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Sex differences in the
renin-angiotensin-aldosterone
system and its roles in
hypertension, cardiovascular, and
kidney diseases
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1Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New
Orleans, LA, United States, 2Department of Physiology, Tulane University School of Medicine,
New Orleans, LA, United States, 3Department of Pharmacology, Tulane University School of Medicine,
New Orleans, LA, United States

Cardiovascular disease is a pathology that exhibits well-researched biological sex
differences, making it possible for physicians to tailor preventative and therapeutic
approaches for various diseases. Hypertension, which is defined as blood pressure
greater than 130/80 mmHg, is the primary risk factor for developing coronary
artery disease, stroke, and renal failure. Approximately 48% of American men and
43% of American women suffer from hypertension. Epidemiological data suggests
that during reproductive years, women have much lower rates of hypertension
than men. However, this protective effect disappears after the onset of
menopause. Treatment-resistant hypertension affects approximately 10.3 million US
adults and is unable to be controlled even after implementing ≥3 antihypertensives
with complementary mechanisms. This indicates that other mechanisms
responsible for modulating blood pressure are still unclear. Understanding the
differences in genetic and hormonal mechanisms that lead to hypertension would
allow for sex-specific treatment and an opportunity to improve patient outcomes.
Therefore, this invited review will review and discuss recent advances in studying
the sex-specific physiological mechanisms that affect the renin-angiotensin system
and contribute to blood pressure control. It will also discuss research on sex
differences in hypertension management, treatment, and outcomes.
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Introduction

Hypertension, defined as blood pressure greater than 130/80 mmHg, has been firmly

established as a primary risk factor associated with cardiovascular disease, stroke, and

kidney diseases (1–4). In the United States alone, nearly 48% of American men and 43%

of American women suffer from hypertension (2). Currently, most if not all available data

from clinical studies in humans have consistently shown that premenopausal women are

generally protected from the development of hypertension compared with age-matched

men, but the prevalence of hypertension increases drastically in women during

postmenopausal years. The mechanisms underlying these sex differences or sex

dimorphism in the pathogenesis of hypertension in men vs. women remain incompletely

understood. Historically, however, biological, physiological, and clinical research were
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conducted primarily on male cells, male animal models, and male

human subjects, largely based upon the assumption that they are

genetically, molecularly, and physiologically identical to their

female counterparts (5–7). To further promote biomedical

research in sex differences in all physiological and diseased

models, the National Institute of Health (NIH) in 2014 began to

mandate that all recipients of NIH funding are required to

consider sex as biological variables in their experimental

approaches to test their hypotheses. This policy has led to an

explosion of the research on sex differences or sex dimorphism

and the mechanisms involved across the board on the disease

development and health outcomes (8).

Although hypertension is a multifactorial medical disorder, the

renin-angiotensin-aldosterone system (RAAS) is recognized as one

of the most important regulators of basal blood pressure

homeostasis and a major contributor in the development of

hypertension. This recognition is not only supported by extensive

biomedical research in animal models of hypertension, but also by

numerous clinical trials using the inhibitors of renin, angiotensin-

converting enzyme (ACE), or type 1 angiotensin II (Ang II)

receptor (AT1) or aldosterone receptor blockers to treat

hypertension in human subjects (1–4). However, the RAAS is not

only the targets for the development and treatment of hypertension,

as many hypertensive patients require dual or multidrug therapy

with a diuretic, calcium channel blocker, and an α or β blocker to

control their blood pressure. Even then, appropriate >10 million

Americans still suffer from resistant hypertension even treated with

≥3 antihypertensive medications with blood pressures persisting

above the treatment threshold (1–4). The mechanisms underlying

the development of resistant hypertension and the difficulty in

treating resistant hypertension remain poorly understood. One of

major problems may involve sex differences in the pathogenesis,

mechanisms, and treatment of resistant hypertension between aging

men and postmenopausal women. Thus, there is an urgent need for

further studies of the sex differences in the mechanisms of

hypertension and the contributions of the RAAS, which may offer

more tailored or precision hypertensive treatments and achieve

better therapeutic outcomes.

Against this background, the objective of this invited article is to

review and discuss recent advances in studying sex differences or

dimorphism in the RAAS and its contributions to the physiological

regulation of blood pressure and in the development of hypertension,

cardiovascular and kidney diseases. Our emphases will include sex

differences in the RAAS and the mechanisms by which sex

hormones and the RAAS contribute to normal blood pressure

control and the development of hypertension, sex differences in the

hypertension treatment and outcomes, as well as potential strategies

for sex-specific treatment of resistant hypertension in humans.
Overview of the localization and roles
of the RAAS in cardiovascular and
kidney tissues

To help better understand the sex differences in the RAAS and

its contributions to the regulation of cardiovascular and renal
Frontiers in Cardiovascular Medicine 02
physiology and the development of hypertension and

cardiovascular and kidney diseases, it is important to first review

the localization and roles of the RAAS briefly. The RAAS has

been delineated as a primary effector of the development of

hypertension and two main axes responsible for blood pressure

control have been established. The angiotensinogen (AGT)/renin/

angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/

AT1 receptor (AGT/renin/ACE/Ang II/AT1R) axis is the

predominant pathway for Ang II formation and responsible for

most if not all classic effects of Ang II in the development of

hypertension and cardiovascular and kidney diseases (9)

(Figure 1). The juxtaglomerular apparatus of the kidney tightly

regulates renin release from the kidney via two important

mechanisms—a baroreceptor mechanism that senses decreased

blood pressure or blood volume loss within the renal vasculature

and an osmoreceptor mechanism that senses NaCl delivery from

the proximal nephron to the macula densa (10–14). Renin

comprises the rate-limiting step in the activation of the RAAS,

converting AGT to Ang I, so its expression levels are in constant

balance via a variety of biological mechanisms (15). Ang I is

then converted to the biologically active peptide Ang II by ACE.

