specificity of 88.3%. The results showed that the
proposed approach outperformed the state-of-the-art feature-based method,
which had a precision of 85.2%, a specificity of 70.1%, a sensitivity of 85.9%, an
accuracy of 85.5%, and an accuracy of 80.2% on the HMC-QU dataset. On the
external validation set, the proposed model still performed well, with an F1 score of
0.8, an accuracy of 76.7%, a sensitivity of 77.8%, and a specificity of 75.0%.
Conclusions: Our study demonstrated the ability to accurately predict MI in
echocardiograms by combining information from several segmentation models.
Further research is necessary to determine its potential use in clinical settings as a
tool to assist cardiologists and technicians with objective assessments and reduce
dependence on operator subjectivity. Our research codes are available on GitHub
at https://github.com/vinuni-vishc/mi-detection-echo.
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1. Introduction

A myocardial infarction (MI), which is also called a heart

attack, happens when blood flow to part of the heart is cut off

due to a clot (1) and severely damages the heart tissue. Most of

the time, this happens because one or more of the coronary

arteries, which bring blood to the heart, are blocked. MI is a

serious and potentially life-threatening condition that is the

leading cause of death worldwide, affecting 32.4 million people

each year (2). In the US alone, about 4 million people visit the

emergency room each year with heart symptoms (1). According

to a study undertaken by the World Health Organization (3),

cardiologists use multiple diagnostic indicators such as pathology

outcomes, biochemical marker values, electrocardiography (ECG)

findings, and other imaging modalities to diagnose patients with

MI (1). However, pathology can only detect dead cells in the

heart muscle (3). ECG cannot distinguish between MI and

myocardial ischemia symptoms (4), and the specificity of

biochemical marker values (cardiac enzymes) is quite low (5).

Due to these limitations, none of these techniques are adequate

for early MI detection. Another cardiac image modality is

echocardiography (ECHO), which is a pivotal tool for a safe and

real-time functional assessment of the cardiovascular system

(6, 7). It is based on ultrasonography, a noninvasive imaging

technique that is incredibly valuable for monitoring and

diagnosing patients who are exceedingly vulnerable. Moreover,

echocardiography is fast, inexpensive, accessible, portable, and

carries the lowest risk among imaging techniques (8, 9).

Therefore, the most valuable tool for early diagnosis is an

imaging technique known as echocardiography, which is

applicable for both clinical and research applications.

With the availability of the MI datasets on echocardiography,

machine learning (ML) algorithms have been used to detect MI

by extracting features from echocardiography (10). Although they

showed promising results, previous studies have largely focused

on using features from segmentation models, but the assumption

that good segmentation equates to strong classification has yet to

be fully substantiated. In addition, current methods are still

limited by using only features from a single model, which is a

common problem in MI classification and can lead to poor

performance on unseen data (11, 12). We conducted experiments

to determine the relationship between strong segmentation

models and precise MI classification. Our results showed that

utilizing the predictions from multiple models through ensemble

methods can better identify the patterns and features from

echocardiography, resulting in more trustworthy and accurate

predictions. Therefore, in this work, we propose a new approach

to MI classification by incorporating multiple segmentation

models and ensemble learning techniques. Our main

contributions are summarized as follows:

† Our experiment results showed that there is no strong

correlation between good segmentation models and accurate

MI classifiers. The finding indicates that highly accurate

segmentation of the left ventricle (LV) is not a key condition

for accurate MI detection.
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† We proposed an ensemble method to combine multiple

features produced by different LV wall segmentation models.

The experimental results show that the proposed ensemble

method consistently outperformed the state-of-the-art

methods based on single models across all metrics on both

the public and external test sets. This result suggests that

ensemble learning is successful at complementing the features

of multiple feature extractors in a way that a single feature

model could not.

† The effectiveness of our method was tested on an external

dataset obtained from a local clinical source. The results

revealed a decline in the model’s performance compared to

public data test sets. Possible reasons for the decrease in

performance are presented, along with an examination of the

implications of these results. Recommendations are also given

for enhancing the model’s performance in a clinical

environment.

† The proposed method showed a higher agreement score

(Cohen’s kappa value) than single-feature methods, regardless

of whether they used different sets of features. This high level

of agreement is an important advantage of the proposed

approach as it suggests that the model predictions are subject

to variation due to different feature extractors. The high

Cohen’s kappa value indicates that our proposed method is

reliable and well-suited for use in the classification of MI.

2. Related work

MI detection has been a focus of research in the field of medical

imaging, with various techniques being proposed to detect

abnormalities in LV wall motion (10, 12, 13, 14). With the aim

to reduce the cost and time of diagnosis, computer-assisted

diagnostic techniques have been developed in recent decades that

aim to automate the detection of MI by using image processing

and ML techniques (15, 16). Very first studies used active

contour-based models, such as (17–19) the snake technique

introduced by Kass (20), which uses an elastic curve to detect

lines, boundaries, and edges in an image. However, these

methods can be impractical or even impossible to use in cases

where the LV wall is not visible due to low contrast or a portion

of the wall is missing (21). Other MI detection techniques

include motion estimation methods (22), which track the

displacement of the LV wall, but the accuracy of these methods

can depend on the performance of speckle tracking and can lead

to unreliable results (23).

