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Introduction: Atherosclerosis is a progressive disease that develops in areas of
disturbed flow (d-flow). Progressive atherosclerosis is characterized by bulky
plaques rich in mesenchymal cells and high-grade inflammation that can rupture
leading to sudden cardiac death or acute myocardial infarction. In response to d-
flow, endothelial cells acquire a mesenchymal phenotype through endothelial-to-
mesenchymal transition (EndMT). However, the signaling intermediaries that link
d-flow to EndMT are incompletely understood.
Methods and Results: In this study we found that in human atherosclerosis, cells
expressing SNAI1 (Snail 1, EndMT transcription factor) were highly expressed within the
endothelial cell (EC) layer and in the pre-necrotic areas in unstable lesions, whereas
stable lesions did not show any SNAI1 positive cells, suggesting a role for EndMT in
lesion instability. The interleukin-1 (IL-1), which signals through the type-I IL-1 receptor
(IL-1R1), has been implicated in plaque instability and linked to EndMT formation in
vitro. Interestingly, we observed an association between SNAI1 and IL-1R1 within ECs
in the unstable lesions. To establish the causal relationship between EndMT and IL-1R1
expression, we next examined IL-1R1 levels in our Cre-lox endothelial-specific lineage
tracing mice. IL-1R1 and Snail1 were highly expressed in ECs under atheroprone
compared to athero-protective areas, and oscillatory shear stress (OSS) increased IL-
1R1 protein and mRNA levels in vitro. Exposure of ECs to OSS resulted in loss of their
EC markers and higher induction of EndMT markers. By contrast, genetic silencing of
IL-1R1 significantly reduced the expression of EndMT markers and Snail1 nuclear
translocation, suggesting a direct role for IL-1R1 in d-flow-induced EndMT. In vivo, re-
analysis of scRNA-seq datasets in carotid artery exposed to d-flow confirmed the IL-
1R1 upregulation among EndMT population, and in our partial carotid ligation model
of d-flow, endothelial cell specific IL-1R1 KO significantly reduced SNAI1 expression.
Discussion: Global inhibition of IL-1 signaling in atherosclerosis as a therapeutic target
has recently been tested in the completed CANTOS trial, with promising results.
However, the data on IL-1R1 signaling in different vascular cell-types are inconsistent.
Herein, we show endothelial IL-1R1 as a novel mechanosensitive receptor that
couples d-flow to IL-1 signaling in EndMT.
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GRAPHICAL ABSTRACT
1. Introduction

Progressive unstable atherosclerosis is characterized by a thin

fibrous cap, low smooth muscle and high mesenchymal cell

content, with a high grade of inflammation, and is the leading

cause of cardiovascular disease-related death (1). Despite decades

of research on atherosclerosis, the molecular mechanism(s) of

progressive unstable atheroma are only partially understood.

Human studies have suggested that the cellular composition of

plaques is a predictor of plaque instability (2). A sub-endothelial

cell population in unstable lesions with mesenchymal features is

usually associated with the incidence of atheroma in human aortas

(3). Mouse studies using endothelial-specific lineage tracing and

single cell RNA sequencing (scRNA-seq) systems demonstrate that

endothelial cells (ECs) can undergo mesenchymal transition

(EndMT) and form a substantial number of these sub-endothelial

cells (4–7). EndMT, which develops in areas of disturbed blood

flow (d-flow) (6), has been implicated in the progression of

atherosclerosis (8) where EndMT plays an important role in

plaque destabilization by promoting local inflammation (8, 9).

Despite this, the molecular mechanism by which EndMT develops

under d-flow areas remains incompletely understood.

The interleukin-1 (IL-1) signaling pathway has been shown to

play a role in the severity of atherosclerosis progression and

EndMT formation (10). IL-1 is therefore a suitable therapeutic

target for modulation of EndMT that enhances atherosclerosis

stability. The major clinically concluded CANTOS study tested

the therapeutic effect of the anti-IL-1β antibody, Canakinumab,

in a group of patients after myocardial infarction, and showed

31% reduction in cardiovascular and all-cause mortality in

certain, but not all, groups of patients (11). While global

inhibition of IL-1 signaling in this study showed some promising

results, a number of patients developed off-target

immunosuppression effects (12), limiting the global targeting of

IL-1 in atherosclerosis. Another limitation in the field is that

despite extensive studies, there is no clear principal cell type

responsible for IL-1 signaling in human progressive atherosclerosis.

The term Interleukin-1 (IL-1) refers to 2 cytokines, IL-1α and

IL-1β, which signal exclusively through a common receptor, IL-1
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receptor type I (IL-1RI) (13). IL-1 is implicated in several aspects

of plaque instability (14, 15) and IL-1 signaling is linked to

EndMT formation in vitro (16). Global inhibition of IL-1 in

atherosclerosis has been extensively investigated (12, 17).

However, the data on IL-1R1 is inconsistent. In mice, either

global or myeloid specific deletion of IL-1R1 reduces

atherosclerosis (18), whereas cell specific deletion of IL-1R1 in

vascular smooth muscle cells increases atherosclerosis and make

lesions more unstable (19–21). However, in humans with

coronary atherosclerotic disease it is still unclear where and at

which stage of the disease IL-1R1 is expressed.

Previously we and others have shown that in human

coronary atherosclerotic plaques IL-1 is predominantly

expressed within the endothelium (22–24), suggesting a role

for endothelial IL-1 signaling in the pathogenesis of

atherosclerosis. Our published data demonstrated enhanced

signaling activation of interleukin-1 receptor predominantly

within the endothelium of progressive human atherosclerotic

plaques (22, 24). In addition, we showed that this activation is

induced by d-flow in vitro and in vivo (25). Despite all of that,

the signaling roles of IL-1R1 in the endothelium have yet to be

extensively investigated.