In addition to renin- and ACE-dependent pathways, non-renin/

ACE independent pathways may also contribute to the formation

and metabolism of Ang II in cardiovascular and kidney tissues

(Figure 1). Chymase, a serine endopeptidase, is highly expressed

in the heart of patients with cardiovascular diseases compared to

ACE (16, 17), and reportedly ∼75% of Ang II is estimated to be

generated from Ang (1–8, 10–13) in cardiac tissues by chymase

rather than ACE (18, 19). The catalytic activity of chymase is

reportedly about 20-fold higher compared to ACE (19, 20). In

rats with pressure-overload, the expression of chymase was

significantly increased in female than male rats (21). In the

kidney, neprilysin (NEP), an endopeptidase, is highly expressed

that directly cleaves Ang I into Ang (1-7) and shows much

higher catalytic activity for Ang I compared ACE2 (22, 23). The

expression of NEP in kidney is reportedly higher in female than

male hypertensive mRen (2). Lewis rats (24). Thus, both renin/

ACE-dependent and non-renin/ACE-dependent pathways may

contribute to Ang II formation or metabolism in cardiovascular

and kidney tissues in health and diseases (25, 26) (Figure 1).

The most pertinent G protein-coupled receptors with which

Ang II activates are AT1 and AT2 receptors. AT1 receptors can

be classified further into two subtypes: AT1a and AT1b. In

humans, there is only one AT1 receptor that is expressed,

corresponding to the AT1a receptor found in rodents (27–29).

The AT1 receptor is generally considered to have pro-

hypertensive, pro-growth, and pro-proliferative downstream

effects. Activation of the AT1 receptor promotes vasoconstriction,

increased oxidative stress, aldosterone release, and renal sodium

absorption which all contribute to the regulation of blood

pressure and fluid homeostasis, as well as the development of

hypertension and cardiovascular and kidney diseases (30, 31)

(Figure 2). In the kidney, activation of AT1 receptors especially

induces the sodium-hydrogen exchanger 3 (NHE3) expression in

the proximal tubules and the ascending limp of loop of Henle,

resulting in the impairment of the pressure-natriuresis response
frontiersin.org
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FIGURE 1

Classical renin/ACE-dependent and non-renin/ACE-dependent pathways for Ang II formation, metabolism, and actions in cardiovascular and kidney
tissues. (1) The classical angiotensinogen/renin/ACE/ANG II/AT1 receptor axis. (2) The ANG II/APA/ANG III/AT2 receptor/NO/cGMP axis. (3) The ANG I/
ANG II/ACE2-Neprilysin/ANG (1–7)/Mas receptor axis. (4) The prorenin/renin/prorenin receptor (PRR or ATP6ap2)/MAP kinases ERK1/2/V-ATPase axis.
(5) The ANG III/APN/ANG IV/AT4 receptor/IRAP axis. Note that not only ACE but also chymase generate ANG II from ANG I, whereas neprilysin also
cleaves ANG I to generate ANG (1-7). ACE, angiotensin-converting enzyme; ACE2, angiotensin-converting enzyme 2; APA, aminopeptidase A; APN,
aminopeptidase N; IRAP, insulin-regulated aminopeptidase; PRR, prorenin receptor. Modified from reference (9) with permission.
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and an increase in blood pressure (32–36). Conversely, Ang II

activation of AT2 receptors works against the pro-hypertensive,

pro-growth, and proliferative effects of AT1 activation, causing

vasodilation and increased natriuresis (Figure 2) (34, 37–40).

However, Ang III, a biologically active metabolite of Ang II, also

acts to increase the natriuresis response reportedly by regulating

Na+/K+-ATPase activity and reducing NHE3 activity (41–44).

The final cascade of the RAAS is the release and function of

aldosterone from the adrenal glands. Ang II and Ang III both

contribute to the stimulation of aldosterone release from the

adrenal glands via binding to and activation of AT1 and AT2

receptors (Figure 3) (45, 46). Aldosterone is a mineralocorticoid

that increases blood pressure by inducing the expression and

activity of the epithelial sodium channel (ENaC) (47, 48).

Previous studies have shown that Ang II stimulates aldosterone

secretion in the zona glomerulosa cells (ZG) of the adrenal

cortex and catecholamine release from chromaffin cells of the

adrenal medulla. The catecholamines may stimulate aldosterone

secretion via a paracrine mechanism (49, 50). Most if not all Ang

II-induced aldosterone biosynthesis and release from the adrenal

glands are mediated by AT1 (AT1a) receptors. Ang III has been

demonstrated to have significant, if not equivocal aldosterone

stimulating effects, to Ang II, but is hypothesized to primarily

work through AT2 receptor activation (46, 51–54). Aldosterone

acts to stimulate ENaC expression to increase sodium

reabsorption primarily in the distal nephron and collecting

tubules, resulting in blood pressure elevation (55). Additionally,

increased levels of circulating aldosterone have been found to

contribute to the pathogenesis of hypertension by causing

endothelial dysfunction via increased production of reactive

oxygen species (56).
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In addition to the AGT/renin/ACE/Ang II/AT1 receptor axis,

there exits an alternative counteracting angiotensin-converting

enzyme 2 (ACE2)/Ang (1-7)/Mas receptor/AT2 receptor (ACE2/

Ang (1-7)/MasR/AT2R) axis in the cardiovascular and kidney

tissues, which is responsible for inducing vasorelaxation, lower

blood pressure, and natriuretic responses (9, 57, 58) (Figure 2).

