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Cardiovascular diseases (CVDs) are the leading cause of death worldwide.
Currently, cardiovascular disease risk algorithms play a role in primary
prevention. However, this is complicated by a lack of powerfully predictive
biomarkers that could be observed in individuals before the onset of overt
symptoms. A key potential biomarker for heart disease is the vascular
endothelial growth factor (VEGF-A), a molecule that plays a pivotal role in blood
vessel formation. This molecule has a complex biological role in the
cardiovascular system due to the processes it influences, and its production is
impacted by various CVD risk factors. Research in different populations has
shown single nucleotide polymorphisms (SNPs) may affect circulating VEGF-A
plasma levels, with some variants associated with the development of CVDs, as
well as CVD risk factors. This minireview aims to give an overview of the VEGF
family, and of the SNPs reported to influence VEGF-A levels, cardiovascular
disease, and other risk factors used in CVD risk assessments.
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Introduction

Cardiovascular diseases (CVDs) are defined by the World Health Organization as a

group of disorders that affect the heart and blood vessels in terms of structure or blood

supply (1). Notable examples of CVDs that are a leading cause of death globally include

coronary heart disease (CHD), acute coronary syndrome (ACS) and congenital heart

disease (2). CHD involves inadequate coronary blood supply, which may arise from a

blockage in the coronary arteries usually following progressive narrowing of the lumen of

atherosclerotic blood vessels (3). Given the multifactorial nature of CVDs, there are

reviews available that explore in greater detail specific diseases such as coronary artery

disease (CAD) (4), CHD (5), the underlying mechanism of atherosclerosis (6, 7) and the

relationship of these diseases with specific variables (8, 9).

Overall, risk factors for CVDs can be grouped as modifiable or non-modifiable. The

modifiable risk factors involve lifestyle circumstances that can be behavioral (diet, physical

activity, exercise, smoking, alcohol) or metabolic (circulating lipid levels and glucose

levels) in nature (8). Whereas, age, genetics and ethnicity of individuals are the non-

modifiable risk factors. This distinction informs the diagnosis of CVDs by determining

which critical variables should be included in CVD risk assessments. Critical factors

employed have included age, hypercholesterolemia, high density lipoprotein (HDL)

cholesterol levels, gender, smoking, diabetes, and systolic blood pressure (10).

Genetic determinants are important non-modifiable risk factors for CVDs that have

been studied intensively since the early 21st century (11–13). The influence of genetic

factors on CVD development was initially explored through family history studies focused
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2023.1190513&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fcvm.2023.1190513
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1190513/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1190513/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2023.1190513
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Meza-Alvarado et al. 10.3389/fcvm.2023.1190513
on single gene disorders during the 1980 s (4, 14). Most CVDs are

now considered to be polygenic disorders impacted by

susceptibility and disease-linked genes, with major impacts from

lifestyle and environmental factors (14). Susceptibility genes are

associated with an increase or reduction in the risk of developing

a disease. Comparatively, disease-linked genes are those whose

expression is linked to a pathological phenotype (4). Both

susceptibility and disease-linked genes can influence the

regulation of other genes and/or factors that are directly involved

in the pathobiology of different CVDs. The genetic basis for

CVDs such as CAD and CHD has been reviewed in greater

detail elsewhere (11, 15–17).

Considering this genetic complexity, numerous studies have

focused on identifying associations between genetic variants and

common cardiovascular disease traits (15, 18–21). This has been

supported with the establishment of genome wide association

studies (GWAS), which employ technologies that detect many

gene variants simultaneously (22). The predominant variants

identified through GWAS are single nucleotide polymorphisms

(SNPs) (15, 22–24). SNPs can be located within a protein-coding

region, where they may display a functional effect, but they can

also be in non-coding and regulatory areas of the genome (e.g.,

introns, enhancer, etc.). Moreover, SNPs can play a regulatory

role by impacting gene expression and protein concentration if

they are located within genetic elements such as transcription

factor binding sites, splicing regions, enhancer, promoter, or

silencer regions (23, 25). These are often called expression

quantitative trait loci (eQTLs) and explain a proportion of the

genetic variance of a particular phenotype (26). SNPs can also
FIGURE 1
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influence coding regions located within the same loci (cis-acting)

or interact with coding regions of other chromosomes or distant

loci on the same chromosome (trans-acting) (27, 28). Specifically,

SNP variants can influence CVD risk through traditional risk

factors, such as plasma lipid levels and blood pressure (11, 27, 28).