Taking into account the important role of EndMT in

progressive human atherosclerosis and IL-1R1 signaling roles, in

this study, we directly assessed IL-1R1 expression and linked it to

EndMT in human atherosclerotic plaques. Furthermore, we

utilized our endothelial specific IL-1R1 KO mice to determine

the endothelial roles of IL-1R1 in d-flow-induced EndMT. Our

study should aid in developing future strategies for targeting

the IL-1R1 within the endothelium to limit atherosclerosis

progression and maintain lesion stability.
2. Materials and methods

The authors declare that all the data supporting the current

study is available either within the article or online data

supplements. All reagents were provided by Fisher Scientific,

USA, unless otherwise stated.
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2.1. Cell culture, siRNA transfection, and
isolation of Il-1r1 knockout cells

HAOECs (Human aortic endothelial cells) (Lot # 1819; Cat. #:

304-05A; Sigma-Millipore) were cultured as previously described

(25) and used between passage 6–8. The cells were grown in 10%

v/v MCDB131 media (GenDEPOT; CM034-300) supplemented

with fetal bovine serum (Sigma; Cat. # F0926), 100 IU Penicillin-

Streptomycin (Sigma, Cat # P4333), 2 mM Glutamax (Gibco,

Cat. #35050), 0.06 mg/ml Heparin Sodium Salt (Thermo-

Scientific, Cat #41121-0010), and 100 µg/ml Corning Endothelial

Cell Growth Supplement (Cat. # CB-40006B).

IL-1R1 was knocked down using SMARTPool siRNA (IL-1R1

siRNA, 50 nM, Cat. #L-005188, DharmaconTM) and Lipofectamine

3000 transfection reagent (Invitrogen, Cat. # L3000-015) according

to the manufacturer’s instructions. Transfection was conducted in

1× OPTIMUM Reduced Media (Gibco; # 31985-070) for 3 h.

Mouse aortic endothelial cells from IL-1R1fl/fl were isolated as

previously described (25). Purity of endothelial cell isolation was

assessed with double immunostaining for CD31 (Anti-CD31, abcam,

ab9498) and smooth muscle actin (Anti-Actin SMA-FITC antibody

CLONE 1a4, Sigma, F3777). Cell transformation was conducted in

LSU Molecular-sub-core. The cells were divided into two 10 cm2

plates and at 70% confluence the cells were treated with either Ad-

CMV-GFP (VECTOR BIOLABs, cat. # 1060, 1 × 108 PFU/ml) as

wild-type (WT) controls, or Ad-GFP-2A-iCre (VECTOR BIOLABS,

cat. # 17772, 2 × 108 PFU/ml) as IL-1R1 knockout (IL-1R1 KO)

cells. The transduction was induced for 72 h. and the GFP positive

cells were sorted using flow cytometry at the LSU Research Core

Facility. The efficiency of IL-1R1 deletion was assessed by measuring

the IL-1R1 mRNA expression using qRT-PCR.
2.2. Oscillatory shear stress experiments

Oscillatory shear stress (OSS, 1 dynes/cm2 with 1 s switching

time; flow rate 2.38 ml/min) was induced by the Ibidi parallel plate

flow system as previously described (26). The cells at a seeding

density of 1 × 106 were plated in channel slides (µ-slide I 0.6 luer;

150 µl per slide) to allow to adhere for 2 h. in 1% (v/v) MCDB131

media. Confluent slides were placed under the flow, Perfusion Set

RED, using Ibidi pump system (IBIDI USA, INC) for 24 h.
2.3. Partial carotid ligation experiments

All the animal breeding and experiments were approved by the

institutional animal care and use committee (Louisiana State

University Health Sciences Center at Shreveport, protocol # P-

23-003 to MA). ApoE (apolipoprotein E-null) knockout

(ApoE−/−), IL-1R1fl/fl (stock No. 028398), ROSA-Stop-Flox-YFP

(stock No. 006148), and VE-cadherin-CreERTtg (stock No.

006137) mice were all purchased from the Jackson Laboratory.

IL-1R1fl/fl were cross-bred in our laboratory with VE-cadherin-

CreERTtg and ApoE−/− mice to create IL-1R1iEC−KO (VE-
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cadherin-CreERT, IL-1R1fl/fl, ApoE−/−) mice. The inducible iEC

lineage-tracing mice were generated in house by backcrossing

(VE-cadherin-CreERT2tg/+, ROSA-Stop-Flox-YFPtg/+, ApoE−/−)

and used for immunofluorescence.

The male sex is at higher risk for atherosclerotic heart disease

(27). Therefore, only male mice were used in the current study.

Male mice at 8–10-weeks of age of IL-1R1iEC−KO and their

littermate controls were injected intraperitoneally with tamoxifen

(Sigma, cat. # T-5648) in peanut oil (0.1 ml at concentration of

45.5 mg/kg ∼1 mg/mouse) daily for 5 consecutive days. The mice

(number in the figure legends) were allowed to recover for 2

weeks before the surgery was conducted. To induce d-flow,

partial carotid ligation was performed as previously shown (25,

28). Briefly, the anesthesia was induced, and the frontal area of

the mouse neck was cleaned and opened by a midline incision.

The left carotid artery was dissected by blunt dissection and the

three branches (internal carotid, external carotid, and occipital

branch) were ligated with 0–6 silk sutures, leaving the superior

thyroid branch intact. The skin incisions were sutured with 0–5

sutures and the mice were hydrated with 0.5% normal saline

(1 ml) and analgesics were administered subcutaneously using

Carprofen (5 mg/kg; Ceva, USA). 2-week post-carotid ligation,

mice were euthanized and left, and right carotid arteries were

collected for RNA analysis as shown (28). The inducible

endothelial deletion of IL-1R1 were verified in mRNAs isolated

from carotid intima using TRizol flush method and that is after

tamoxifen injection, and we measured the intimal expressions of

IL-1R1, CD31, SNAI1 mRNA as we previously described (25, 28).
2.4. Western blotting