Due to limitations in extracting features while using solely

image processing techniques, recent studies have shifted to deep

learning to extract hidden features from echocardiography

images and detect MI. Neural networks such as U-Net (24) and

U-Net++ (25) have been widely used for semantic segmentation.

Zhang et al. (26), Leclerc et al. (27), Lin et al. (28) presented a

large dataset of 2D echocardiography images and proposed a U-

Net-based model for accurate segmentation of the LV wall.

Degerli et al. (11) utilized the accurate segmentation of the LV

wall to detect MI. While studies have shown that deep learning
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models can be used to detect MI, to the best of our knowledge, no

work has explored the direct correlation between a strong

segmentation of the LV wall and MI detection.

In addition to developing individual deep learning models,

ensemble techniques, which combine the predictions of multiple

models, have been explored as a way to improve performance

and robustness in the analysis of cardiac functions. For example,

Narula et al. (29) improved the performance of the heart’s

morphological and functional assessments by using the majority

vote from three ML models: support vector machine, random

forest, and deep learning. Zhang et al. (30) also increased the

diagnostic performance of coronary heart disease screening by

stacking ML models. While these studies have shown that

ensemble techniques can improve the performance of medical

problems, there is still no work that has explored the use of

ensemble techniques for MI detection in echocardiography images.

Another major concern while using deep learning models for

MI detection is the inconsistency of the results (31). The

performance of deep learning models is highly dependent on the

quality of the training data, which can be difficult to obtain (32).

In addition, the performance of deep learning models can be

affected by the choice of the model’s architecture and

hyperparameters, which can be difficult to determine (33). To

address these issues, we propose a strategy for combining

features from different models in order to improve the diagnostic

performance of MI detection. The proposed approach is based

on the idea that by combining the strengths of various

techniques, we can overcome their individual limitations and

achieve more accurate and reliable results. We believe that this

approach has the potential to significantly advance the field of

MI detection and improve patient care.

The remainder of this paper is organized as follows. Section 3

introduces the benchmark HMC-QU dataset, our in-house dataset

from E-Hospital, and the framework for determining LV wall

motion for MI identification. We will also describe in this

section the experimental setting used in this study. Next, Section

4 presents the quantitative and qualitative evaluations of the
FIGURE 1

Overview of the proposed MI detection framework. In the phase 01 block, blu
convolutional layers, and blue arrows represent the skip connections betw
displacement of the heart muscle during a cardiac event, W refers to the w
detection, and E refers to the ensemble of features used to identify MI.
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proposed approach on the HMC-QU dataset and the E-Hospital

dataset. We analyze the MI detection performance using various

segmentation architectures and classifiers. Finally, Section 5

discusses the experimental results and concludes the paper with

some potential research directions.
3. Materials and methods

In this section, we introduce the proposed ensemble learning

framework that addresses the challenge of MI detection. Figure 1

illustrates the overall architecture, consisting of three main

phases: LV wall segmentation, feature engineering based on

myocardial segmentation displacement, and MI classification

using traditional ML classification methods through ensemble

models with weighted features from different segmentation

models. Below we explain each phase in detail.

† Phase 1 - LV wall segmentation: The goal of the first phase is to

identify the myocardial boundary, which is a key indicator of

heart function. In contrast to Degerli et al. (11), who

employed a single segmentation model solely for contouring

LV, our approach involves ensembling features extracted from

multiple segmentation models. These models excel at

segmenting specific regions of the LV wall, providing

enhanced accuracy and robustness in our analysis.

† Phase 2 - Feature engineering from myocardial segmentation

displacement: In this phase, we extract features from the

segmented myocardial regions based on displacement over

time. These features include measures such as strain, strain

rate, and torsion, which are important indicators of

myocardial function and can provide insight into the

presence of MI. Because we used multiple segmentation

models in Phase 1, we proposed a method to combine

features from multiple segmentation results.

† Phase 3 - MI classification: In the final phase, traditional

classification ML methods such as support vector machines,
e blocks represent convolutional layers, gray blocks represent transposed
een the encoder and decoder. In the phase 02 block, D refers to the
eight assigned to different features within the ensemble model used for
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random forests, and logistic regression, are explored to detect

MI from the extracted features. To further improve the

performance of the proposed model, we also implement an

ensemble learning approach by weighting the features from

the different segmentation models. The weighting step takes

into account the segmentation accuracy of each segmentation

model. The performance of the proposed framework will be

evaluated using common metrics, including sensitivity,

specificity, precision, F1 score, and accuracy.

3.1. DATASET

In this study, we used the public HMC-QU dataset (11) as the

training and validation sets. The HMC-QU dataset, consisting of

2D echocardiography recordings for the detection of MI, was

established through collaboration between cardiologists from the

Hamad Medical Corporation, researchers from Qatar University,

and Tampere University. The ultrasound machines used to

acquire the data were made by GE Healthcare, and the

recordings have spatial and temporal resolutions that vary from

422� 636 to 768� 1024 and 25 frames per second, respectively.

