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Investigation of the shared
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infarction and depression
Mengxi Wang1,2,3†, Liying Cheng4†, Ziwei Gao1,2,3, Jianghong Li1,2,3,
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Medical College, Nanjing University of Chinese Medicine, Nanjing, China, 4State Key Laboratory of
Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China

Background: The pathogenesis of myocardial infarction complicating depression
is still not fully understood. Bioinformatics is an effective method to study the
shared pathogenesis of multiple diseases and has important application value in
myocardial infarction complicating depression.
Methods: The differentially expressed genes (DEGs) between control group and
myocardial infarction group (M-DEGs), control group and depression group (D-
DEGs) were identified in the training set. M-DEGs and D-DEGs were intersected to
obtain DEGs shared by the two diseases (S-DEGs). The GO, KEGG, GSEA and
correlation analysis were conducted to analyze the function of DEGs. The biological
function differences of myocardial infarction and depression were analyzed by GSVA
and immune cell infiltration analysis. Four machine learning methods, nomogram,
ROC analysis, calibration curve and decision curve were conducted to identify hub
S-DEGs and predict depression risk. The unsupervised cluster analysis was
constructed to identify myocardial infarction molecular subtype clusters based on
hub S-DEGs. Finally, the value of these genes was verified in the validation set, and
blood samples were collected for RT-qPCR experiments to further verify the
changes in expression levels of these genes in myocardial infarction and depression.
Results: A total of 803 M-DEGs, 214 D-DEGs, 13 S-DEGs and 6 hub S-DEGs (CD24,
CSTA, EXTL3, RPS7, SLC25A5 and ZMAT3) were obtained in the training set and they
were all involved in immune inflammatory response. The GSVA and immune cell
infiltration analysis results also suggested that immune inflammation may be the
shared pathogenesis of myocardial infarction and depression. The diagnostic models
based on 6 hub S-DEGs found that these genes showed satisfactory combined
diagnostic performance for depression. Then, two molecular subtypes clusters of
myocardial infarction were identified, many differences in immune inflammation
related-biological functions were found between them, and the hub S-DEGs had
satisfactory molecular subtypes identification performance. Finally, the analysis
results of the validation set further confirmed the value of these hub genes, and the
RT-qPCR results of blood samples further confirmed the expression levels of these
hub genes in myocardial infarction and depression.
Abbreviations

CD24, cluster of differentiation 24; CDF, cumulative distribution function; CSTA, cystatin A; DCA, decision
curve analysis; D-DEGs, differentially expressed genes between control group and depression group; DEGs,
differential expression genes; EXTL3, exostosin like glycosyltransferase 3; GEO, gene expression omnibus;
GLM, generalized linear model; GO, Gene Ontology; GSEA, gene set enrichment analysis; GSVA, gene set
variation analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, least absolute shrinkage and
selection operator; M-DEGs, differentially expressed genes between control group and myocardial infarction
group; RF, random forest model; ROC, receiver operating characteristic; RPS7, ribosomal protein S7;
RT-qPCR, real time quantitative polymerase chain reaction; S-DEGs, differential expression genes shared by
myocardial infarction and depression; SLC25A5, solute carrier family 25 member 5; SVM, support vector
machine model; ZMAT3, zinc finger matrin-type 3.
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Conclusion: Immune inflammation may be the shared pathogenesis of myocardial infarction
and depression. Meanwhile, hub S-DEGs may be potential biomarkers for the diagnosis and
molecular subtype identification of myocardial infarction and depression.
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1. Introduction

Myocardial infarction, the most serious type of coronary heart

disease, is a kind of disease with clinical evidence of myocardial

injury and ischemia (1). Myocardial infarction is one of the most

dangerous diseases in the world with high morbidity, high

disability rate and high fatality rate, which has brought heavy

burden to society (2). Depression is a kind of mental disorder

disease, mainly manifested by various negative emotions, including

guilt, sadness and so on (3). In addition, it is often accompanied

by sleep disorders, fatigue, loss of appetite, slow thinking and

other symptoms. With the continuous development of social

economy, the incidence of depression has gradually increased due

to the accelerated pace of life and the increase of pressure, mental

health has become an important public health problem (4).