Gel electrophoresis was performed on denatured protein

samples using the InvitrogenTM Mini Gel Tank and NuPAGETM

4%–12%, Bis-Tris, 1.0–1.5 mm, Mini Protein Gels, as previously

described (29). Samples of 25 µl protein lysates were loaded per

well and allowed to run in MOPS SDS 1× running buffer for

45 min at 200 V. Wet transfer was performed in 1× InvitrogenTM

BlotTM Transfer Buffer for 1 h. at 20 V. Once the proteins were

transferred to the PVDF membranes (Bio-Rad, Cat. #1620177),

the membranes were blocked in 5% (w/v) non-fat dry milk in

0.01% (v/v) TBST (Tween-Tris-buffered saline) for 1 h. The

membranes were incubated with the desired primary antibodies

(Supplementary Table SI), diluted as appropriate in 1% (w/v)

BSA/PBS (Bovine serum albumin, Sigma, Cat. # A2153)

overnight at 4°C with gentle agitation. The membranes were then

incubated with the secondary antibodies (Peroxidase Affinity

Pure Goat Anti-mouse or Anti-Rabbit IgG, Jackson

ImmunoResearch, Cat. # 115-035-003) for 1 h.

Detection was performed by chemiluminescence using

SuperSignalTM Chemiluminescence substrate (Cat. # 34580) and

scanned using the Bio-Rad ChemiDocTM MP Imaging System.

For quantification, protein densitometry data were quantified

using image j software. Fold changes in the protein expressions

were measured relative to the loading control and to the static

condition as previously demonstrated (25, 28).
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2.5. Immunohistochemistry

Human coronary artery samples were collected in the

pathology department at LSU Health—Shreveport. The collection

was approved by the Local LSU Health Research Ethics

Committee. The samples were stored in 10% v/v formalin until

processing. The tissue samples were Paraffin-embedded and

sectioned at 5 µm on slides. Sections of human coronary

atherosclerotic plaques were blindly stained and scored for lesion

stability criteria by a pathologist at LSU Health—Shreveport.

The stable, moderately stable, and unstable lesions were stained

for H&E staining, which was performed using H&E Stain Kit

(abcam, ab245880) according to the manufacturer’s instructions.

For immunofluorescence staining, it was performed as previously

described (25). After rehydration, sections were heated in

Antigen Unmasking Solution, Citric Acid Based (Cat. # H-3300)

for 10 min in a pressure cooker to retrieve antigen epitopes, then

allowed to cool down for 30 min at room temperature before

they were blocked in 10% (v/v) horse serum in 1% w/v BSA, and

stained with the following primary antibodies at 4°C overnight:

Anti-SNAIL + SLUG (abcam, ab180714, 1:50 dilution), Anti-IL-

1R1 (clone 40101, Abnova, MAB12554, 1:50 dilution), anti-vWF

(abcam, ab11713, 1:100 dilution).

Mouse ApoE−/− species (Jackson Laboratory) were fed high

fat diet (TD 88137, Harlan-Teklad) for 4 weeks to induce

spontaneous atherosclerosis, and tissue was harvested and

stored in 10% (v/v) formalin, until processing as previously

shown (25). Briefly, tissue sections were dewaxed and

rehydrated through graded alcohols to water. Heat-mediated

antigen retrieval was performed as mentioned above and slides

were cooled to room temperature before blocking in 10% horse

serum/1% BSA for 30 min. Streptavidin/Biotin (Vector Labs

Cat. # SP-2002) blocking was performed according to the

manufacturer’s recommendations. Primary antibodies: mouse

Anti-IL-1R1 (R&D Systems, AF771, 0.2 mg/ml, 1:50 dilution),

Anti-CD31 (Clone SZ31) (Dianova, DIA-310, 1:20 dilution) and

Anti-SNAIL + SLUG (abcam, ab180714, 1:50 dilution) were

incubated overnight at 4°C.

Slides were incubated with secondary antibodies after

frequent washing with 0.01% (v/v) TBST for 1 h (1:2,000

dilution each; Donkey anti-mouse Alexa Fluor 555—A32773,

Donkey anti-mouse Alexa Fluor 488—A32766tr, Donkey anti-

rabbit Alexa Fluor 488—A32790tr) or for the CD31 staining

Donkey anti-rat IgG Biotin-SP (Jackson ImmunoResearch, 712-

065-150, 1:100 dilution) at room temperature. All secondary

antibodies were diluted in 10% horse serum/1% BSA. Slides

were washed with 1× PBS three times for 5 min each, then

incubated with Streptavidin DL649 (Vector Labs, SA-5649-1,

1:200 dilution in PBS) for 1 h. After frequent rinsing in PBS

and washing for 5-minute three times, the slides were mounted

in ProlongTM Glass Antifade Mountant containing NucBlue

(P36985). H&E images were captured using Cytation

5. Immunofluorescent images were captured using an EVOS

M5000 microscope (Thermofisher). Analysis was performed

using Image J and the investigators were blinded during the

data collection and analysis.
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2.6. Immunocytochemistry