The collection includes 162 Apical Four Chambers (A4C)

ultrasound videos acquired between 2018 and 2019, but for the

purposes of this study, a subset of 109 ultrasound videos was

used, resulting in a total of 2,349 images from 72 MI patients

and 37 non-MI subjects. The remaining 53 ultrasound videos

were excluded because they did not include the entire LV wall,

which was necessary for cardiologists to evaluate. As depicted in

Figure 2A, the non-MI and MI cases have two frames: end-

systolic and end-diastolic. The MI case has a larger overlap

region compared to the non-MI sample, which is an indicator of

MI, though the determination of MI requires the evaluation of

multiple frames.

To evaluate the effectiveness of our proposed method, we

collected a dataset of patient records from E-Hospital, a local
FIGURE 2

(A) Segmentation mask of the LV wall for both an end-systolic frame and an e
representing a non-MI case in the HCM-QU dataset. (B) Six segments of the L
length from the bottom left corner to the apex of the LV, and the label “R” re
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clinical site in Vietnam. The institutional review board at the

clinical site approved the study, and we followed ethical

guidelines in collecting and processing the data. Since this

retrospective study did not have any influence on clinical care or

workflow at the clinical site, and all patient-identifiable

information has been thoroughly eliminated from the data, the

requirement to obtain informed patient consent was waived. We

obtained 200 patient records from E-Hospital for this study,

without specific selection criteria, covering the period from 2020

to 2021. The data were acquired using the Philip Affiniti 70G

ultrasound imaging system, and we carefully examined all the

data to ensure high-quality and visible anatomy structures. Out

of 200 samples, cardiologists have removed samples that did not

meet quality standards (e.g. correct orientation, no artifacts, and

complete cardiac cycle), resulting in a total of 60 data samples

being retained for further analysis. Among these samples, 36

corresponded to patients with MI, while the remaining 24

samples represented non-MI patients. To ensure the accuracy

and consistency of MI region annotations, three experienced

doctors were involved in the annotation process. Additionally, a

separate group of three doctors verified the annotations for

precision and uniformity, the final decision is determined by the

decision of the most experienced doctors. The annotated data,

stored in the Digital Imaging and Communications in Medicine

(DICOM) format, was utilized for testing our proposed model. It

is important to note that the dataset exclusively comprises MI

annotations and was employed as an independent test set to

evaluate the performance of our model. Detailed statistical

information for both the HMC-QU and E-Hospital datasets can

be found in Table 1.
3.2. Feature engineering

Similar to Degerli et al. (11), we extract the motion feature by

performing two consecutive steps: LV segmentation and feature
nd-diastolic frame, with one case representing an MI and the other case
V wall may be used to detect signs of an MI. The label “L” represents the
presents the length from the bottom right corner to the apex of the LV.
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TABLE 1 Sample counts of MI and non-MI patients by LV wall segments in
HMC-QU and E-Hospital datasets.

LV wall
segments

HMC-QU dataset E-Hospital dataset

# MI
patients

# non-MI
patients

# MI
patients

# non-MI
patients

Segment-1 24 85 14 46

Segment-2 43 66 15 45

Segment-3 59 50 12 48

Segment-5 44 65 7 53

Segment-6 25 84 13 47

Segment-7 15 94 15 45

Patient-based 72 37 36 24
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calculation. The classification of MI is performed by utilizing

features extracted from the complete set of cardiac cycle images.

Below we explain these two steps in detail.

LV segmentation. We use a U-Net-like convolutional network

that consists of an encoding and down-sampling path, followed

by a decoding and up-sampling path with skip links (24). The

model’s output is a mask of the LV obtained through the

Softmax function. During the training phase, we use cross-

entropy as the loss function to optimize the model’s parameters.

Cross-entropy, which is defined as a measure of the difference

between two probability distributions for a given random

variable or set of events, is widely used for classification

objectives. The binary cross-entropy is defined as

LBCE(y, ŷ) ¼ �(y log (ŷ)þ (1� y) log (1� ŷ)), (1)

where ŷ is the predicted value by the prediction model.

We analyze the segments of the LV wall to detect possible MI

signatures. A standardized model (6) recommends dividing the LV

wall into seven segments, as depicted in Figure 2B. However, in

our analysis, we only consider six of them, as the apical cap does

not exhibit inward motion activity and should be skipped for the

A4C view.

Feature calculation. For MI detection, we extract the

displacement of the endocardial boundary points from the six

segments (Figure 2B). By evaluating the rate of displacement

from the captured global motion of the LV wall, we aim to

mimic the typical diagnosis of cardiologists, who assess segments

that show a lack of motion as abnormal.
TABLE 2 Performance in IoU of different segmentation models on different
between consecutive frames of whole LV wall, and Mean Absolute Distance

Models Segment

1 2 3 5
Unet++ 0:851+:08 0:905+:05 0:873+:04 0:823+:09

Unet 0:868+:05 0:845+:06 0:877+:02 0:905+:03

PAN 0:858+:07 0:938+:09 0:729+:03 0:901+:07

LinkNet 0:895+:06 0:893+:02 0:880+:03 0:868+:05

DeepLabV3 0:870+:03 0:766+:09 0:854+:06 0:883+:04

Bold indicates the best performance.