In recent years, an increasing number of evidence has shown a

strong link between myocardial infarction and depression. On the

one hand, myocardial infarction is one of the important risk factors

for depression. A systematic review showed that acute myocardial

infarction was followed by depression in 28.7 percent of patients

(5). On the other hand, depression also increases the risk of

myocardial infarction. The study found that depression increased

the risk of myocardial infarction in patients with stable angina by

about 31 percent (6). In addition, depression has a significant

negative impact on the prognosis of patients with myocardial

infarction, whether the depression occurred before or after the

myocardial infarction. Some studies have shown that patients with

depression after myocardial infarction have significantly higher rates

of mortality and cardiovascular adverse events within 16 months,

and significantly higher rates of cardiac mortality within 5 years (7,

8). Another study found that patients who had been diagnosed

with depression prior to myocardial infarction had a 7% increased

risk of death within 1 year and 9% increased risk of death within

19 years compared with patients without depression (9). Thus, it

can be seen that myocardial infarction and depression could

interact with each other, leading to a worsening of the disease

process and serious damage to human health. However, at present,

the pathogenesis of myocardial infarction complicating depression

is still unclear, effective diagnosis and treatment methods are still

lacking (10, 11). Therefore, it is of great clinical significance to

explore the pathogenesis of myocardial infarction complicating

depression, search for early diagnosis biomarkers and targeted

therapeutic measures.

Bioinformatics analysis could integrate experimental data from

multiple sources and analyze the data from multiple levels and

angles, which has great advantages in studying the pathogenesis

of diseases, exploring diagnostic markers and therapeutic

measures. However, there are no studies that apply this
02
technique to myocardial infarction and depression. Therefore,

this study attempted to explore the pathogenesis of myocardial

infarction complicating depression from the gene level through

bioinformatics analysis combined with experimental verification,

and to find out the genes with diagnostic value and potential

therapeutic measures, in order to provide valuable references for

the research of myocardial infarction and depression. The

workflow of this study is presented in the Figure 1.
2. Material and methods

2.1. Data acquisition

We used the keywords “myocardial infarction”, “depression”

or “depressive disorder” to search the myocardial infarction

datasets and depression datasets in the Gene Expression

Omnibus (GEO) database. The retrieved results were then

filtered according to the following criteria: (1) The species

studied was Homo sapiens. (2) The disease group was

myocardial infarction or depression patients, and the control

group was healthy people. (3) The test sample was whole

blood. Finally, we selected two myocardial infarction datasets

and two depression datasets with the largest sample size in the

results as the training and validation sets respectively. The

GSE34198 dataset was defined as the training set for

myocardial infarction, containing 49 patients with myocardial

infarction and 48 healthy control population. The GSE19738

dataset was defined as the training set for depression,

containing 33 patients with depression and 34 healthy control

population. The GSE48060 dataset was defined as the

validation set for myocardial infarction, containing 31 patients

with myocardial infarction and 21 healthy control population.

The GSE98793 dataset was defined as the validation set for

depression, containing 128 patients with depression and 64

healthy control population. The details of the 4 GEO datasets

were shown in the Supplementary Table S1.
2.2. Quality control

For the datasets containing “cel files” in the original data, we

evaluated their quality with the R packages “affy”, “affyPLM” and

“RColorBrewer” using three analysis methods: relative log

expression (RLE), normalized unscaled standard errors (NUSE)

and RNA degradation curve. For datasets that do not contain

“cel files” in the original data, we searched the original literature

corresponding to these datasets. If the dataset result was verified
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FIGURE 1

The flowchart of this study.
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by RT-qPCR experiment in the original literature, its quality was

considered to meet the requirement.
2.3. Differential expression analysis

The log2 conversion was used to correct the data before the

differential analysis was performed. Next, the R package

“limma” was used to identify differential expression genes

(DEGs) between myocardial infarction group and control group

(M-DEGs), or between depression group and control group (D-

DEGs). The P-value <0.05 and |log2 fold change| >0.2 was

considered be significant difference. Then, M-DEGs and D-

DEGs were intersected to obtain the differential expression

genes shared by the two diseases (S-DEGs). After that, the

heatmap of DEGs was drawn with “pheatmap” package, and the

volcano plot of DEGs was drawn with “ggplot2” package.