For cellular immunostaining, the protocol used was adapted

from (28) with slight modifications. Briefly, the cells were fixed

in 3.7% (v/v) paraformaldehyde for 30 min followed by frequent

rinsing in 1× PBS. The permeabilization was performed using

0.01% Triton-X100 in PBS for 10 min, and the slides were

blocked in 10% horse serum/1% BSA solution for 1 h. at room

temperature. Cells were incubated with primary antibodies at

4°C overnight and the primary antibodies used were anti-

CD31 (abcam, ab9498, 1:100 dilution), and anti-N cadherin

(abcam, ab18203, 1:100 dilution). After subsequent washing in

0.01% v/v TBST, the cells were incubated with Alexa Fluor

488 phalloidin (A12379, 1:400 dilution) mixed in 10% horse

serum/1% BSA solution with secondary antibodies (1:1,000

dilution each; Donkey anti-mouse Alexa Fluor 555—A32773,

Donkey anti-rabbit Alexa Fluor 647—A31573) at room

temperature for 1 h. Cells were rinsed thoroughly with 1× PBS

and then slides were mounted in ProlongTM Glass Antifade

Mountant containing NucBlue (P36985). Images were

acquired using an EVOS M5000 microscope.
2.7. Real-Time PCR

mRNA was extracted and isolated using RNeasy Mini Kit

(Qiagen, Cat. # 74104) according to the manufacturer’s

instructions. Reverse transcription and real-time PCR were

conducted as previously demonstrated (25). Ct values of the

target genes were normalized upon the Ct values of the

housekeeping genes (RPL13A and GAPDH). All PCR analysis

was conducted in duplicates and the data are from 4

independent experiments. Primer sequences for the human target

genes used as following: SNA1 Forward (CTCTTTCCTCG

TCAGGAAGC), SNA1 reverse (CGGTGGGGTTGAGGATCT),

GAPDH Forward (GAAGGTGAAGGTCGGAGTC), GAPDH

Reverse (GAAGATGGTGATGGGATTTC), RPL13A Forward

(GCCATCGTGGCTAAACAGGTA), RPL13A Reverse (GTTGG

TGTTCATCCGCTTGC), Vimentin Forward (AGTCCACTGA

GTACCGGAGAC), Vimentin Reverse (CATTTCACGCATCT

GGCGTTC), SMA Forward (GCGTGTAGCACCTGAAGAG),

SMA Reverse (GAATGGCGACGTACATGGCA), VECAD

Forward (CAGCCCAAAGTGTGTGAGAA), VECAD Reverse

(TGTGATGTTGGCCGTGTTAT), CD31 Forward (GAGTCCAG

CCGCATATCC), CD31 Reverse (TGACACAATCGTATCTT

CCTTC). Mouse target genes as following: mGAPDH Forward

(CTTCACCACCTTCTTGATGTC), mGAPDH Reverse (CTTCA

CCACCTTCTTGATGTC), mB2MG Forward (CAGTCGCGGT

CGCTTCAGTC), mB2MG Reverse (CAGTATGTTCGGCTTCCC

ATTC), mSnai1 Forward (CTTGTGTCTGCACGACCTGT),

mSnai1 Reverse (CTTCACATCCGAGTGGGTTT), mCD31

Forward (GGAGTCAGAACCCATCAGGA), mCD31 Reverse

(CAGCTGGTCCCCTTCTATGA), mIl1r1 Forward (GAATGACC

CTGGCTTGTGTT), mIl1r1 Reverse (TGTGCTCTTCAGCC

ACATTC).
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2.8. Bioinformatics analysis

All bioinformatics analysis were performed in R. The RNA

microarray data was processed by “Limma” R package (30) and

visualized by “EnhancedVolcano” (31) and “pheatmap” (32).

Single cell RNA seq data was analyzed by “Seurat” (33).
2.9. Statistical analysis

Data is analyzed as mean ± standard error of the mean (SEM)

using GraphPad prism software (Version 9.5, GraphPad, San

Diego, CA). For multiple comparisons, data were analyzed by 1-

Way ANOVA followed by Tukey’s post-test to compare data

with one independent variable, whereas for the multiple

comparisons of data with two independent variables we used 2-

Way ANOVA and Bonferroni’s post-test. An unpaired student’s

t-test was used to compare two different datasets. Statistical

significance was achieved when p < 0.05.
3. Results

3.1. IL-1R1 expression is associated with
EndMT in human unstable atheroma

Previously we and others have shown that IL-1 in human

coronary atherosclerotic plaques is predominantly expressed within

the endothelium (22–24), demonstrating a role for endothelial IL-1

signaling in the pathogenesis of atherosclerosis. However, the data

on its receptor, the IL-1R1, its site of expression in human

atherosclerotic plaques are still unclear. Therefore, we analyzed

sections of human coronary atherosclerotic lesions to detect the

cell type-specific expressing IL-1R1. To further explore whether

the expression of IL-1R1 is altered by the advanced stages of

atherosclerosis, we categorized the human progressive

atherosclerotic plaques into two grades, either IV or V as per the

AHA recommendations (34). These lesions were further

categorized into very stable, moderately stable, and unstable lesions

depending on the stability characteristics that are established by

(1) using extensive histological landmarks and blindly assessed and

graded by a pathologist at Louisiana State University Health

Sciences Center at Shreveport (Figure 1A).

To investigate IL-1R1 expression between the three

phenotypically different stages of human atheroma, the lesions

were stained for IL-1R1, Snail1 (EndMT transcription factor),

and von-Willebrand factor: vWF (Endothelial marker)

(Figures 1B–E). Interestingly, lesions that are very stable show

predominant expression of IL-1R1 within the endothelium and

hardly any Snail1 expression, suggesting that EndMT is not

happening in the stable human atherosclerosis (Figure 1B).

Surprisingly, we observed an increased expression of IL-1R1

mainly in a sub-endothelial population that are co-expressing

Snail1 and vWF (Figures 1C–E). The increase in Snail1and IL-

1R1 proteins were significantly higher in unstable lesions
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compared to moderately stable lesions (Figures 1D,E)

Furthermore the association between IL-1R1 and Snail1

expressions in unstable lesions was very significant (p = 0.0032)

(Figure 1F). Collectively, the data demonstrates that IL-1R1 is

expressed predominantly in endothelial cells in stable advanced

human atherosclerotic plaques, however, the expression of IL-

1R1 is increased in EndMT in unstable human atherosclerosis.

To confirm the causal association between IL-1R1 and EndMT

in human unstable atherosclerosis, we first re-assessed the relative

expression of active IL-1R1 and EndMT genes in macroscopically

intact tissue vs. atheroma tissue from an online dataset

(GSE43292) (35). The selected dataset was used because it

provides a direct assessment to the list of genes that are

upregulated in the intimal area of human unstable lesions and

compared them with a macroscopically intact area from the same

patient. In the original study, the endarterectomy specimens were

characterized histologically according to the AHA and most

atheroma samples were presented at stage IV and V lesions, and

the macroscopically considered as “intact tissue” was almost

exclusively composed of stage I and II lesions (35).