Frontiers in Cardiovascular Medicine 05
After segmenting the LV wall, we further extract its inner

border to define the endocardial boundary, which is then divided

into six segments. In order to capture the boundary segment

motion more precisely, we estimate the motion between two

frames at two different time points, t, and tr in the video, in our

case, tr is the first frame of a video sequence and t is arbitrary

time point. In frame at time t, we select a segment indexed by s

and take N sampled pixels p [ {(x1, y1), (x2, y2), . . . , (xN , yN )}

in this segment. These pixels are obtained by dividing each

segment into N � 1 equally spaced intervals and selecting N

pixels accordingly. This ensures that the distance between two

consecutive pixels remains consistent within each segment. For

each segment s, we calculate the pair-wise distances ds,t between

two frame time tr and t, and the segment displacement for each

segment s at time t is then calculated using L1 norm as follows

ds,t ¼ 1
N

XN

n¼1

jxs,trn � xs,tn j þ jys,trn � ys,tn j: (2)

For a video containing T frames, we obtain T � 1 displacement

values for each segment s. Finally, we take the maximum pixel

displacement of each segment, from the displacement curves, and

normalize it to unity. The motion feature, MF [ R6, is then

calculated by taking the maximum displacement value over time as

MF ¼ max
t

({ds,t jt [ {1, 2, . . . , T � 1}, t = tr , s

[ {1, 2, . . . , 6}}: (3)
3.3. Ensemble of features

Ensemble learning, which involves training a group of different

classifiers and combining their predictions, has been shown to

improve model performance and robustness (34). During the

process of feature engineering, we discovered that different

segmentation models perform better on different segments (as

shown in Table 2). This meant that the performance of the

classifier was limited by the performance of the segmentation

model. We chose to combine the displacement vectors instead of

using complete segmentation maps because the displacement

feature vectors have a lower dimensionality, which reduces the
segments of the LV wall, IoU for whole LV wall, mean Hausdorff distance
of whole LV wall on HMC-QU validation set.

Full LV

6 7 IoU Hausdorff MAD
0:873+:06 0:932+:07 0:871+:05 4:08+1:89 1:32+0:71

0:979+:08 0:894+:04 0:876+:02 3:75+2:12 1:22+1:34

0:864+:06 0:845+:04 0:853+:07 4:21+2:73 1:11+0:52

0:809+:07 0:859+:02 0:867+:04 4:65+3:21 1:54+1:89

0:939+:05 0:839+:07 0:860+:06 4:33+1:45 1:02+1:07
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saturation effect of weighting. To enable the classifier to benefit from

multiple features, we calculated the accumulated vector by summing

multiple feature vectors based on the accuracy of the segmentation

models on the validation set. This approach has several benefits: 1)

the weighting method does not require any training, so it can be

used universally with different classifiers; 2) conventionally, stacking

multiple feature vectors can increase the dimensionality of the

accumulated feature vector, making it harder to train the classifier

and limiting the number of features that can be used. In contrast,

the weighted sum vector has a fixed dimension regardless of the

number of segmentation models used.

Formally, given n motion features vector MF [ R6 extracted

from n segmentation model with an objective metric for different

segments M [ R6. The weighted coefficient W is calculated as

Wi ¼ MiPn
i¼i Mi

: (4)

Accumulated feature vector MFacc [ R6 is calculated as

MFacc ¼
Xn

i¼i

MFi �Wi: (5)
3.4. MI detection

In the final step of the pipeline, we use ML to detect MI in an

echocardiogram. To do this, we employ four conventional

supervised ML techniques, including support vector machine

(35), logistic regression (36), decision trees (37), and k-nearest

neighbor (38). These techniques were chosen over more complex

deep learning methods due to the small and imbalanced nature

of our dataset, as well as the fact that the extracted features are

more suited to simpler analysis. To fairly evaluate the

performance of these classifiers, we use a stratified 5-fold cross-

validation scheme. The details of their configuration, training,

and testing are discussed in the following section.
3.5. Evaluation metrics

LV segmentation. The Intersection over Union (IoU) metric, also

known as the Jaccard index, is used to measure the overlap between

the target mask and the prediction output. This metric is similar to

the Dice coefficient, which is frequently used as a loss function

during training. The IoU is calculated by dividing the intersection

of the target and prediction by their union. It is written as

IoU ¼ target> prediction
target< prediction

: (6)

MI detection. For the MI detection, we classify infarcted subjects as

class-positive (MI) and normal, non-MI subjects as class-negative.
Frontiers in Cardiovascular Medicine 06
In this case, the confusion matrix is formed as follows: TN is the

number of correctly predicted non-MI subjects, TP is the number

of correctly predicted MI patients, FN is the number of incorrectly

detected MI patients as non-MI subjects, and FP is the number of

incorrectly detected non-MI subjects as MI patients. The elements

of the confusion matrix are calculated per video for MI detection.