Finally, the R package “RCircos” was used to visualize the

position of S-DEGs on the chromosome.
2.4. Unsupervised clustering for myocardial
infarction patients based on S-DEGs

The unsupervised clustering analysis of myocardial

infarction patients was performed using “ConsensusClusterPlus”

package based on S-DEGs. The optimal number of molecular
Frontiers in Cardiovascular Medicine 03
subtype clusters was evaluated comprehensively according to

consensus clustering matrix, cumulative distribution

function (CDF) curves, CDF delta area curves and consensus

clustering score.
2.5. Gene set variation analysis (GSVA)

The R package “GSVA” was used for GSVA analysis with

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) data files as references. The R package

“limma” was used to identify differential signaling pathways

and biological functions between disease group and control

group, or between different molecular subtype clusters. The

absolute t value of GSVA score more than 2 was considered

as a significant difference.
2.6. Single-gene gene set enrichment
analysis (GSEA)

Single-gene GSEA was performed on the S-DEGs in this

study to explore the biological functions and signaling

pathways associated with these genes. The specific analysis

steps are as follows, calculating the correlation between all

other genes and these key genes in the entire dataset and

sequencing the gene sets according to the correlation. With
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the GO and KEGG data files as reference, the biological

functions and signaling pathways enrichment of each gene set

were evaluated to find the significantly enriched biological

functions and signaling pathways.
2.7. Immune cell infiltration, protein–
protein interaction (PPI) network, GO and
KEGG analysis

The methods of immune cell infiltration analysis refer to

previous studies (12, 13). Based on the CIBERSORT algorithm,

the relative abundance and proportion of 22 types of immune

cells in each sample were evaluated to explore differences in

immune cell infiltration between the control group and

myocardial infarction group or depression group, as well as

between clusters of different molecular subtypes. The STRING

database was used to carry out PPI network analysis of

S-DEGs. The R package “clusterProfiler” and “circlize” were

used to perform GO and KEGG analysis of M-DEGs, D-DEGs

and S-DEGs.
2.8. Construction and evaluation of
diagnostic model and molecular subtype
identification model

Based on the methods of previous studies, hub genes for

depression diagnosis were selected (14, 15). Four machine

learning methods, including least absolute shrinkage and

selection operator (LASSO) regression, random forest model

(RF), support vector machine model (SVM), generalized linear

model (GLM) were performed to evaluate the value of S-DEGs

in diagnosing depression. The intersection of the top 10

S-DEGs with diagnostic value selected by these 4 methods was

performed to obtain the hub S-DEGs. After that, R packages

“caret” was used to construct 3 machine learning models for

diagnosis and molecular subtypes identification based on the

hub S-DEGs. Finally, the diagnosis and identification value of

the 3 machine learning models was evaluated by cumulative

residual distribution curves, residual boxplots and receiver

operating characteristic (ROC) curves.
2.9. Establishment and verification of the
nomogram

The R package “rms” was used to build the nomogram

based on 6 hub S-DEGs. The different scores were assigned

according to the expression level of each gene and the sum

of all gene scores could reflect the occurrence probability of

disease. Calibration curves and decision curve

analysis (DCA) were used to evaluate the predictive power

of the nomogram.
Frontiers in Cardiovascular Medicine 04
2.10. Verification of the diagnostic value and
molecular subtype identification value of
hub S-DEGs in the validation set

In order to further verify the diagnostic value of hub S-DEGs

for depression and the molecular subtype identification value for

myocardial infarction, we selected the dataset GSE98793 as the

depression validation set and the dataset GSE48060 as the

myocardial infarction validation set. In the depression validation

set, we assessed whether the expression levels of hub S-DEGs

were consistent with those in the training set, and evaluated

whether the diagnostic performance of hub S-DEGs was as

satisfactory as they were in the training set through machine

learning and ROC analysis. In the myocardial infarction

validation set, unsupervised clustering analysis, PCA analysis,

immune cell infiltration analysis, machine learning, and ROC

analysis were used to evaluate whether the hub S-DEGs could

identify molecular subtypes similar to the training set and

whether they could show the same satisfactory molecular subtype

identification performance.
2.11. RT-qPCR

To verify expression levels of S-DEGs in peripheral blood of

patients with myocardial infarction, depression, and myocardial

infarction complicating depression, we collected 4 groups of

patients: patients without myocardial infarction or depression (n

= 10), patients with myocardial infarction but without depression

(n = 10), patients with depression but without myocardial

infarction (n = 10), myocardial infarction complicating depression

patients (n = 10). Baseline characteristics of these patients were

presented in the Supplementary Table S2. Peripheral blood

RNA of these patients was extracted by TRIzol method for RT-

qPCR detection. The RT-qPCR experiment followed the

following steps and parameters recommended by the instruction.