The groups of genes that are differentially expressed between

either the macroscopically intact (areas surrounding the

atheroma from the same patient samples) or atheroma tissue

(from carotid endarterectomy samples) of n = 32 human subjects

each were re-analyzed for genes that are involved in IL-1R1

activation mainly IRAK1/4 (Interleukin-1 Receptor Associated

Kinase 1/4) and NFKB1 (nuclear factor kappa B1), and EndMT

transcriptional factors SNAI1 (Snail1) and SNAI2 (Snail2), which

were further blotted using a heat map (Figure 2A).

Interestingly, we examined the relative expression IL-1R1,

IRAK1, NFKB and SNAI1) and found a significant differences in

these genes’ levels with a marked increase in the atheroma

compared to intact tissues (Figures 2B–E). Collectively, these

findings suggest that the EndMT and active IL-1R1 are highly

expressed in human severe atherosclerotic lesions as compared to

intact tissues, and may suggest that the regional expressions of

IL-1R1 and EndMT is induced by local factors rather than

systemic effects.
3.2. IL-1R1 expression is associated with
EndMT under areas of disturbed blood flow

Atherosclerosis develops at sites of local endothelial cell (EC)

activation, where a shift in endothelial cell phenotype in response

to d-flow occurs (6, 36). The molecular mechanism by which

ECs switch their phenotypes under d-flow areas is incompletely

understood. D-flow (a low amplitude and a multi-directional

force) (37) is present in certain parts of the arterial tree, such as

the lesser curvature of the aortic arch, whereas the athero-

protective high amplitude and unidirectional (laminar) flow is

present in other areas, such as the greater curvature of aortic

arch (38) (Figures 3A–D). EndMT has been shown to be

induced by d-flow at the atheroprone areas (36, 39). Having

shown that IL-1R1 expression is locally increased in human

unstable atherosclerosis and that is associated with EndMT, we
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FIGURE 1

EndMT in human unstable atheroma is associated with IL-1R1 expression. (A) Sections of human coronary atherosclerosis graded into very stable,
moderately stable, and unstable lesions according to AHA recommendations and stained with H&E, scale bars = 1,000 µm, black boxes indicate the
areas of interest that were stained for immunofluorescence and captured in B. (B,C) Human lesions were stained for IL-1R1 (white), vWF (green) and
Snail1 (red) and showing increase expressions between these proteins within unstable lesions. Scale bars = 100 µm, white box indicates the higher
magnification area demonstrated in (C), scale bar in C indicates 50 µm. (D,E) Semi-quantification to the expression levels of IL-1R1 and Snail1 (Mean
Intensity) per high power field (HPF) and F is an analytic correlation between Snail1 and IL-1R1 expressions in unstable lesions, red dots indicate the
95% Confidence Intervals, Pearson r= 0.9808, p (two tailed) = 0.0032. Data are from n= 5 different human samples, and are mean ± SEM, analyzed by
1-way ANOVA and Tukey’s post-test, **p < 0.01, ns, non-significant.
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first asked if IL-1R1 is expressed under areas of d-flow, and if that is

associated with EndMT. As expected, in mice with an

atherosclerosis phenotype, IL-1R1 expression is predominant in

the atheroprone areas as assessed by immunofluorescence and no

IL-1R1 staining was detected in the athero-protective area of the

aortic arch (Figures 3B,C).

To establish the relationship between EndMT and IL-1R1

expression we stained the aortic arch of our EC-specific lineage

tracing mice (Figure 3D). The endothelial specific expression of

IL-1R1 under d-flow areas was confirmed by a co-localization

with CD31 and that coincides with Snail1 expression, only in the

atheroprone areas (Figure 3D), confirming the association

between IL-1R1 and d-flow-induced EndMT. Furthermore, we

examined the effect of laminar (LSS) and oscillatory shear stress

(OSS) on IL-1R1 and SNAI1 mRNA expressions in vitro in

HAOECs. Compared to static condition, LSS did not significantly

alter the mRNA levels of IL-1R1 nor SNAI1 (Snail1) in our in

vitro flow system. Interestingly, OSS significantly increased IL-

1R1 and SNAI1 mRNA expressions compared to static

conditions (Figures 3E,F). We confirmed the changes in IL-1R1

at protein levels in vitro and relative to the athero-protective LSS,

the atheroprone OSS significantly increased IL-1R1 protein

expression with p < 0.01 (Supplementary Figure S1).
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These findings further demonstrate that IL-1R1/Snail1 are

induced by OSS and supports the potential role that IL-1R1

might play in d-flow-induced EndMT.
3.3. IL-1R1 knockdown prevents OSS-
induced EndMT in vitro

Recent studies have demonstrated that d-flow promotes

EndMT formation (36, 40, 41). However, the signaling

intermediaries that link the mechanical d-flow to EndMT are still

unclear. During EndMT, endothelial cells express mesenchymal

markers such as N-cadherin, alpha smooth muscle actin (α-

SMA), vimentin, in addition to the induction of the

transcriptional factor Snail1. These mesenchymal markers drive

the phenotypic changes in ECs that involve loss of EC markers

such as VE-cadherin and CD31 by a Snail1 gene upregulation,

and subsequent loss of cell-cell contacts (Figure 4A) (8, 42–44).

To determine if IL-1R1 is involved in induction of d-flow-

induced EndMT, we first examined silencing of IL-1R1 using

SMARTpool siRNA to IL-1R1 (IL-1R1 siRNA) in vitro in

HAOECs and then the cells were subjected to OSS using the

Ibidi flow system for 24 h (Figures 4B–D). EndMT induction by
frontiersin.org
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FIGURE 2

EndMT and IL-1R1 complex are highly expressed in human atheromatous lesions compared to intact tissue. (A) GSE43292 dataset was analyzed and (B)
the heat map to SNAI1, IRAK1, NF-kB, IRAK4, IL-1R1 and SNAI2 was shown. (B–E) expression levels of the IL-1R, IRAK1, NFKB1 and SNAI1 genes from n= 32
individuals per group, the value (intensity) of each probe represents the RNA expression level. Data was analyzed as mean ± SEM, and statistical analysis
was conducted by unpaired t test, *p < 0.05, **p < 0.01.
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the athero-prone OSS was assessed using a combination of

immunofluorescent staining. Compared to mock control, IL-1R1

siRNA treated cells showed a remarkable reduction in N-

cadherin (mesenchymal cell marker) and an increase in the

endothelial CD31 (endothelial cell marker) expression after OSS

exposure (Figure 4B). Consistent with this, OSS increased Snail1

nuclear translocation in mock cells, which was significantly

decreased in IL-1R1-deleted ECs (Figures 4C,D).