The standard performance evaluation metrics are defined as

Sensitivity ¼ TP
TPþ FN

, (7)

Specificity ¼ TN
TNþ FP

, (8)

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

, (9)

Precision ¼ TP
TPþ FP

, (10)

F(b) ¼ (1þ b2)
Precision� Sensitivity

b2 � Precisionþ Sensitivity
, (11)

where TP, FP, TN, and FN denote the numbers of true positive, false

positive, true negative, and false negative cases, respectively. Sensitivity

(also known as recall) is the ratio of correctly detected MI patients to

all MI patients. Specificity is the ratio of correctly classified non-MI

subjects to all non-MI subjects. Precision refers to the number of

correctly detected MI patients over the total number of correctly

detected samples. Accuracy is the ratio of correctly detected

samples. F1 score is calculated as the harmonic average of precision

and sensitivity, with a weighting of b ¼ 1 in the dataset.

Prediction reliability. In addition to the performance of the

prediction model, the reliability of the model is a crucial

criterion for ML models used in medical applications. In this

case, reliability can be interpreted as the consistency of the

classifier’s output regardless of the use of different feature

extractors or combinations of feature extractors. We quantify this

criterion by calculating the Cohen’s Kappa (39) coefficient of the

model’s output based on the feature extractor. In this work,

Cohen’s Kappa coefficient is calculated for three scenarios:

† Agreement score between different predictors that use a single

feature extractor.

† Agreement score between ensemble model using a different set

of feature extractors.

† Agreement score between cardiologist experts on single echo.

3.6. Experimental settings

LV wall segemtation. In our scientific paper, we evaluated the

model’s performance on the HMC-QU dataset, consisting of 119

ultrasound videos. To ensure a robust evaluation, we employed a

stratified 5-fold cross-validation scheme. Specifically, we divided

the dataset into five folds while maintaining the distribution of

ultrasound videos across different classes. During each fold, we

trained the model using 80% of the ultrasound videos (95

ultrasound videos) and evaluated its performance on the
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remaining 20% holdout ultrasound videos (24 ultrasound videos)

that were unseen during training.

During the training process, we observed that models

converged after 30 epochs. In order to provide an extended

training procedure and further explore the potential

improvements, we decided to add an additional 20 epochs

resulting total of 50 epochs for each model. The learning rate of

models is 1� 10�4. The model was implemented in Pytorch and

optimized using the Adam optimizer with parameters b1 ¼ 0:9

and b2 ¼ 0:999. The training and testing were conducted on a

GTX 3090 GPU, and the number of total parameters ranged

from 1 million to 23 million.

In our experiments, we explored five architectures, including

UNet (24), UNet++ (25), LinkNet (40), DeepLabV3 (41), and

PAN (42), as well as five encoder architectures, including resnet18

(43), vgg11 (44), densenet121 (45), efficientnet-b0 (46), and

inceptionv4 (47). The segmentation performance was evaluated on

a pixel level using the IoU score metric described in Section 3.5.

MI detection. In this experiment, we applied four supervised

ML techniques for binary classification, including support vector

machine (SVM), logistic regression (LR), decision trees (DT),

and k-nearest neighbor (KNN). For training and selecting

optimal hyperparameters for each model, we utilized the HMC-

QU dataset. To divide the dataset into training and validation

sets, we employed a 5-fold cross-validation scheme. Subsequently,

the best-performing model was tested on the E-Hospital data as

an external test set. It’s important to note that while there may

be a domain shift issue when employing the same weights for

segmentation models in both the HMC-QU data and the E-

Hospital data, collecting segmentation ground truth for the E-

Hospital dataset would be impractical due to its time-consuming

nature.

To determine the optimal hyperparameters for each classifier,

we do a grid search on the following parameter options. The first

classifier is SVM with options including the regularization

parameter C (4 options ranging from 0.01 to 100), and

probability estimation enabled. The second classifier used Logistic

Regression with options such as the regularization parameter C

(ranging from 0.01 to 100), penalty type (L1 or L2), solver

method (“liblinear”), and maximum iteration limit. For the third

model, the DT was employed with options including maximum

depth (5, 10, 25, None), minimum samples required for splitting

(2, 5, 10), and default random state. The last model was KNN

with the number of neighbors (2, 5, 10, 25, 50) as the sole

hyperparameter. Through careful evaluation and comparison of

these models with their respective parameter options, we were

able to identify the most suitable hyperparameters for our

specific problem. We then used the trained model to predict the

labels for the instances in the test set. The performance of each

model was evaluated using a variety of metrics, such as accuracy,

precision, and recall. Finally, we compared the performance of

the different models to determine which one achieved the best

results. In order to further assess the significance of segmentation

in MI detection, we also conducted a benchmark analysis using

different classifiers. The evaluation involved comparing the

results obtained from ground truth segmentation maps with
Frontiers in Cardiovascular Medicine 07
those obtained from ensembles of ground truth and other

segmentation models.