The reverse transcription program was set as: 25°C for 5 min,

55°C for 15 min, 85°C for 5 min. The amplification procedure

was set as: pre-denaturation for 5 min at 95°C, followed by 40

cycles of 95°C for 10 s and 60°C for 30 s. The mRNA expression

level was calculated by △△Ct method with GAPDH as internal

reference. The primer sequences are shown in Supplementary

Table S3. The Primer synthesis was completed by Generay

Biotech. This study was approved by the Ethics Committee of

Jiangsu Province Hospital of Chinese Medicine (Ethical Approval

Number: 2018NL-105-04).
2.12. Construction the ceRNA network of
mRNA-miRNA-lncRNA interactions

The miRanda, miRDB and TargetScan databases were used

to predict miRNAs that could target the hub S-DEGs, and the

lncBase and mircode databases were used to predict lncRNAs

that could target these miRNAs. The Cytoscape software was
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used to construct the ceRNA network of mRNA-miRNA-

lncRNA interactions.
2.13. Prediction of genes-targeted drugs

The DSigDB database was used to predict potential drugs

targeting hub S-DEGs, and the Cytoscape software was used to

visualize the predicted results.
2.14. Molecular docking

The 2D structures of targeted drugs were downloaded from the

PubChem database. Chem3D was used to convert 2D structures

into 3D structures. The 3D structures of hub S-DEGs were

downloaded from the PDB database or UniProt database.

Autodock Tools was used for active pocket location. Finally,

Autodock Vina was employed for molecular docking to predict

the binding sites and binding free energy between the targeted

drugs and hub S-DEGs. The lower binding free energy is, the

higher binding strength will be.
2.15. Statistical analysis

The software of R 4.2.1 was used for bioinformatics analysis

and figures drawing. The software of GraphPad Prism 7.0 was

used for RT-qPCR data analysis. One-way ANOVA was

performed to compare three or more groups of data. The P value

<0.05 was considered statistically significant.
3. Results

3.1. Identification and enrichment analysis
of M-DEGs and D-DEGs

The quality of the four datasets included in this study met the

requirement. The results of the datasets GSE34198 and GSE19738

were verified by RT-qPCR experiment in the original literature (16,

17). The quality of datasets GSE48060 and GSE98793 was

evaluated using three analysis methods (RLE, NUSE and RNA

degradation curve), and the evaluation results were shown in

Supplementary Figures S1A–F. In the myocardial infarction and

depression training sets, 803 M-DEGs and 214 D-DEGs were

identified respectively (Figures 2A–D). The GO and KEGG

enrichment analysis of 803 M-DEGs showed that these genes

were mainly involved in multiple cellular or cytokine-mediated

immune inflammatory responses, such as leukocyte chemotaxis,

immune receptor activation, chemokine signaling pathway, B cell

receptor signaling pathway, TNF signaling pathway and IL-17

signaling pathway (Figures 2E–H). Then, GO and KEGG

enrichment analysis were performed on 214 D-DEGs, and it was

also found that these genes could regulate various immune

inflammatory reactions, such as Th17 cell differentiation, Th1
Frontiers in Cardiovascular Medicine 05
cell differentiation, Th2 cell differentiation and NF-κB signaling

pathway (Figures 2I–L). These results suggest that immune

inflammation may be the shared pathogenesis of myocardial

infarction and depression.
3.2. Identification of shared pathogenesis of
myocardial infarction and depression

In order to explore the shared pathogenesis of myocardial

infarction and depression, 13 S-DEGs were obtained by the

intersection of 803 M-DEGs and 214 D-DEGs (Figure 3A).