Ang (1-7) is a biologically active derivative of Ang I and Ang II

that are enzymatically cleaved by ACE2 (57, 58). The primary

effects of Ang (1-7) are to counter the effects of the AGT/renin/

ACE/Ang II/AT1 receptor axis by binding to G-protein coupled

Mas receptors (MasR) and inducing the release of nitric oxide

(NO), prostaglandin E2, and bradykinin to promote vasodilation

(59–64). Ang (1-7) infusion was also found to reduce plasma

renin activity, which may contribute to its antihypertensive effect

(65).

In the kidney, the (pro)renin receptor (PRR) is another

receptor that has been established as an important RAAS

modulator in the cardiovascular and kidney tissues. PRR is

encoded by the ATP6AP2 gene on the X chromosome and has

been localized to many tissues including adipose, heart, brain,

vessel wall, placenta, and kidney (66–71). Three forms of the

protein exist including PRR, soluble PRR (sPRR), and truncated

PRR (tPRR). sPRR is released into the plasma, while tPRR

remains within the cellular membrane. PRR binds to renin and

prorenin resulting in approximately a 5-fold increase in

angiotensinogen conversion to angiotensin I (72). PRR has been

implicated in both water and sodium homeostasis, as well.

During water deprivation trials, PRR and sPRR expression is

markedly increased and animal models with principal cell

specific PRR deletion have demonstrated significant reductions in

AQP2 expression and urine osmolality (73–76). Ang II has also
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FIGURE 2

Localization of Ang II type 1 (AT1 or AT1a) and type 2 receptors (AT2) in the rat kidney using 125I-labeled Ang II receptor autoradiography and opposing
actions of AT1 (AT1a), AT2, and/or AT (1-7) receptor activation in the kidney. (A) Shows the localization of AT1 or AT1a receptors with high levels in the
glomerulus (g) and the inner stripe of the outer medulla corresponding to vasa recta bundles, and moderate levels in the proximal convoluted
tubules (pct) in the cortex (C) and renomedullary interstitial cells (RMICs) in the inner stripe of the outer medulla between vasa recta bundles. The
inner medulla (IM) expresses a very low level of AT1 or AT1a. (B) Shows the localization of AT2 receptors with low levels in the outer cortex,
corresponding to the glomeruli and the proximal tubules, and the inner stripe of the outer medulla, corresponding to vasa recta bundles and RMICs.
(C) Shows the localization of the receptor binding for Ang (1-7) in the kidney primarily in the inner cortex corresponding to the proximal tubules. Red
represents high level (H), whereas dark blue represents background levels (L). Modified from reference (30) with permission.
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been found to increase AQP2 expression within the collecting duct

through several intracellular signaling pathways (77). However,

animal studies have demonstrated that chronic Ang II infusion

augments sPRR expression which in turn augments water

reabsorption via AQP2 demonstrating a positive feedback

mechanism within the collecting duct (78). PRR in the collecting

duct may cause a marked increase in blood pressure via

increasing ENaC expression (76, 79, 80). The precise mechanisms

and downstream effects of PRR and its derivatives on water,

sodium, and blood pressure have been thoroughly reviewed

elsewhere (81).

It is now well-recognized that multiple RAAS axes are working

concomitantly to regulate blood pressure and tissue perfusion

(32, 34, 43, 82–86). The circulating or classical RAAS including

all major components that have well-recognized endocrine effects

(15, 32, 34). By contrast, the RAAS in the kidney may represent

an important paracrine/autocrine/intracrine system, eliciting a

more local and intracellular effect within the kidney tissue,

especially within the proximal tubules (32, 34, 43, 82–86).

Notably, the intrarenal RAAS has been found to have markedly

higher concentrations of Ang II when compared to circulating

plasma concentrations (87–93). Chronic Ang II exposure
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typically causes a down-regulation of AT1 receptors in different

cardiac and vascular tissues; however, within the intrarenal

RAAS, AT1 receptor expression is either constant or upregulated

during the development of hypertension, cardiovascular and

kidney diseases (94, 95).

Recently, there is evidence supporting a functional role for an

intracellular and mitochondrial RAS as well. Initial animal

studies demonstrated the presence of Ang II binding sites within

hepatic cells (33, 92, 96–99). Since then, significant progress has

been made in characterizing intracellular RAS within other tissue

types. Within the kidney, high-density specific receptors for Ang

II and Ang (1-7) were localized to cortical nuclei in sheep and

rats (100–103). A fully functional RAS has also been

demonstrated within the mitochondria (33, 104, 105). The exact

origin of the intracellular RAS and its role in blood pressure

homeostasis is yet to be determined, but there is evidence

suggesting that they both serve physiological functions in the

context of Ang II-induced hypertension (106, 107).

Clearly, recent studies in delineating the vasoconstrictive

properties of the AGT/renin/ACE/Ang II/AT1 receptor and the

vasodilatory properties of the counteracting ACE2/Ang (1-7)/Mas

receptor/AT2 receptor axes have greatly expanded the therapeutic
frontiersin.org
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FIGURE 3