Model reliability analysis. To evaluate the reliability of the

predictions made by the different classification methods, we first

randomly selected 20 examples from the test set. We then

calculated the agreement score within each classification method

(SVM, LR, DT, and KNN) that used only features derived from a

single segmentation model (eg. an agreement between

combinations of SVM with segmentation models such as UNet,

PAN, . . .). Each classification method was trained using four

different sets of features. For the ensemble methods, we also

calculated the agreement score between the four models, each of

which was created using a different pair of features (e.g.

agreement between combinations of SVM with segmentation

models such as UNet and PAN, UNet and Deeplabv3, . . .).

Finally, we computed the human expert agreement score using

the labels provided by three experts on the same echo samples.

This allowed us to measure the similarity of the output of the

feature extractors and classifiers on the same input.
4. Results

In this section, we present the results of our experiments on LV

wall segmentation and MI classification using our proposed

method on the HMC-QU validation test and a separate E-

Hospital test set, respectively. We also evaluate the performance

of our method through various metrics and techniques. First, we

report the performance of our model on LV wall segmentation

on the HMC-QU validation test on different LV wall segments,

where we compare the state-of-the-art methods in the field. Next,

we present the MI classification results on the HMC-QU and E-

Hospital datasets and compare our model’s performance against

the baseline and other existing approaches. Finally, we discuss

the reliability of our model by analyzing its agreement scores

compared to existing methods and human experts.
4.1. LV wall segmentation on HMC-QU
validation test

Table 2 shows the LV wall segmentation averages (mean)

results for 5-fold CV with different network architectures and

encoders. The results indicate a stable IoU score between various

types of models. The maximum IoU score can get is 0.876%

when using UNet architecture and resnet18 encoder. Despite the

fact that there is no significant variation in segmentation

performance during validation, the segmentation models have

different scores on different heart segments, as we have discussed

in Section 3.3.
4.2. MI classification on test set

Table 3 demonstrates that the performance of concatenated

features from multiple segmentation models is superior
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TABLE 3 MI accuracy based on segmentation features with different classifiers.

Classifier Model IoU Sensitivity Specificity Precision F1 score ACC
SVM Single-PAN 0:853+:03 0:829+:07 0:633+:11 0:867+:11 0:829+:06 0:753+:05

SVM Single-Unet 0:871+:02 0:764+:05 0:857+:06 0:914+:06 0:831+:06 0:797+:07

SVM AE - 0:740+:06 0:805+:07 0:891+:07 0:806+:07 0:761+:08

SVM WE - 0:947+:08 0:783+:08 0:913+:07 0:925+:08 0:890+:09

LR Single-PAN 0:853+:03 0:767+:09 0:783+:10 0:902+:08 0:816+:04 0:756+:03

LR Single-Unet 0:871+:02 0:769+:08 0:960+:07 0:967+:09 0:851+:03 0:820+:05

LR AE - 0:771+:07 0:776+:04 0:858+:08 0:806+:10 0:774+:11

LR WE - 0:941+:11 0:883+:07 0:950+:10 0:942+:06 0:914+:10

DT Single-PAN 0:853+:03 0:787+:03 0:760+:11 0:907+:08 0:836+:10 0:784+:07

DT Single-LinkNet 0:867+:02 0:773+:08 0:607+:08 0:809+:09 0:788+:09 0:722+:09

DT AE - 0:726+:07 0:795+:03 0:887+:08 0:794+:04 0:749+:04

DT WE - 0:926+:04 0:733+:10 0:898+:10 0:910+:07 0:870+:10

KNN Single-PAN 0:853+:03 0:833+:08 0:893+:07 0:942+:08 0:883+:03 0:851+:05

KNN Single-LinkNet 0:867+:02 0:812+:06 0:783+:09 0:908+:07 0:844+:08 0:787+:08

KNN AE - 0:769+:04 0:827+:06 0:902+:06 0:822+:05 0:794+:03

KNN WE - 0:899+:03 0:750+:07 0:910+:06 0:894+:09 0:849+:04

SVM Ground-Truth (GT) 1.00 0:820+:07 0:844+:08 0:922+:08 0:864+:08 0:827+:09

SVM GT-Unet-AE - 0:806+:10 0:785+:06 0:892+:04 0:844+:07 0:800+:04

SVM GT-Unet-WE - 0:844+:08 0:768+:06 0:891+:07 0:864+:07 0:820+:07

SVM GT-PAN-AE - 0:781+:12 0:801+:03 0:887+:03 0:827+:09 0:789+:10

SVM GT-PAN-WE - 0:849+:08 0:817+:05 0:908+:09 0:875+:06 0:839+:07

The ensemble row shows the model that utilizes an ensemble of upper features on the HMC-QU dataset. The abbreviations ‘AE’ and ‘WE’ denote the averaging ensemble

and weighting ensemble, respectively. Bold indicates the best performance.