Then, GO and KEGG enrichment analysis were performed on S-

DEGs, the results showed that these genes were also involved in

a variety of immune inflammatory responses, including T cell

proliferation and activation, lymphocyte proliferation and

monocyte proliferation (Figures 3B–E). To further investigate the

role of immune inflammation in myocardial infarction and

depression, GSVA analysis and immune cell infiltration analysis

were performed on the training set of myocardial infarction and

depression. The results of GSVA analysis showed significant

changes in B cell receptor signaling pathways in patients with

myocardial infarction (Figures 4A,B), and significant changes in

T cell differentiation and activation in patients with depression

(Figures 4C,D). The results of immune cell infiltration analysis

showed that there were significant differences in the infiltration

levels of naive B cell, monocyte and neutrophil in patients with

myocardial infarction (Figures 4E,F), and significant differences

in the infiltration levels of CD8+ T cell, natural killer cell and

monocyte in patients with depression (Figures 4G,H). These

results further suggest that immune inflammation may be the

shared pathogenesis of myocardial infarction and depression.
3.3. Construction of diagnostic model
based on hub S-DEGs

The LASSO regression was performed to evaluate the value of

13 S-DEGs in the diagnosis of depression and 11 genes with the

best diagnostic value were selected (Figures 5A,B). Then, other 3

machine learning methods were used to pick out the top 10

genes for diagnostic value respectively. Through the intersection

of genes selected by 4 machine learning methods, 6 hub S-DEGs

were obtained (CD24, CSTA, EXTL3, RPS7, SLC25A5 and

ZMAT3). The PPI network analysis result showed no interaction

between these genes (Supplementary Figure S2). Next, we

evaluated the diagnostic value of the 6 hub S-DEGs individually,

and the results showed that all the individual genes had low

diagnostic efficacy (Figure 5C). After that, we tried to improve

the diagnostic efficiency by constructing multi-gene association

diagnostic models. We constructed 3 machine learning models

based on the 6 hub S-DEGs, including RF, SVM and GLM.

Three methods were used to select the best diagnostic model

(cumulative residual distribution curves, residual boxplots and

ROC curves). The results found that the SVM model showed the

best diagnostic efficiency (area under ROC curve was 0.789). The
frontiersin.org
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FIGURE 2

Identification and functional analysis of M-DEGs and D-DEGs. (A) The heatmap of M-DEGs. (B) The volcano plot of M-DEGs. (C) The heatmap of D-DEGs.
(D) The volcano plot of D-DEGs. (E) The bubble chart of GO analysis of M-DEGs. (F) The circle diagram of GO analysis of M-DEGs. (G) The bubble chart of
KEGG analysis of M-DEGs. (H) The circle diagram of KEGG analysis of M-DEGs. (I) The bubble chart of GO analysis of D-DEGs. (J) The circle diagram of
GO analysis of D-DEGs. (K) The bubble chart of KEGG analysis of D-DEGs. (L) The circle diagram of KEGG analysis of D-DEGs.
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machine learning model construction results were shown in

Figures 5D–F. Finally, in order to predict the risk of disease

more accurately, we constructed the nomogram based on 6 hub

S-DEGs. The results of calibration curves and DCA showed that

the prediction performance of the nomogram is satisfactory

(Figures 5G–I).
3.4. Functional analysis of the hub S-DEGs

In order to further explore the main biological functions and

signaling pathways affected by the 6 hub S-DEGs, the single-gene

GSEA analysis was performed. The results showed that most of

these hub S-DEGs are involved in regulating immune

inflammatory responses. For example, CD24 gene is involved in

the process of leukocyte granulation and mast cell activation,

RPS7 gene, SLC25A5 gene and ZMAT3 gene are involved in the

process of cytokine-cytokine receptor interaction (Figures 6A–L).

In view of the close association between these hub S-DEGs and
Frontiers in Cardiovascular Medicine 06
immune inflammation, we analyzed the correlation between the

expression levels of these genes and the infiltration levels of

immune cells. The results showed that the expression levels of

these genes were correlated with each other, and with the

infiltration levels of multiple immune cells (Figures 7A–C). In

addition, the positions of these genes in the chromosome were

shown in the Figure 7D.
3.5. Identification of molecular subtype for
myocardial infarction based on hub S-DEGs

To identify the molecular subtype in myocardial infarction, we

performed the unsupervised clustering analysis of myocardial

infarction patients in the training set based on the expression

levels of 6 hub S-DEGs. The results of consensus clustering

matrix, CDF curves, CDF delta area curves and consensus

clustering score all showed that when the k value is set as 2 (k =

2), the number of clusters is the most stable (Figures 8A–C,
frontiersin.org
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FIGURE 3