Localization of Ang II type 1 (AT1 or AT1a) and type 2 receptors (AT2) in the bovine, monkey, and human adrenal glands using quantitative 125I-labeled Ang II
receptor autoradiography. (A,E,I) Represent total Ang II receptor binding; (B,F,J) represent AT1 receptor binding in the presence of an excess
concentration of the AT2 receptor blocker PD123319 (10 µM); (C,G,K) represent AT2 receptor binding in the presence of an excess concentration of
the AT1 receptor blocker losartan (10 µM); and (D,H,L) represent nonspecific binding in the presence of an excess concentration of unlabeled Ang II
(10 µM), respectively. AT1 receptors predominate in the zona glomerulosa cells (ZG) of the adrenal cortex where aldosterone is synthesized and
release into the circulation (B,F,J), and the adrenal medulla (M). AT2 receptors are low in the adrenal glands of bovine, monkey, and human adrenal
glands (C,G,K). Red represents the highest level, whereas dark blue represents the background level of receptor binding. Modified from reference (32)
with permission from the copyright holder.
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targets available to treat hypertension and cardiovascular and

kidney diseases. Currently, first-line pharmacological treatments

for hypertension include monotherapy or combination therapy

using ACE inhibitors and angiotensin AT1 receptor blockers

(ARBs), thiazide diuretics, and long-acting dihydropyridine

calcium channel blockers (108, 109). Alpha- and β-blockers have

also been identified as adjunctive treatments for hypertension,

but they have additional side effects that may make them

intolerable to patients including asthma exacerbations, insomnia,

worsening glucose intolerance, bradycardia, and sick sinus
Frontiers in Cardiovascular Medicine 05
syndrome (110, 111). Treatment-resistant hypertension is defined

as hypertension that is unable to be controlled after the

implementation of three antihypertensives with complementary

mechanisms (1–4). Now affecting nearly 10.3 million Americans,

it has become increasingly prevalent in the United States,

indicating a need for alternative or additional therapies (2). Since

the classical RAAS has been expanded in recent years, various

new drugs have been developed to target these new substrates

and receptors. Preclinical data has supported Ang (1-7) and AT2

agonists as viable treatment targets, but whether they are
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effective therapeutic targets in hypertension, cardiovascular

and kidney diseases remains to be confirmed in clinical trials

(112–114).
Sex differences in the RAAS and their
roles in cardiovascular and renal
physiology and hypertension

Sex differences in vascular dysfunction

Evidence has repeatedly demonstrated that there is an age-

dependent difference in the prevalence of hypertension between

men and women. Until age 45, women are less likely to develop

hypertension than men, while this difference is not present

between ages 46 and 64 (2, 115, 116). After age 65, the

prevalence among women increases significantly. It is estimated

that 85% of women over 75 have hypertension compared with

79% of men within the same age group (2, 115, 116). Recent

studies are ongoing to further characterize these differences and

underlying mechanisms in the RAAS between males and females,

which may contribute to this age-dependent difference in the

prevalence of hypertension between men and women.

There are several baseline physiological differences that

contribute to the development of hypertension that have been

observed in male and female subjects. Nitric oxide (NO), which

has vasodilatory effects, has been established as a key mechanism

of blood pressure homeostasis (117, 118). NO plays a protective

role in the development of hypertension because of its

vasodilatory effects and ability to quickly react with superoxide

to counteract the latter’s effects (119). Animal studies have

shown that females have greater NO bioavailability compared

with males due to higher NO-generating capacity in females and

increased oxidative stress levels in males (120–125). Oxidative

stress causes endothelial dysfunction due to vasoconstriction and

the activation of the RAAS in blood vessels. In vivo studies have

shown that Ang II causes mesangial cells in the kidney to

produce superoxide, while the inhibition of the RAAS has been

shown to reduce oxidative stress (126, 127). More recent data has

demonstrated that mice treated with buthionine sulfoximine

(BSO), a substance that induces oxidative stress, had higher levels

of AT1 receptors within the proximal tubules. Additionally, they

demonstrated a more dramatic downstream signaling effect,

indicating that oxidative stress sensitizes kidney cells to produce

an amplified RAS response (128). An inflammatory response to

oxidative stress is also activated by Ang II via AT1 receptors,

leading to nuclear factor-κB (NF-κB) transcription factor

expression (128, 129).
Sex differences and the
cardioprotective roles of estrogen

In view of the age differences well-recognized in hypertension

prevalence between males and females, the interactions between

estrogen and the RAAS have become an important research
Frontiers in Cardiovascular Medicine 06
focus (130). Estrogen is a steroid hormone that binds to two

nuclear receptors, estrogen receptor-α (ER-α) and estrogen

receptor-β (ER-β), and G protein-coupled estrogen receptor 1

(GPER1) (130–133). ER-α is abundantly expressed in the

vascular endothelium and helps promote vasodilation, endothelial

repair, and NO production (134). ER-β activation primarily

results in NO production (134, 135). Together, the binding of

estrogen to these two receptors increases vasodilation and has a

protective effect against hypertension. Esqueda et al.

demonstrated that after ovariectomy, estrogen-supplemented,

salt-sensitive rats had restored ER-β expression levels. The same

was not demonstrated for ER-α, implying that the imbalance

between ER-α and ER-β might contribute to the development of

hypertension after menopause (136).

In animal studies, estradiol has been found to have a role in

protecting against hypertension. In spontaneously hypertensive

rats (SHRs), young male rats have demonstrated higher mean

blood pressures than young female rats (137–140). This

difference was eliminated through pharmacological RAS

inhibition and the cessation of estrous cycling, implicating

estrogen as the cardioprotective factor and accounting for the sex

and age-related differences (139, 141, 142). Aging SHRs have

been established as a model for postmenopausal hypertension

due to their non-cycling, low serum estradiol and the ensuing

increase in blood pressure (142, 143).