Overall, SNP variants can have several potential effects on any

given gene as summarized in Figure 1. One example covered in

this review is VEGFA, which impacts the cardiovascular system

through angiogenesis and increased endothelial cell activity.

Coupling our understanding of CVD pathogenesis with

associations of regulatory SNPs with coronary biomarkers, there

is potential for the combined use of CVD-relevant genetic risk

scores (cvdGRS) in risk prevention (30). This involves using

multiple SNPs identified from GWAS studies in different

populations and these SNP variants can be associated with

clinical outcomes or risk factors (30, 31). Overall, the goal of

cvdGRS is to aid in patient risk stratification and treatment

(22, 28, 31–33). The functional effects of the SNP variants may

provide evidence to underpin a clinical framework for

prevention, treatment, and in severe cases, genetic counselling in

primary care (22, 31, 34, 35).
VEGF overview

A molecule of interest in the development and progression of

CVDs is the vascular endothelial growth factor (VEGF-A), a

member of the platelet-derived growth factor (PDGF)/VEGF

family (36, 37). This growth factor is involved in blood vessel
re a SNP may be located include gene promoters, enhancers, introns,
te hypothetical changes that could decrease or increase interactions or
al for an increase or decrease in activity through a variety of molecular
ally regulated levels of VEGF-A. (B) In the presence of a risk factor (e.g.,
y be altered activity of genomic regions or transcription factors leading
els and/or activity. (C) Presence of a non-normal range risk factor (e.g.,
ity of genomic regions or transcription factors leading to altered VEGF-A
hanges illustrated in scenario B and C may impact expression of genes
m). Adapted from (29). Created with BioRender.com.

frontiersin.org

mailto:BioRender.com
https://doi.org/10.3389/fcvm.2023.1190513
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Meza-Alvarado et al. 10.3389/fcvm.2023.1190513
formation, with reported impacts on the development of CVDs, as

well as potential recovery (38, 39). VEGF-A was originally referred

to as a vascular permeability factor, with activity observed in tumor

cells from rodents (40). In 1989 several research groups identified

that this factor selectively promoted the migration of vascular

endothelium and induced angiogenesis in vivo (41–43). Based on

these findings, factors with this activity were renamed and

classified as members of the VEGF family (43).

The VEGF family are glycoproteins expressed under the

regulation of soluble mediators such as growth factors or cytokines

(39, 44, 45). They are involved in the regulation of blood vessel

formation through endothelial cell differentiation or from existing

blood vessels (44, 46). Additionally, the VEGF family is involved in

lymphangiogenesis, endothelial cell survival and vascular

permeability regulation, amongst other functions (44, 47). However,

alterations in their functionality have also been associated with the

development of atherosclerosis, CHD, tumor formation,

neovascularization, and other pathologies including cancer, diabetic

retinopathy, preeclampsia, and endometriosis (23, 39, 47, 48).

There are five VEGF family members that directly influence the

human cardiovascular system. The archetype member is VEGF-A,

a potent stimulator of vasculogenesis and angiogenesis (44, 48, 49).

VEGF-A production is influenced by oxygen tension, hormones

(e.g., estrogen) and proinflammatory cytokines (47, 49, 50).

VEGF-B induces the development of the cardiovascular system,

embryonic angiogenesis and the formation of embryonic

myocardium as well as participating in blood vessel survival (51).

VEGF-C and VEGF-D are primarily involved in

lymphangiogenesis, while the placental growth factor (PIGF)

participates in both angiogenesis and wound healing (39, 47, 49).

These VEGF proteins act through one or more of three tyrosine

kinase VEGF receptors (VEGFRs) found on the surface of

endothelial and non-endothelial cells (44). VEGFR1 (Flt-1) and

VEGFR2 (KDR) participate in angiogenesis. VEGFR2 is the

primary inducer of VEGF-mediated blood vessel growth, while

VEGFR3 is involved in lymphangiogenesis (47, 52, 53).

Additionally, VEGFR1 has the co-receptor neuropilin-1 (NRP1),

which selectively potentiates VEGFR2-mediated vascular

permeability, and endothelial cell motility in vascular development

(49, 54). Once activated, the signaling pathways of these receptors

have the downstream effect of influencing vascular tone, blood

vessel formation, endothelial cell proliferation and migration (47).

VEGFR signaling is reported to also be activated in a non-VEGF-

dependent manner through receptor phosphorylation due to shear

stress, or recognition of alternative ligands such as lactate and low-

density lipoproteins (LDLs) (36, 53, 55).