To assess the protein and mRNA levels of endothelial and

EndMT markers by OSS, we measured proteins using Western

blot and mRNA levels using qRT-PCR (Figure 5) in mock vs.

IL-1R1 deleted ECs. The transfection efficiency of IL-1R1 siRNA

in HAOECs was confirmed (Figure 5A). Consistent with our

immunofluorescent staining, OSS induced an upregulation in N-

cadherin and α-SMA protein and mRNA levels (Figures 5B–D)

and vimentin mRNA expression (Figure 5D) in the mock

control, whereas IL-1R1 siRNA pre-treatment in ECs showed a

significant decrease in the induction of these markers even after

the OSS exposure (Figures 5B–D). Furthermore, OSS induced a

downregulation in endothelial markers, which was prevented in

IL-1R1 siRNA cells (Figures 5E,F). Likewise, in mouse IL-1R1

KO ECs that were exposed to OSS, the induction in the EndMT

marker was remarkably decreased compared to WT cells

(Supplementary Figure S2).

Collectively, the data suggests that IL-1R1 is implicated in an

upstream signaling to the mesenchymal phenotype in HAOECs

when exposed to the athero-prone oscillatory flow.
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3.4. IL-1R1 knockdown prevents
OSS-induced EndMT in vivo

To confirm that IL-1R1 is induced by d-flow in vivo and that

this induction is associated with EndMT, we re-analyzed an

online dataset (Bioproject #PRJNA646233) from EC-enriched

single cell RNA seq analysis after a mouse partial carotid

ligation surgery (6). The sc-RNA seq was comprised of

transcript expression results of left carotid artery (LCA: exposed

to the atheroprone d-flow) and right carotid artery (RCA:

exposed to the athero-protective laminar flow) obtained at 2

days and 2 weeks post-ligation. We first re-blotted the EndMT

population and compared their induction levels under different

time points in both RCA and LCA (Figure 6A). Our re-analysis

confirmed the induction of EndMT cells in the ligated LCA

compared to the unligated RCA after 2 weeks. Next, we re-

tested the differential expression of IL-1R1 in the ligated LCA

and un-ligated RCA among the EndMT population between 2

days and 2 weeks. Interestingly, we observed a significant

increase in IL-1R1 expression in the ligated LCA (d-flow

induced) compared to un-ligated RCA (laminar flow) after 2

weeks (Figure 6B).

To determine if IL-1R1 directly contributes to EndMT

induction by d-flow in vivo, we used our own mouse model of

Control-iEC (VE-cadherin-CreERT2tg/+, ApoE−/−) and

IL-1R1iEC−KO (VE-cadherin-CreERT2tg/+, IL-1R1flox/flox,

ApoE−/−) mice. After tamoxifen injection, we confirmed the
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FIGURE 3

IL-1R1 expression is associated with EndMT under disturbed blood flow areas. (A) Representative image of Oil O Red-stained aortic arch section of ApoE
KO. Scale bars = 1 mm. Dash boxes represent the athero-resistant and atheroprone areas. (B,C) Immunofluorescent staining of IL-1R1 (red) and CD31
(green). Scale bars = 50–100 µm. (D) Shows immunofluorescence staining of CD31 (purple) Snail (red) and IL-1R1 (green) in atheroprone and athero-
resistant areas in the EC-specific lineage tracing mice, YFP positive expression in ECs as stained by GFP (grey) (n= 3). Scale bars = 500 − 100 µm. (E,F)
Human aortic ECs (HAOECs) exposed to laminar shear stress (LSS 10 dynes/cm2; mimicking in vivo athero-protective flow and oscillatory shear stress
(OSS; 1 dynes/cm2; mimicking in vitro atheroprone flow) for 24 h. and lysed and mRNA was quantified using qRT-PCR for IL-1R1 (E) and SNAI1 (F).
Data are represented as mean ± SEM, and 1-way ANOVA and Tukey’s post-test test, *p < 0.05, n= 4 independent experiments.
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induced IL-1R1 downregulation within the intima of the IL-

1R1iEC−KO mice compared to Control-iEC (Supplementary

Figure S3). The experimental groups, Control-iEC and IL-

1R1iEC−KO were subjected to the partial carotid ligation

surgery to induce d-flow in the LCA. EndMT gene SNAI1 and

endothelial CD31 were measured following isolation of

intimal mRNA by qRT-PCR after 2 weeks post-ligation

(Figures 6C,D). Consistent with our in vitro findings, the

intimal mRNA levels of SNAI1 were remarkably increased by

d-flow following the ligation of LCA in the control mice and

that was significantly decreased in IL-1R1iEC−KO mice

(Figure 6C). By contrast, d-flow induction in the ligated LCA

reduced CD31 mRNA levels in control animals and that was

significantly increased in IL-1R1iEC−KO (Figure 6D).