In human studies, 17β-estradiol (E2) has been determined to

regulate the RAS via the changes in this enzyme expression. For

example, Proudler et al. investigated the effect of estrogen/

progesterone combined hormone replacement therapy (HRT) on

ACE activity in postmenopausal women. They determined that

ACE activity was reduced by 20% in treated women when

compared to their untreated controls; however, this study was

limited by sample size, including only 28 women in the

treatment group and 16 in the untreated group (144). Soon after,

Schunkert et al. measured and compared renin and

angiotensinogen levels between women treated with estrogen

replacement therapy (ERT) and those who were not. Renin levels

were found to be significantly increased in women without ERT,

measuring 16.6 ± 0.9 mU/L compared to 12.0 ± 0.7 mU/L in the

treated group. Angiotensinogen levels were found to be higher in

women with ERT, compared to those without, indicating a

reduced rate of conversion by renin (145). Thus, these studies

provide the evidence for estrogen’s cardioprotective effects in

part by regulating the expression or activity of the RAS.
Sex differences in the classical RAS and
the role of estrogen

New data has recently built upon these previous studies to

elucidate the mechanisms by which estrogen modulates the

classical RAS. Essentially, estrogen can alter RAS activities by

regulating the levels of key substrate, enzyme, and receptor

expression, and protein production. Animal studies have shown

that the expression of the RAS enzymes was significantly altered

in the presence or absence of estrogen. In young male SHRs,
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ACE mRNA expression in the kidneys was significantly increased

when compared to their female counterparts (146, 147). Similar

results were found in two-kidney, one-clip (2K1C) renal

hypertension animal models (147). This difference in intratubular

enzyme concentrations is attenuated between aging SHR male

and female rats (148). In aging SHRs, plasma renin activity

(PRA) and concentrations of AGT and Ang II, which are

measures of the circulatory RAS activation, were not significantly

different between aging male and female SHRs. However,

intratubular AGT expression was increased in males when

compared to females, whereas aging females were found to have

higher Ang II expression (148). These data suggest that in young

rats, males have higher levels of intratubular RAS enzyme

expression and cascade activation compared to females. In aging

rats, when the protective effect of estrogen has diminished,

females have increased intrarenal RAS activation and higher

levels of Ang II. In addition to the regulation of renin and ACE,

estrogen also regulates the renin- and ACE-independent enzymes

in the RAS. Ahmad et al. and others compared the metabolic

pathway for Ang II formation in cardiac tissues of gonadal-intact

and ovariectomized (OVX) adult Wistar Kyoto (WKY) and SHR

rats, and found that estrogen depletion significantly increased

chymase activity, but not ACE activity (24, 25). Li et al.

demonstrated that estrogen inhibits chymase release from cardiac

mast cells to prevent pressure overload-induced adverse cardiac

remodeling (20). The latter studies suggest that estrogen status

may play an important role in the regulation of cardiac chymase

expression and cardiovascular protection in adult female animals

(20, 24, 25).

Estrogen also plays an important role in regulating the RAS

through the modulation of AT1 and AT2 receptor expression

(141). In animal studies comparing arterial AT1 expression in

male rats, ovariectomized rats, and estrogen-supplemented

ovariectomized rats, AT1 receptor density was found to be

significantly increased in the males and ovariectomized rats when

compared to those supplemented with estrogen (140, 149). In

aging SHRs, this difference is eliminated and AT1 expression was

found to be the same between male and female rats (148). Silva-

Antonnialli et al. demonstrated that AT2 receptor expression was

similar among male, female, oophorectomized females, and

estrogen-replaced females, causing the AT1/AT2 ratio in estrogen-

treated females to be higher (140). These studies suggest that

estrogen’s protective role can be partially attributed to its ability

to downregulate AT1 receptor expression. Indeed, these

differences are supported by the studies showing a significant

difference in the response to AT1 blockers. For instance, aging

male rats were observed to have 52% decrease in mean arterial

blood pressure, while females only had a 37% drop (148).

Increased Ang II or its AT1 receptor expression in the kidneys of

postmenopausal female rats may explain why postmenopausal

women are more susceptible to the development of hypertension

and the roles of estrogen in sex differences in hypertension.

The third mechanism by which estrogen can influence blood

pressure via the classical RAS is by regulating aldosterone

secretion. Aldosterone is known to cause increased salt retention

and blood pressure. In animal studies, estrogen was found to
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reduce AT1 receptor expression in the adrenal glands, which in

part contribute to reduced aldosterone secretion (150). More

recent clinical studies have shown that when consuming high salt

diets, men had significantly higher plasma aldosterone,

extracellular volume, and systolic blood pressure than women

(151). These two studies further suggest that aldosterone

secretion may be a key contributor to the sex differences in

hypertension prevalence between men and women.

However, the sex differences or the sexual dimorphism of PRR

and its role in the development of hypertension remain poorly

understood. A study on type 2 diabetic men and women

reported that plasma sPRR was significantly higher in women

compared to men and that sPRR concentrations appeared to

correlate with age, BMI, eGFR, and plasma renin activity in

female subjects, though not statistically significant in the male

subjects (152). The finding that increased age correlates with

increased sPRR and systemic RAS activation suggests that the

transition to an estrogen-deficient state of menopause causes

increased sPRR expression and RAS activation. However, more

work is necessary to characterize the mechanism by which

estrogen and PRR interact in further studies.
Sex differences in the vasoprotective
axis of the RAS and the role of estrogen

In addition to inhibitory effects on the classical RAS system,

estrogen exerts antihypertensive effects via upregulation of the

substrate and enzymes in the counterregulatory RAS pathways.

Lee et al. studied ACE2 expression in control and 2K1C male

and female rats and demonstrated that female rats showed

increased intratubular ACE2 expression regardless of 2K1C

treatment status, suggesting estrogen’s protective role in

increasing Ang II metabolism to Ang (1-7) (147). In studies

using human umbilical vein endothelial cells (HUVEC), estrogen

activation of ER-α receptors was shown to elevate intracellular

ACE and ACE2 mRNA expression and ACE protein expression.