Specifically, the VEGF-A canonical pathway occurs when it binds

to either VEGFR1 or VEGFR2. This promotes receptor

homodimerization or heterodimerization that leads to the

phosphorylation of the receptor’s intracellular domains (53, 55).

VEGFR1 has a soluble splice variant (sFlt-1) that acts as a decoy

receptor, decreasing VEGF-A plasma concentration and limiting its

binding to KDR (36, 44, 47). Also, VEGF-A activity can be

potentiated when PIGF displaces it from VEGFR1 to VEGFR2 (39).

These and other mechanisms surrounding the regulation of VEGF

receptors have been reviewed in greater detail elsewhere (37, 55).
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VEGFA gene and related SNPs in a
cardiovascular context

The VEGFA gene has a 16.3 kb coding region located at 6p21.1

on the long arm of chromosome 6, including eight exons and seven

introns (56, 57). The first five exons are constitutively present among

VEGF-A isoforms, since they encode the signal sequence for protein

processing and residues that bind to VEGF receptors (54, 58).

Meanwhile, exons 6 and 7 contain the heparin binding domains

that allow some isoforms to bind to cell surfaces and impact their

activity or bioavailability depending on which are present (59, 60).

Lastly, exon 8 undergoes post-translational readthrough due to a

non-canonical stop codon, leading to the production of sub-exons

8a and 8b, with the latter being reported to be present in a unique

isoform with anti-angiogenic activity observed in bone disorders

and brain diseases (54, 61–63). So far, 16 distinct VEGF-A isoforms

have been identified (47, 54). The different isoforms depend on the

presence or absence of exons 6 and 7, which affect the affinity for

heparin or heparan sulfate proteoglycans. For example, the most

prevalent VEGFA isoform is VEGFA165, which lacks exon 6, but

has moderate heparin affinity allowing the isoform to remain bound

to cell surfaces (64). Comparatively the isoform subtype VEGFA121

lacks exon 6 and 7 so it is found only in free form (64). Despite

their size difference most of the VEGF-A isoforms act as endothelial

cell mitogens, upregulate the endothelial expression of adhesion

molecules and present pro-angiogenic activity (36, 51, 64).

Pathologies caused by increased angiogenesis include inflammatory

diseases, cancers, retinopathy and atherosclerosis, while reduced

angiogenesis has been observed in bone disorders and brain

diseases (61). The overall VEGFA gene structure including

SNPs with reported influence on VEGF-A expression levels

(discussed below and in Supplementary Tables S1, S2) is presented

in Figure 2.

Altered plasma and tissue levels of VEGF-A have been

observed in various conditions including ischemic heart disease

(IHD), CAD, strokes, heart failure, and myocardial infarction

(38, 66–68). Due to its impact on angiogenic processes, the effect

of high VEGF-A circulating levels on CVD onset varies. High

VEGF-A levels are associated with various CVD risk factors

including smoking, hypercholesterolemia, diabetes, hypertension,

and hyperglycemia (36). Additionally, increased VEGF-A activity

has been associated with inflammation, increased blood pressure

and an increase in the formation of atherosclerotic lesions,

leading to CHD (20, 69–71). The impact of angiogenic molecules

on atherosclerosis has been reviewed elsewhere (39).

Expression of VEGFA can be upregulated by the hypoxia

inducible factor, p53 allele polymorphisms, thyroid stimulating

hormone, estrogen levels and oxygen tension (45, 47). This matches

studies that show VEGF-A production is influenced by elements

associated with atherosclerosis including LDL concentration,

hypoxia, and interleukin activity (38, 49, 72). The increased

production of VEGF-A can negatively impact human health by

influencing the development of atherosclerotic plaques, by affecting

vascular dilation, adhesion protein expression, monocyte migration,

endothelium permeability and increased trans-endothelial lipid
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FIGURE 2

VEGFA gene and select SNPs on chromosome 6 (A) location of VEGF-A related SNPs at chromosome 6 loci. SNPs in bold have been reported to influence
VEGF-A levels. SNPs in red have reported associations to CVD risk factors or biomarkers. Red boxes indicate regions that represent lncRNA. Full gene
length is indicated individually. Distances between SNPs and genes are indicated above dashes. (B) Schematic representation of SNPs located within
exons and introns of VEGFA. Individual exon and intron lengths are shown (65). The purple exon contains the signal sequence of the gene. The red
exon confers anti-angiogenic capabilities when present. Green exons contain heparin-binding domains with extracellular matrix components. Yellow
exons are involved in VEGF receptor binding. Location of SNPs and genomic regions determined using data from the UCSC genome browser and
Ensembl databases (GRCh38-/hg38). Created with BioRender.com.
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migration (38, 39). High levels of VEGF-A in plasma have been

associated with increased plaque growth and subsequent lesion

vulnerability that can cause intraplaque hemorrhage (73). There is

evidence that proinflammatory cytokines (e.g., IL-1, IL-6, and IL-

18) present during CVD onset can enhance VEGF-A production,

thus exacerbating atherosclerotic lesion development (74–76).