Nguyen et al. 10.3389/fcvm.2023.1185172
compared to a single segmentation model and the performance

across several classifications is consistent. Overall, the model

achieved better performance by using ensemble features.
† Models with the same classifier performed similarly when using

only one feature, on the other hand, ensemble models show

better performance. Using SVM models, for instance, PAN or

UNet segmentation features yielded comparable F1 scores of

0.829 for PAN and 0.831 for UNet. In contrast, the ensemble

SVM model performed better with F1 score of 0.925. This

improvement is rather uniform across classifiers by a

substantial margin.

† Upon comparing the performance of several classifiers, we

found that there exist discrepancies in the approaches

employed. Using an ensemble of two or three features, LR

provided the best performance with F1 score of 0.942, while

SVM, DT, and KNN only achieved F1 scores of 0.925, 0.910,

and 0.894, respectively. When more features are added to the

ensemble, however, this result becomes inconsistent, with

LR’s F1 score dropping to 0.905 and DT’s F1 score reaching

0.931. This finding suggests that classifier selection should be

based on experimentation with all classifiers.

† Regarding the number of features used to construct the model

ensemble. We have experimented with combining two and

three features. We discovered that combining additional

features does not produce better results. In reality, adding

more features to a model might diminish its performance. In

the case of the SVM classifier, adding three features decreased

the F1 score from 0.925 to 0.903. This could indicate that

adding more features to an ensemble could eventually

increase the noise to the final features, eradicating the

effectiveness of the advantage segment.
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† Our ensemble method showed significantly better performance

compared to the average ensemble approach. our method

achieved an F1 score of 0.925, while the average ensemble

approach only achieved an F1 score of 0.806. This

demonstrates the effectiveness of choosing the right regions

from the LV wall, rather than average regions altogether.
Correlation between good segmentation models and accurate MI

classifications. In our experiment, we evaluated the performance of

four different MI detection algorithms. Each algorithm used

features from a weaker segmentation approach (PAN), and more

accurate segmentation techniques (UNet and LinkNet). As shown

in the Table 3, While LinkNet and UNet achieved higher IoU

scores of 0.871 and 0.867, respectively, algorithms that use PAN

features still performed better than LinkNet and UNet with F1

score of 0.836 for DT-PAN and 0.788 DT-LinkNet. When

utilizing ground truth as a feature in both single and ensemble

classifiers, we observed a consistent phenomenon. Specifically, the

MI classification results were lower when employing ground

truth segmentation. These results suggest that, while good

segmentation is important for MI detection, it is not the only

factor that determines the overall performance of the algorithm.

In this case, the combination of advanced segmentation and

effective feature extraction/classification techniques appears to be

crucial for achieving optimal results.

Comparison with previous state-of-the-art method. Table 4

shows the performance of our ensemble models and the previous

state-of-the-art method from (11). In general, our ensemble LR

model with two PAN features outperforms the state-of-the-art

model presented in (11) by a significant margin. The F1 score

for our model is 0.09 higher than the previous model, indicating

that it is able to more accurately predict the outcome of interest.
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TABLE 4 Comparison of performance metrics for our model and state-of-the-art method in a 5-fold cross-validation setting on the HMC-QU dataset,
both methods use the same experimental settings.

Classifier Sensitivity Specificity Precision F1 score ACC
LDA (11) 0.785 0.701 0.838 0.806 0.756

RF (11) 0.802 0.718 0.859 0.825 0.774

DT (11) 0.790 0.586 0.804 0.794 0.726

DT (Ours) 0.926 0.733 0.898 0.910 0.870

SVM (11) 0.859 0.701 0.855 0.852 0.802

SVM (Ours) 0.947 0.783 0.913 0.925 0.890

Bold indicates the best performance.

Nguyen et al. 10.3389/fcvm.2023.1185172
Additionally, when considering other evaluation metrics such as

sensitivity, specificity, precision, and accuracy, our model

consistently outperforms the model from (11). This suggests that

using a larger number of features can be beneficial for improving

the performance of an ML model.

Performance of classification models on external test set. Table 5

shows the result of our ensemble model in comparison with the

single-feature model on the local clinical site, E-Hospital. The

performance of the ensemble model on the external local clinical

test set was found to be highly correlated with the results obtained

on the public data test set. In terms of the F1 score, the ensemble

model achieved a score of 0.824 on the local clinical test set,

which was significantly higher than the score from single-feature

and average ensemble models. This demonstrates the consistency

of our methods on different datasets. Additionally, the best

ensemble model had a sensitivity, of 0.806 on the local clinical test

set, which was again higher than the single feature model and an

average ensemble model. Overall, these results suggest that the MI

classification model is reliable and effective in identifying MI

events in both familiar and novel datasets.

We also discovered that the external test on the local clinical dataset

yielded lower scores compared to the public test set. Specifically, the

model performed with an F1 score of 0.824 on the local clinical

dataset, while it achieved an F1 score of 0.942 on the public test set.

This suggests that the model may not generalize as well to the local
TABLE 5 MI accuracy based on segmentation features with different classifiers
Hospital dataset.

Classifier Model Sensitivity Spec
SVM Single-PAN 0.722 0.

SVM Single-Unet 0.694 0.