Collectively, these results demonstrate that IL-1R1 inhibition

in mice prevents d-flow-induced EndMT and maintain the

EC phenotype.
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4. Discussion

Accumulative evidence has demonstrated the phenotypic

transition of endothelium to EndMT in human atheroma, and

new emerging evidence with the single cell RNA studies have

been reported on the presence of EndMT in mouse

atherosclerotic plaques (43–45). D-flow is one of the main

triggers to EndMT formation (36, 39), however, there is little

evidence on the signaling intermediaries that link d-flow to

EndMT formation. Herein, we described a novel role for

endothelial IL-1R1 in d-flow-induced EndMT in vitro and in

vivo. We found for the first time, that IL-1R1 is predominantly

expressed in endothelium of human coronary stable

atherosclerotic plaques. The endothelial expression of IL-1R1 is

increased in unstable lesions and is associated with the EndMT

transcriptional factor Snail1. In our endothelial cell-specific

lineage tracing mice, we observed the predominant expression of
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FIGURE 4

IL-1R1 knockdown prevents OSS-induced EndMT in vitro. (A) Module of Endothelial phenotypic switches to EndMT in atherosclerosis. (B)
immunofluorescent images of mock vs. IL-1R1 siRNA HAECs subjected to oscillatory shear (OSS; 1 dynes/cm2 for 24 h), from n= 3. The cells were
stained for Phalloidin (F-actin, purple), N-cadherin (red; mesenchymal marker), and CD31 (green; endothelial marker). (C,D) Immunofluorescent
images of Snail1 (red) and DAPI (white: shows nuclei) in mock vs. IL- 1R1 siRNA HAOECs subjected to oscillatory shear (OSS; 24 h) and assessed for
Snail1 nuclear translocation. Snail1 nuclear translocation was compared between IL-1R1 siRNA cells and mock controls in static and OSS conditions.
Data are mean ± SEM, multiple unpaired t test, ***p < 0.001, n= 6 independent experiments. Scale bars = 400− 100 µm.

Kidder et al. 10.3389/fcvm.2023.1190460
IL-1R1 and Snail1 in areas exposed to d-flow. Inhibition of IL-1R1

resulted in down-regulation of EndMT markers after OSS exposure

in vitro. Importantly, in our endothelial cell-specific IL-1R1 KO

mice we confirmed the direct effect of IL-1R1 inhibition on

d-flow-induced EndMT in the partial carotid ligation model.

Endothelial-to-mesenchymal transition (EndMT) is a process

whereby endothelial cells undergo a series of molecular events

that lead to phenotypic changes towards mesenchymal cells (40).

EndMT plays a fundamental role during development (46) but

there is a mounting evidence now that suggests EndMT is also

involved in atherosclerosis (36, 39, 43). EndMT is characterized

by multiple morphological and physiological changes, including

loss of endothelial cell polarity, and disruption of intercellular

junctions (42), so they can migrate in plaques. EndMT has been

identified in progressive atherosclerotic plaques, and the extent of

EndMT observed in the human plaques strongly correlates with

the severity of the disease (43), implying clinical relevance of

EndMT in the pathogenesis of atherosclerosis. However, the field

faces several uncertainties regarding at which stage of human

atherosclerosis EndMT appears to occur, and how that
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contributes to lesion stability, especially in the advanced stages

where patients presented in the clinic with the symptoms of

acute coronary syndrome. Our data using a blinded staging

system and following the AHA recommendations for plaque

characteristics (1, 2) detected EndMT in unstable stages IV and

V human coronary atherosclerosis, whereas we did not observe

EndMT in the stable stages. This finding is important as it

implies that EndMT is involved in plaque stability, however,

further characterization studies on their roles are warranted.

Interleukin-1 (IL-1) refers to two closely related cytokines

IL-1α and IL-1β (47). Of the two, the leaderless cytokine IL-1β

has been extensively investigated, and it has been shown to be

involved in every stage of atherosclerosis from early lesion

formation to progressive late-stage lesions (48). Global targeting

of IL-1β demonstrated a decrease in atherosclerosis burden in

mice (49, 50). Subsequently, the major clinical trial of inhibiting

IL-1β with an antibody, canakinumab, administered in patients

with myocardial infarction was concluded in 2017 showing a

major reduction in cardiovascular mortality in sub-sets of

patients. In this study, the magnitude of inflammation achieved
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FIGURE 5

HAOECs were transfected with siRNA targeting IL-1R1 or mock and exposed to oscillatory shear stress (OSS) for 24 h. Cells lysates were collected for
proteins of IL-1R1 (A), N-Cadherin (B), α-SMA (C), or mRNA (D). Protein or mRNA levels of endothelial markers Ve-Cadherin (E), and CD31 (F) were
quantified using Western blot or qRT-PCR. Data analyzed by 2-way ANOVA and Bonferroni’s post-test; *p < 0.05, **p < 0.01, representative blots are
from n= 4–5 independent experiments.
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in patients with high IL-6 and CRP was directly related to the

magnitude of the clinical benefits of using anti-IL-1 (51),

confirming the role of inflammation in CAD. However, some of

those patients developed immunosuppressive off-target effects

(11), which could be mitigated with an antibiotic regime (52).

While in atherosclerosis it could be beneficial to inhibit immune

cell infiltrations as evident that treatment with anti-IL-1B can

provide additional cardio-protective benefits by reducing

leukocyte recruitment to the atherosclerotic plaque as well as

reducing its size (53). Nevertheless, the off-target effects on

innate immune response maybe due to the systemic rather than

local inhibition of IL-1.

Intriguingly, two different research groups showed that

inhibiting of IL-1β signaling in vascular wall rather than systemic

inhibition is responsible for the beneficial effect on

atherosclerosis burden reduction. Global IL-1R1 deletion in mice

had significantly less atheroma and seems to not be altered in

bone marrow transfer experiments (19), suggesting that vascular

wall inhibition rather than myeloid inhibition is responsible (54).

However, within the vascular wall, the data on IL-1R1 are still

conflicting as to which cell-type specific IL-1R1 could be
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inhibited. Smooth muscle specific deletion of IL-1R1 showed

high proinflammation and more instability features, whereas

macrophage-specific deletion of IL-1R1 demonstrated less

inflammation and more stable characteristics (20). In patients,

there is no clear evidence on which one of the vascular wall cells

is responsible for IL-1R1 effects, and whether the signaling

through the receptor is different in different cell-types. Our study

is the first to demonstrate an enhanced IL-1R1 expression in

human atherosclerosis stages IV and V, and that is

predominantly within the endothelium. While multiple studies

on IL-1R1 have been diverse and even controversial, our study

found that IL-1R1 expression is increased in the endothelium

and that coincides with the appearance of EndMT in unstable

lesions. These results align with the previously reported findings

illustrating the predominate expression of IL-1β within the

endothelium in human coronary atherosclerosis (24, 29),

suggesting the critical signaling of IL-1 within the endothelium.