VEGF-A is considered a highly polymorphic gene because of the

148 untranslated region (UTR), 209 exon, 779 intron, and 124 near-

gene variants that have been identified (77). At least 30 SNPs within

the untranslated, exon, intron and promoter regions may have the

potential to influence variation in VEGF-A expression (78, 79).

This genetic influence over VEGF-A circulating levels has been

explored in various studies. Debette et al. (80) investigated the

heritability of VEGF-A levels in healthy individuals without a

cancer diagnosis. This study identified four common variants

(rs6921438, rs4416670, rs6993770 and rs10738760) distributed

across three chromosomes that were independently associated with

circulating VEGF-A levels and explained up to 48% of the

heritability of serum VEGF-A levels (80). A meta-analysis of

GWAS data evaluated the association of variants with circulating

VEGF-A levels (81). Choi et al. (81) found a total of ten SNPs

contributed up to 52% of the variability in circulating VEGF-A

levels with some SNPs associated with increased or decreased

VEGF-A levels compared to median. Additional information on

the study details of SNPs identified by these groups and other

studies are presented in Supplementary Tables S1, S2. The

Supplementary Material also includes SNPs that have been

studied in relation to VEGF-A levels in healthy individuals, CVDs,
Frontiers in Cardiovascular Medicine 04
or comorbidities related to the risk of CVD (e.g., diabetes,

metabolic syndrome, hypertension).

Some of the SNPs that have been studied are located within

exonic regions of VEGFA (82). One noteworthy eQTL is

rs2010963 from exon 1 of VEGFA (Figure 2B). The CC

genotype has been associated with increased VEGF-A levels in

type 2 diabetes mellitus (T2DM) (83, 84). Furthermore, the

rs2010963 CC genotype has been linked to risk factors including

heart rate (83), blood glucose levels (77), blood pressure,

cholesterol and HDL levels (83, 85). There is also evidence for

this variant influencing VEGF-A levels in non-CVDs such as

glioma (86) and diabetic retinopathy (48, 87).The variant

rs3025039, located within exon 8 of VEGFA, has similar effects

(Figure 2B). Dong et al. (88) observed that patients diagnosed

with gestational diabetes mellitus carrying the TT genotype had

higher levels of VEGFA compared to healthy pregnant women

(88). Meanwhile Ruggiero et al. (89) reported that the TT

genotype was associated with lower median levels of VEGFA in

healthy population samples from villages in Southern Italy. Some

studies showed the CT genotype of rs3025039 is associated with

reduced VEGFA levels as well as reducing risk of presenting with

CHD and T2DM (77, 89). The associations reported for the

rs3025039 variant demonstrate its link to the cardiovascular

system, but the variety of findings suggest additional studies are

needed. An additional variant that has shown association to the

cardiovascular system is rs3025010 located in intron 5

(Figure 2B). In a Chinese cohort diagnosed with hypertension

the C allele of this variant was observed to be associated with
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lower systolic and diastolic blood pressure measurements (20).

Furthermore, in a Chinese case-control study, it was observed

that the CC genotype of rs3025010 reduced risk of brain

arteriovenous malformation (91). This evidence shows a clear

link to CVD risk which could be further explored in additional

ethnic groups to validate or identify other biomarker associations.

Other variants of interest can be found at the same loci, but outside

the intron and exon regions of VEGFA (25, 80). rs69214328, is located

within an enhancer region found between two long non-coding RNA

genes (Figure 2A). The GWAS findings of Choi et al. (81) andDebette

et al. (80) identified that the A allele of rs69214328 is associated with

lower serum levels of the VEGF-A protein. Additionally, the same

allele has also been reported to influence the variability of HDL and

LDL in individuals of European ancestry (92). The A allele of

rs6921438 appears to have eQTL activities since increased serum

levels of IL-6, TNF-α and VEGF-A were observed in interaction

with SNPs rs6993770 (Chr8), rs4416670 (Chr6) and rs10738760

(Chr9), respectively (93). Two additional variants (rs1740073 and

rs34528081) located on chromosome 6 (Figure 2A) were identified

by Choi et al. (81) to be associated with serum levels of VEGF-A

(Supplementary Table S1). Furthermore, the T allele of rs34528081

was observed to be associated with increased VEGF-A serum levels

in an additional GWAS study (Supplementary Table S1).