SVM AE 0.667 0.

SVM WE 0.806 0.

LR Single-PAN 0.694 0.

LR Single-Unet 0.611 0.

LR AE 0.722 0.

LR WE 0.778 0.

DT Single-LinkNet 0.722 0.

DT Single-PAN 0.694 0.

DT AE 0.722 0.

DT WE 0.806 0.

KNN Single-LinkNet 0.667 0.

KNN Single-PAN 0.722 0.

KNN AE 0.667 0.

KNN WE 0.806 0.

The abbreviations “AE” and “WE” denote the averaging ensemble and weighting ensem

using features from different segmentation models. Bold indicates the best performan
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clinical dataset, possibly due to differences in the distribution of the

data or the specific characteristics of the patient population,

discrepancies in ultrasound machines, or examination protocols

represented in the dataset. Solving this problem may be a task for

future work. There are several potential approaches that could be

pursued in order to address this issue, some possible approaches

could include using different types of ML algorithms, collecting

additional data, or fine-tuning the model parameters in order to

improve performance. Ultimately, it will be important to carefully

evaluate the strengths and limitations of different approaches in

order to identify the most promising direction for future work.
4.3. Model reliability

Table 6 shows the agreement scores between the single-feature

model and ensemble-feature models for different classifiers and a

human expert. A comparison between the single-feature model

and ensemble-feature models shows that the prediction of

ensemble-feature models is more consistent than that of the

single-feature model. For example, the agreement score of the

model’s predictions by SVM single-feature models is 0.74, which

is not so consistent with the human expert (0.96). The

agreement score of ensemble models ranges from 0.79 to 0.82,

the prediction by ensemble models is more similar to that of a
, ensemble row indicate model using an ensemble of upper features on E-

ificity Precision F1 score ACC
583 0.722 0.722 0.667

667 0.758 0.725 0.683

750 0.800 0.727 0.700

625 0.763 0.784 0.733

625 0.735 0.714 0.667

792 0.815 0.698 0.683

708 0.788 0.754 0.717

750 0.824 0.800 0.767

667 0.765 0.743 0.700

750 0.806 0.746 0.717

708 0.788 0.754 0.717

667 0.784 0.795 0.750

542 0.686 0.676 0.617

583 0.722 0.722 0.667

708 0.774 0.716 0.683

625 0.763 0.784 0.733

ble, respectively. The single models used are equivalent to Degerli et al. (11) when

ce.
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TABLE 6 Cohen’s Kappa coefficient of different classifiers, compared
between models using features from a single model, using our
ensemble method and human expert.

Architecture Model Cohen’s Kappa coefficient
SVM Single-Feature 0.74

SVM Ensemble-Feature 0.81

LR Single-Feature 0.73

LR Ensemble-Feature 0.79

DT Single-Feature 0.75

DT Ensemble-Feature 0.82

Human expert 0.96

Here higher scores indicate better agreement among classifiers. Bold indicates

better agreement.
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human expert than that of a single-feature model, but still not

consistent enough to replace a human expert.

We observed no significant difference in consistency among

single-model classifiers using SVM, LR, and DT. The same is

true when we used ensembles, but we found that the DT

ensemble had slightly better performance than the SVM and LR

ensembles, as reflected in agreement scores of 0.82 for LR, and

0.81 and 0.79 for SVM and LR, respectively.

The above assessment shows that ensemble models can be

more accurate than a single model because they can capture a

wider range of patterns and relationships in the data. In this

case, it appears that the ensemble model has a higher agreement

score than the single-feature model, which suggests that it is

making more accurate predictions. This could also be due to the

fact that the ensemble model is able to consider multiple

features, rather than just one, which allows it to better capture

the complexity of the data. Overall, the higher agreement score

of the ensemble model indicates that it is a more effective model

for the MI classification problem.
5. Conclusion

We proposed an accurate and robust deep learning-based

approach for MI detection on echocardiograms. We showed

that accurate segmentation models are not fully correlated with

accurate MI classifiers, indicating that highly accurate

segmentation of the LV is not a key factor for building an

accurate MI detection system. We then proposed an ensemble

method for combining multiple features provided by different

LV segmentation models, which outperformed both single

models and state-of-the-art methods on two echocardiogram

datasets. Compared to these existing approaches, the proposed

method demonstrated significant improvement across all

evaluation metrics. We further illustrated that the proposed

method shows a higher agreement score (Cohen’s kappa value)

than single-feature methods, regardless of the features used.

This high level of agreement suggests that our predictions are

subject to less variation due to different feature extractors,

making our method reliable and well-suited for use in the

classification of MI.
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Our work opens up several potential directions for further

exploration. First, an end-to-end system for MI detection, rather

than the current three-stage approach, should be developed.

Second, further studies can be conducted to investigate the

causes of performance drop on the external dataset and

implement methods for addressing these issues. Third, it might

be interesting to extend our training method into the pretraining

stage to produce better pre-trained models. Additionally, further

exploration of the factors that contribute to the success of

ensemble learning in MI detection could be beneficial for

improving the performance of future models.
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