Moreover, we found that the IL-1R1 expression is enhanced

under d-flow areas. Both disturbed blood flow (d-flow) and IL-1

have been implicated in EndMT (36, 44). The signaling pathway

that links d-flow and EndMT is still unclear. Our recent work
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FIGURE 6

IL-1R1 knockout prevents d-flow-induced EndMT in vivo. (A,B) sc-RNA seq datasets (Bioproject #PRJNA646233) are re-analyzed. (A) EndMT clusters
were induced by d-flow after 2 weeks of left carotid artery ligation (LCA) maximum after 2 weeks (LCA_2W). (B) IL-1R1 (Il1r1) expression levels in left
carotid artery (LCA) compared to right carotid artery (RCA) 2 days (2D) and 2 weeks (2W) post-ligation. (C) Intimal mRNA levels of SNAI1 and CD31
(D) were compared 2 weeks after ligation between Control-iEC and IL-1R1-iEC mice. Data are mean ± SEM, analyzed by multiple unpaired t test, n=
6 mice per condition, *p < 0.05, **p < 0.01.
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has demonstrated that d-flow induces interleukin-1 receptor

signaling kinase within human and mouse progressive

atherosclerosis (25). Interestingly, our current study determines

the dynamic interplay between disturbed flow and IL-1 signaling

in EndMT, as we showed that deletion of IL-1R1 in vitro and in

vivo significantly prevented d-flow-induced EndMT. EndMT is a

spectrum of phenotypic changes in ECs and whether inhibition

of IL-1R1 mediated EndMT in atherosclerosis is yet to be

investigated and future studies from our laboratory will focus on

dissecting the downstream pathway(s) involved.
4.1. Limitation of the study

Our study provides the first assessment to the mechanical

response of endothelial IL-1R1 to disturbed flow and EndMT

formation in vitro and in vivo. Our study has strengths as well as

some limitations. Firstly, we performed experiments on ApoE

KO mice to study endothelial-specific IL-1R1 deletion on

disturbed flow-induced EndMT. Our first observations on the

association between IL-1R1 and Snail1 in human unstable

atherosclerosis where the lesions exhibit more complex and

advanced phenotype than that to the mice. The use of mice to

study human pathology has some inherent limitations, which

should be considered before any conclusions can be drawn. Mice

do not usually develop atherosclerosis, due to the high protective
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HDL-C in their plasma, therefore, by knocking out ApoE and

feeding the mice on a high fat diet for 4 weeks, we assessed the

earliest possible changes in the vasculatures. We are not

expecting the lesions that are developed in our mouse model to

be phenotypically similar to that in humans, especially with the

advanced stage IV and V lesions. This could explain why the

staining pattern in mice is substantially different than that in

humans. Secondly, we assessed the mRNA expressions of Snail1,

CD31, and IL-1R1 in the intimal samples of ligated LCA and

un-ligated RCA after the partial carotid ligation surgery in the

Control-iEC and IL-1R1iEC−KO animals. It could be there is some

contamination in the samples with the medial mRNAs. However,

we used a standard method by TRIzol flush after tissue

harvesting, and tested the purity of the isolation as established by

our research group (25, 28) and others (6, 55).
4.2. Clinical significance of the current
study

Coronary artery disease (CAD) accounts for ∼600,000 deaths/

year in the USA, contributing to significant morbidities (56).

Atherosclerosis, an underlying disease process of CAD, is

characterized by abnormal accumulation of lipids and

proinflammatory cells within the vascular wall (57) which can

rupture, leading to sudden death or acute myocardial infarction
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(58). While current treatment strategies, including percutaneous

coronary intervention, are used to improve the quality of life, they

fail in preventing the severity of disease (59), leading to an urgent

need for uncovering novel and specific therapeutic targets to

prevent atherosclerosis-induced mortality. Early clinical observations

suggest that atherosclerosis occurs at the arterial sites of disturbed

blood flow (d-flow) (60). In response to d-flow, endothelial cells

(ECs) acquire a mesenchymal phenotype through endothelial-to-

mesenchymal transition (EndMT) (36, 40). EndMT is implicated in

the progression of atherosclerosis, where it leads to plaque

destabilization by promoting local inflammation (8). Interleukin-1

(IL-1) is highly implicated in atherosclerosis progression (19–21,

61) and development of EndMT (16). The therapeutic approach of

blocking IL-1 using an antibody, Canakinumab, significantly

reduced mortality rates in CAD patients (12, 62) but it also

induced systemic off-target effects due to low circulating leukocyte

counts (12), limiting the global targeting of IL-1. Thus, although

inhibition of IL-1 is a great strategy to prevent progression of

atherosclerosis, we need novel therapeutic targets for specific

inhibition of IL-1 within the vascular wall to avoid systemic off-

target effects on immune cells (47).

In conclusion, global inhibition of IL-1 in patients with

underlying atherosclerosis has already been tested in the

completed CANTOS study with some promising effects (11).

However, the data on interleukin-1 receptor IL-1R1 in mice are

still conflicting (20, 21). Herein with our results, we showed that

endothelial IL-1R1 expression is implicated in unstable atheroma

undergoing EndMT. Furthermore, our study illustrates a crosstalk

between d-flow and IL-1R1 in endothelial cells and demonstrates

a novel role for the endothelial IL-1R1 expression in EndMT

formation after d-flow exposure, which represents a new

direction for potential precision therapy by targeting IL-1R1

within the endothelium. This might lead to better strategies in

managing progressive atherosclerosis and maintaining plaque

stability in patients.
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