Meanwhile, the T allele of rs1740073 has been reported to associate

with increased VEGF-A serum in a GWAS study while analysis of

IHD using 1,000 Genomes European data reported that the same

allele could contribute to VEGF variance (66).

Another variant that has been studied is rs699947, which is

located in the promoter region of VEGFA (Figure 2A). Various

groups report that the AA genotype of rs699947 is associated with

increased risk in cardiovascular pathologies including CAD, CHD,

stroke and congenital heart diseases (Supplementary Table S1).

The A allele of rs699947 has been associated with total cholesterol,

LDL and apolipoprotein B (77, 83, 94). These associations have

been observed across different ethnic groups, which further

suggests rs699947 is a potential genetic risk marker for CVDs (89,

95, 96). For its part, rs833061 is another variant that is located

within the promoter region of VEGFA (Figure 2A) whose CT

genotype has been observed to reduce VEGF-A levels in a T2DM

cohort (77). Other reports have also shown this variant is

associated with hypertension and a meta-analysis of 3 cohorts

implies this variant can influence congenital heart disease risk in

individuals of Asian ancestry (Supplementary Table S1). A

variant located further from the promoter region that presents a

similar array of findings related to lipid metabolism and

inflammatory molecules is rs4416670 (Figure 2A). Both its alleles

have been linked to CVD risk factors and biomarkers

(Supplementary Table S1). Specifically, the T allele was reported

by Debette et al. (80) to increase VEGF-A serum levels while a

study by Azimi-Nezhad et al. (93) reported the same allele could

decrease IL-6 levels by interacting with rs6921438 (Chr6) and

rs10738760 (Chr9). However, Azimi-Nezhad et al. (93) also report

that the C allele of rs4416670 can increase TNF-α and IL-6 levels

by interacting with the A allele of rs6921438 thus implying a link

between both VEGF-A related SNPs and inflammatory molecules.

Additionally, the C allele has also been observed in other studies
Frontiers in Cardiovascular Medicine 05
to be associated with apolipoprotein E levels, hypertension and

metabolic syndrome (92, 97). These findings demonstrate links

between VEGF-A related SNPs and lipid metabolism,

inflammatory biomarkers and CVD risk factors.

Some gene variants have findings of associations with

molecules used in CVD risk assessment. For example, the

rs1570360 variant located in the promoter region of VEGF-A

(Figure 2A), was observed to contribute to an increased risk of

congenital heart disease (98). Some reports showed that the GA

genotype of this variant is associated with a reduced left

ventricular ejection fraction and extracranial internal carotid

artery (ECICA) stenosis which are both risk factors for systemic

hypertension and ischemic stroke, respectively (Supplementary

Table S1). However, in a Chinese study the GG genotype was

observed to increase susceptibility for coronary heart disease in

patients with high smoking habits and diagnosed with

hypertension. As such, this variant shows consistent links to CV

risk factors which, given its location, could be attributed to a

potential influence on VEGF as observed in variants located

within the promoter region (rs699947 and rs833061).

Similar studies have been reported for other SNPs located across

the genome, often denoted as trans-acting SNPs (Supplementary

Table S2). Broadly, these eQTL SNPs have been associated with

increased risk of CVDs (e.g., CAD, CHD, IHD) (66, 89, 99, 100)

or metabolic syndrome (81). One example rs1870377, located on

chromosome 4 in exon 11 of the VEGFR2 (KDR) gene

(Supplementary Figure S1) can influence cardiovascular

outcomes. Li et al. (72) reported that the AA genotype reduces risk

of unfavorable CVD outcomes, particularly those related with

disability, in an Asian ancestry cohort. Marks et al. (99) also

reported that the AA genotype associated with reduced risk of

heart failure readmission and the A allele associated with high

levels of VEGF system components, specifically sFlt-1 and KDR

(101), and increased the risk of ischemic stroke in a Korean cohort

(100). The TA and TT genotypes were both associated with

increased CHD prevalence in Han Chinese populations (89, 99).