This increased ACE2 expression is expected to increase

intracellular Ang (1-7) formation (153). This data supports the

hypothesis that the intracellular RAS, especially ACE2 and Ang

(1-7), and estrogen cooperate in a manner that protects against

the development of 2K1C renal hypertension, most likely due to

increased Ang (1-7) production and AT2 receptor activation.

The MasR is another component of the alternative

vasoprotective RAS pathway that demonstrates sex-dependent

properties. Previous studies have solidified the hypothesis that

NO release is mediated by Ang (1-7) activation of MasR (64,

154, 155). Sobrino et al. used HUVEC to demonstrate that

estradiol increased the intracellular expression of enzymes

responsible for Ang (1-7) and NO production (156). Their data

showed that estradiol treatment increased ACE and cathepsin A

expression which are ultimately responsible to produce Ang

(1-7). These authors also reported that eNOS and cytosolic

guanylate cyclase expression was increased, indicating that NO

synthesis was promoted by estradiol treatment. When MasR was

blocked, they found that NO levels were decreased, supporting
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their hypothesis that estradiol mediates increased NO production

via the activation of MasR (156). Mompéon et al. also used

HUVEC to show that estradiol increased Ang (1-7) production

via ER-α activation and increased ACE2 mRNA expression

(153). One limitation of these studies, however, is the tissue-

specific characteristics of intracellular RAS. It would be beneficial

to utilize human or animal kidney cells to fully determine the

relationship between estrogen treatment and intracellular RAS

responses in the kidney.

In addition to in vitro cell culture studies, animal studies have

also demonstrated estrogen effects on MasR function. When

subjected to Ang II infusion, female rats demonstrated reduced

renal blood flow responses, but only in the context of dual MasR

and AT1 blockade (157, 158). With AT1 blockade, there is an

increased concentration of circulating Ang II, possibly allowing

for increased Ang (1-7) formation via the ACE2 pathway. Saberi

et al. compared the effects of estrogen supplementation in

response to Ang (1-7) infusion and MasR blockade. They found

that estradiol-treated ovariectomized rats had decreased renal

blood flow in response to Ang (1-7) after MasR blockade when

compared to their untreated counterparts (159). These studies

suggest that one of estradiol’s antihypertensive mechanisms

operates via MasR activation. When MasR is blocked, there are

fewer opportunities for estrogen to exert protective effects leading

to decreased renal blood flow and worsening hypertension.

Finally, an additional protective axis of the RAAS consisting of

Ang III/AT2 receptor activation is also modified by estrogen.

Female mice have been shown to utilize the AT2 receptor

pathway to attenuate the effects of Ang II via AT1 receptors;

however, this effect diminishes with increased age (160, 161).

Another study demonstrated that exogenous estrogen

replacement reinstituted this protective pathway and attenuated

Ang II-induced hypertension (162). Together, these studies

support the hypothesis that estrogen affects the RAS primarily

through activation of the vasoprotective signaling pathways,

rather than the attenuation of the classical RAAS signaling

pathway. This evidence could result in novel therapeutics for

estrogen-deficient individuals who are suffering from resistant

hypertension.
Sex differences in Ang II-induced
hypertension and the roles of
testosterone and estrogen

There is no question that testosterone contributes to sex

differences in cardiovascular and kidney diseases and

hypertension, but its contribution to sex differences is not as

well-studied as that of estrogen. Historically, there are animal

studies showing mild adverse effects of testosterone on

hypertensive outcomes in young spontaneously hypertensive

rats (138, 139, 163, 164). Dalmasso et al. have suggested that

in aging SHRs, testosterone supplementation causes a

reduction of blood pressure, indicating that age, in

concordance with testosterone status, affects hypertensive

outcomes rather than testosterone alone (164). A more recent
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animal study determined that testosterone played a permissive

role in the development of hypertension since Ang II-induced

hypertension was worsened when castrated males were

supplemented with exogenous testosterone (165). They also

noted that castrated males demonstrated a reduced AT1/AT2

receptor ratio, which favors the vasoprotective axis of the RAS.

This ratio was restored when testosterone was re-administered

(165). A mendelian randomization model concluded that high

testosterone states could lead to increased rates of

hypertension (166). Studies utilizing human subjects present

only mildly convincing data. In women specifically, one study

showed some evidence that high testosterone states were

correlated with increased carotid-femoral pulse wave velocities,

which is an indicator of arterial stiffness (167). One review

article summarizing the effects of testosterone therapy on

various laboratory markers of transgender men concluded that

there was only weak evidence supporting the correlation

between increased blood pressure and testosterone

administration (168). Interestingly, some studies have

correlated testosterone-deficient states to the development of

hypertension, which would appear to be contrary to the trends

observed in previous studies. One such study investigated the

effects of free testosterone and biologically available

testosterone on blood pressure. It found that free testosterone

is essentially inversely correlated with systolic and diastolic

blood pressure in men (169). Given the evidence, it is likely

that increased testosterone levels in conjunction with decreased

estrogen levels, like those found in PCOS, work synergistically

to facilitate the development of hypertension. Further research

is necessary to characterize the mechanisms by which

testosterone regulates blood pressure and its role in the

development of hypertension.

Whether there are sex differences in Ang II-dependent or

Ang II-induced hypertension remains to be further studied.

Some inconsistencies have been reported in the roles of sex

differences in Ang II-induced hypertension in animal models

(160–162, 170, 171). These inconsistencies range from

complete reversal, attenuated responses, or no effect at all in

female rats or mice, based on the doses of Ang II infusion

(low pressor or high pressor), animal models (rat or mouse,

global AT1a or AT2 receptor knockout), or routes of

administration (subcutaneous or intraperitoneal infusion)

(160–162, 170, 171). It is difficult to directly compare these

studies and draw a clear conclusion on whether sex differences

contribute to the development of Ang II-induced hypertension.