Location of additional SNPs influencing VEGF-A expression levels

within the VEGFR2 (KDR) gene is presented in Supplementary

Figure S1. Additional associations observed for trans-acting SNPs

are presented in Supplementary Table S2.

rs6993770 is located on chromosome 8 in intron 4 of the

ZPFM2 gene, which codes for a protein involved in heart

morphogenesis and coronary vessel development. Broadly,

studies on this variant have shown relationships with VEGF-A,

CVD and CVD risk factors (Supplementary Table S2). In the

GWAS findings of Choi et al. (81) and the Mendelian

Randomization study done by Au Yeung (66), the A allele

correlated with increased VEGF-A serum levels. The GWAS

findings of Debette et al. (80) showed the T allele was associated

with increased VEGF-A serum levels. Other studies involving

individuals of European and Iranian ancestry observed the T

allele was also associated with risk biomarkers of CVD,

particularly fasting blood glucose, triglyceride levels, systolic

blood pressure and HDL levels (92, 102). The TA genotype has

been reported to increase the risk of metabolic syndrome (102),

and impacts the expression of adhesion molecules (ICAM-1, E-
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selectin) as well as IL-6 levels (93). Meanwhile, the TT genotype

appears to contribute to metabolic syndrome risk in individuals

with low iron intake (97). This spectrum of reports demonstrates

the range of associations that alleles and genotypes of trans-

acting SNPs, such as rs1870377 or rs6993770, may have within

the cardiovascular system. Additional trans-acting SNPs (e.g.,

rs2071559, rs114694170, rs6993770, rs10738760, rs10761741,

rs4782371 have been reported to be capable of influencing

VEGF-A circulating levels (81) or soluble VEGFR levels

(rs1870377) (101). Specific study details and overall findings are

presented in Supplementary Table S2. Notably, two SNPs

(rs2305948 and rs7667298) have associations with potential CVD

risk, but their direct impact on VEGF system components was

observed in cancer related studies (103, 104). Interestingly, trans-

acting SNPs most likely involve interactions with molecules or

homeostatic mechanisms that have known roles in CVD onset,

including inflammatory interleukins (70, 93), triglycerides,

adhesion molecules, blood cell count and blood pressure (66,

102, 105, 106). There are cases of specific variants that correlate

with increased risk of presenting major adverse coronary events

(rs2305948, rs7667298) (106), CHD (rs2305948, rs1870377,

rs2071559, rs7667298) (89, 99), ischemic stroke (rs1870377)

(100) and metabolic syndrome (rs6993770) (102). As such, some

SNPs appear to be potential contributors to phenotypes (IHD,

CAD, CHD) while others may increase or reduce disease risk

depending on the presence or absence of risk factors (72, 89, 101).
Conclusion

Overall, the impact of VEGF-A related SNPs in various forms of

heart disease has been explored in many different types of studies.

The collective evidence reveals a critical subset of cis-acting SNPs

mapping to the region of VEGFA (Figure 2 and Supplementary

Table S1), several trans-acting SNPs mapping in the region of the

VEGFR2 gene (Supplementary Figure S1) and elsewhere on the

human genome (Supplementary Table S2), with repeatable

associations with circulating levels of VEGF-A. A small group of

SNPs reproducibly associate with established biomarkers and risk

factors for heart disease (rs2010963, rs3025039, rs1570360,

rs699947, rs6921438) or with increased susceptibility to common

heart disease pathologies (rs2010963, rs3025039, rs1570360,

rs699947, rs2305948, rs1870377). This minireview highlights that

these SNPs can be potential markers for CVDs and may influence

significant biological pathways that impact the cardiovascular

system (e.g., lipid metabolism). The wide range of pathologies that

VEGF-A and its related SNPs impact emphasizes the complexity
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of VEGF-A interactions within the cardiovascular system. Both

cis- and trans-acting SNP eQTLs can affect expression levels, but

there remain many unknowns around the specific mechanisms

involved. There is a clear link between SNPs and VEGF-A levels as

well as established cardiovascular disease biomarkers (HDL, LDL,

BNP, NTproBNP). Together these have the potential to act

synergistically on the development of CVDs.

The complexity of SNP influences on CVD and CVD risk factors

reinforces the importance of studying them in relation to VEGF-A.

Particularly considering how altered levels of VEGF-A contribute to

disease onset or exacerbate an individual’s health depending on the

risk factors they present with. Exploring the link between CVDs,

SNPs, and VEGF-A may contribute to improved cardiovascular

disease risk assessment, prevention, treatment, and. prognosis.
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