Indeed, no significant sex differences in basal blood pressure

levels in age-matched adult male and female Sprague-Dawley

rats, wild-type, or AT2 receptor knockout mice in which Ang

II induced similar increases in blood pressure, natriuretic, or

diuretic responses (172–175).

Recently, we have determined whether there are sex differences

in the blood pressure, renal excretory, and fibrotic responses to Ang

II between male and female wild-type mice, and between male and

female proximal tubule-specific AT1a receptor knockout mice

(PT-Agtr1a−/−) (170, 171). Although we found sex differences in

some minor phenotypic responses, deletion of AT1a receptors
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selectively in the proximal tubules decreased basal arterial

blood pressure similarly in both male and female wild-type and

PT-Agtr1a−/− mice. Both male and female wild-type and

PT-Agtr1a−/− mice responded to Ang II infusion and developed

hypertension to the similar magnitudes (Figure 4) (170, 171).

The maximal pressor responses remained to be ∼20 mmHg

lower in male and female PT-Agtr1a−/− mice than male and

female wild-type mice. Furthermore, concurrent blockade of

AT1 receptors with losartan decreased the pressor response to

Ang II to similar extents in male and female wild-type and

PT-Agtr1a−/− mice (170, 171). Thus, no significant sexual

dimorphism or sex differences in blood pressure phenotypes

were discovered in wild-type and PT-Agtr1a−/− mice in

response to Ang II or AT1 receptor blockage. However, we did

uncover sex differences in Ang II-induced hypertension in a

mutant mouse model with deletion of the Na+/H+ exchanger 3

(NHE3) selectively in the proximal tubules of the kidney

(PT-Nhe3−/−) (36). In male wild-type and PT-Nhe3−/− mice

infused with a high pressor dose of Ang II, systolic, diastolic,

and mean arterial blood pressure increased in a time-dependent

manner reaching a peak response within a week of Ang II

infusion (Figure 5). In female PT-Nhe3−/− mice, however,

systolic, diastolic, and mean arterial blood pressure responses to

Ang II began to decrease 4 days after Ang II infusion,

suggesting that estrogen (and/or other female hormones) may

contribute to these sex differences in Ang II-induced

hypertension in this mutant mouse model (Figure 5).
FIGURE 4

Comparisons of basal systolic, diastolic, and mean arterial blood pressure and th
losartan between male and female wild-type (WT) and PT-Agtr1a−/− mice. Pr
basal blood pressure similarly in male and female PT-Agtr1a−/− mice under b
to Ang II similarly in both male and female PT-Agtr1a−/− mice. No significant
Ang II with or without losartan treatment between male and female WT or
control WT or PT-Agtr1a−/− mice; +P < 0.05 or ++P < 0.01 vs. Ang II-infus
reference (171) with permission.
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Sex differences in antihypertensive
treatments or managements

In 2017, the American College of Cardiology published new

guidelines for the treatment of hypertension. They stratified

blood pressure into five categories with different treatment

strategies or approaches. Non-pharmacological interventions are

an integral part of controlling hypertension of all categories.

Lifestyle changes that promote blood pressure reduction include

weight loss, DASH diet, sodium intake reduction, dietary

potassium supplementation, increased physical activity, and

reduced alcohol consumption (1–4). These lifestyle changes are

recommended to every patient, regardless of blood pressure

status. Patients are initiated on BP-lowering medications once

they are diagnosed with Stage 1 and have ASCVD or a 10-year

CVD risk ≥10% (1–4). Primary agents for the treatment of

hypertension include thiazide diuretics, ACE inhibitors,

angiotensin II receptor blockers (ARBs), and calcium channel

blockers (CCBs). Secondary agents include loop diuretics,

potassium-sparing diuretics, aldosterone antagonists, beta-

blockers, direct renin inhibitors, alpha-blockers, and direct

vasodilators (1–4).

The INTERHEART study established that elevated blood

pressures presented an increased risk for adverse cardiac events

for female subjects when compared to male subjects (176).

Regarding control, there has been an ongoing debate about the

risks and benefits of intensive vs. less intensive therapy. The 2021
eir responses to Ang II infusion with or without AT1 (AT1a) receptor blocker
oximal tubule-specific deletion of AT1a receptors significantly decreased
asal conditions, and significantly attenuated the hypertensive responses
sex differences were found in basal blood pressure and its responses to
between male and female PT-Agtr1a−/− mice. *P < 0.05 or **P < 0.01 vs.
ed male or female wild-type or PT-Agtr1a−/− mice. Reproduced from
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FIGURE 5

Sex differences in basal systolic, diastolic, and mean arterial blood pressure and their responses to a high pressor dose of Ang II infusion, 1.5 mg/kg per
day, intraperitoneal via osmotic minipump in conscious, adult male and female wild-type (WT) and PT-Nhe3−/− (proximal tubule-specific NHE3 knockout)
mice, as measured using the direct implanted telemetry technique. Please note the time-dependent increases in systolic, diastolic, and mean arterial
blood pressure responses to Ang II infusion in male WT mice and significantly attenuated hypertensive responses to Ang II in male PT-Nhe3−/− mice.
However, systolic, diastolic, and mean arterial blood pressure responses to Ang II began to decrease 4 days after Ang II infusion in female PT-Nhe3−/

− mice, revealing significant sex differences in these mutant mice. (A–C) Male mice; whereas (D–F) female mice. **P < 0.01 vs. WT time-control
group; ++P < 0.01 vs. PT-Nhe3−/− time-control group, respectively. Reproduced from reference (36) with permission.

Nwia et al. 10.3389/fcvm.2023.1198090
SPRINT trial concluded that patients with increased cardiovascular

risk were less likely to experience a major adverse cardiac event

when their target systolic blood pressure was <120 mmHg when

compared to the less intensive <140 mmHg target that was

previously established by clinical guidelines (177). When the data

is analyzed by sex, the hazard ratio is not statistically significant

in the female subgroup. It is important to note that this outcome

could be attributed to small female sample size within the trial

and lower baseline cardiovascular risk (177). Although the data

on blood pressure control is not unanimous, it is generally

accepted in clinical practice that a more intensive approach to

BP control yields better long-term outcomes (178). Indeed, a

study examining worldwide rates of hypertensive control found

that blood pressure control rates were significantly worse in

women (34.0%) when compared to men (37.7%) (179).

However, current guidelines still do not have sex-specific

recommendations when it comes to hypertension management,

with an exception for women who are pregnant, breastfeeding, or

of childbearing age. One meta-analysis comparing the treatment

benefits of ACE inhibitors, CCBs, ARBs, and diuretics/beta-

blockers concluded that these blood pressure-lowering regimens

all have similar protection against major cardiovascular events

between men and women (180). Another study determined that

women who have been prescribed losartan were more likely to be

hospitalized for angina than their male counterparts receiving the

same treatment (181). The ACCOMPLISH trial compared

multidrug therapy consisting of ACE inhibitors + CCBs to ACE
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inhibitors + HCTZ. Their data demonstrated that the ACEI +

CCB combination was more effective in reducing adverse

cardiovascular events and death, but this same significance was

not demonstrated in the female subject subgroup. These findings

were likely limited by the fact that only 39.5% of study subjects

were women (182). Generally, data demonstrating the

relationship between specific antihypertensive regimens and

cardiovascular outcomes is lacking when it comes to comparing

female and male subjects.

Sex differences have been identified in drug bioavailability, an

important factor when it comes to dosing considerations.

Women generally have higher gastric pH, slower gastric

emptying, and longer gastrointestinal transit time (183). All these

features would promote absorption, causing increased drug

absorption in women compared to men. After a drug is

absorbed, it is distributed around the body into different

compartments which can alter bioavailability. Sex differences in

body composition such as higher body fat percentage and

decreased plasma volume in females could affect drug availability

and create higher levels of lipid-soluble drugs in men and

hydrophilic drugs in women. Increased bioavailability usually

results in increased risk of adverse outcomes, when not

accounted for in dosing regimens.

Adverse outcomes to hypertension treatment are an important

consideration when trying to optimize cardiovascular outcomes in

patients. Rabi et al. reviewed controlled trials of ACE inhibitors and

ARBs and found that only 43% of studies reported sex-specific
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outcomes (184). A comparative study by Rydberg et al. concluded

that women had an increased prevalence of adverse drug reactions

to ACEIs, thiazides, diuretics, and potassium-sparing agents. When

it comes to ACE inhibitor adverse drug reactions (ADRs), female

patients were 1.31 times more likely to report adverse reactions

(185). The most reported symptoms in both sexes were cough

and angioedema (185). Male subjects were more likely to report

adverse drug reactions while taking aldosterone antagonists, with

the most common reported reaction being hyperkalemia (186).

No statistical difference was found between males and females

for ARBS, sulfonamides, and selective beta-blockers in the

prevalence of adverse drug reactions (187). Overall, female

patients are more likely to experience adverse drug reactions

while undergoing treatment for hypertension (187–192).
Concluding remarks

In summary, hypertension remains a critical area of research

due to its prevalence and strong association with adverse

cardiovascular events. Historically, female subjects have been

excluded from in vivo animal experiments and clinical trials in

humans, leaving half of the population unaccounted for in

health, hypertension, cardiovascular, and kidney research.

However, recent efforts have increased our understanding of sex

differences in the physiological and pathological development of

hypertension.

The data summarized in this review highlights the protective

effect of estrogen on hypertension. After menopause, women are

more likely to develop hypertension due to decreased estrogen

levels. Estrogen exerts inhibitory effects on the classical RAAS

while promoting non-classical RAS pathways, resulting in an

overall vasodilatory and antihypertensive response. However, the

mechanisms through which testosterone influences blood

pressure remain unclear, and further research is necessary to

elucidate its interaction with the RAAS.

Regarding clinical management, there has been some progress

in including female subjects in clinical trials. However, research on

the clinical outcomes of female and male subjects on specific

antihypertensive regimens remains limited. Female patients have

been shown to be more prone to adverse drug reactions while

undergoing treatment, likely due to sex differences in

pharmacokinetics and pharmacodynamics. As such, hypertension

treatment that accounts for biological sex might provide better

patient outcomes and fewer adverse drug reactions.

Looking towards the future, sex differences in hypertension,

cardiovascular and kidney pathogenesis might provide new

opportunities to develop novel therapies that not only suppress

the classical AGT/renin/ACE/Ang II/AT1 receptor responses, but

also restore the vasoprotective axis of the ACE2/Ang (1-7)/MasR/

AT2 receptor responses. For example, therapies that promote

Ang (1-7) binding with MasR or activate AT2 receptors might be

beneficial for postmenopausal women with poorly controlled

hypertension, cardiovascular and kidney diseases. Several clinical

trials are currently underway to investigate these as viable

treatment targets for hypertension.
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In conclusion, while some progresses have been made in

studying and understanding sex differences in hypertension,

cardiovascular and kidney diseases, further research is necessary

to develop more effective and personalized treatments that

account for biological sex. Inclusion of female subjects in clinical

studies is especially critical to help promote clinical decisions

that take into account sex-specific factors in the future.
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