Identification and functional analysis of S-DEGs. (A) The S-DEGs were identified by Venn diagram. (B) The bubble chart of GO analysis of S-DEGs. (C) The
circle diagram of GO analysis of S-DEGs. (D) The bubble chart of KEGG analysis of S-DEGs. (E) The circle diagram of KEGG analysis of S-DEGs.
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Supplementary Figures S3A–G and S4A–I). Therefore, we

divided the myocardial infarction patients of training set into 2

molecular subtype clusters (cluster 1 and cluster 2). The PCA

analysis results showed that the 2 clusters were clearly separated

(Figure 8D). Since hub S-DEGs are associated with immune

inflammation, we next sought to explore whether there are

differences in immune inflammatory responses between the 2

molecular subtype clusters. The GSVA analysis results of the 2

clusters showed that significant differences in multiple biological

processes related to immune inflammation, such as

immunoglobulin binding, cytokine-cytokine receptor interaction

and leukocyte transendothelial migration (Figures 8E,F). The

immune cell infiltration analysis results of the 2 clusters showed

that there were significant differences in the infiltration levels of

memory B cell, CD8+ T cell, regulatory T cell, monocyte and

neutrophil (Figures 8G,H). Finally, we investigated the value of

these 6 hub S-DEGs in recognizing 2 molecular subtypes clusters.

The single gene ROC analysis results showed that some genes

had well recognition value (Figure 8I) and the machine learning

model based on the 6 genes showed more satisfactory

recognition value (Figures 8J–L). These results suggest that hub

S-DEGs contribute to the identification of molecular subtypes

associated with immune inflammation in patients with

myocardial infarction. Since immune inflammation is the shared
Frontiers in Cardiovascular Medicine 07
pathogenesis of myocardial infarction and depression, this

molecular subtype classification method may help to identify

people at high risk of myocardial infarction complicating

depression.
3.6. Verification of the diagnostic value and
molecular subtype identification value of
hub S-DEGs

First, we verified the expression levels and diagnostic value of 6

hub S-DEGs in the depression validation set (GSE98793). The

results showed that the expression trends of 4 genes (CD24, RPS7,

SLC25A5 and ZMAT3) in the validation set were consistent with

those in the training set (Figures 9A–F). Next, we evaluated the

diagnostic value of the 6 hub S-DEGs for depression in the

validation set individually, and the results showed that all the

individual genes had low diagnostic efficacy (Figure 9G).

Subsequently, we constructed machine learning models based on

these hub S-DEGs in the validation set, and the results showed

that the diagnostic efficiency of SVM was significantly higher than

that of the single gene, suggesting that the combined diagnostic

value of these 6 hub S-DEGs for depression was also satisfactory

in the validation set (Figures 9H–J). After that, we also verified
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FIGURE 4

Differential function analysis between control group and myocardial infarction group or depression group. (A) The results of GSVA analysis showing the
differences in biological functions between myocardial infarction group and control group (red bars represent activation of these biological functions in
the myocardial infarction group, blue bars represent inhibition of these biological functions in the myocardial infarction group). (B) The results of GSVA
analysis showing the differences in signaling pathways between myocardial infarction group and control group (red bars represent activation of these
signal pathways in the myocardial infarction group, blue bars represent inhibition of these signal pathways in the myocardial infarction group). (C) The
results of GSVA analysis showing the differences in biological functions between depression group and control group. (D) The results of GSVA analysis
showing the differences in signaling pathways between depression group and control group. (E) The box plot showing the differences in infiltrated
immune cells between myocardial infarction group and control group. (F) The bar plot showing relative proportion of 22 infiltrated immune cells in
myocardial infarction group and control group. (G) The box plot showing the differences in infiltrated immune cells between depression group and
control group. (H) The bar plot showing relative proportion of 22 infiltrated immune cells in depression group and control group.
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the molecular subtype identification value of these genes in the

myocardial infarction validation set (GSE48060). The results of

consensus clustering matrix, CDF curves, CDF delta area curves

and consensus clustering score all showed that when the k value is
Frontiers in Cardiovascular Medicine 08
set as 2 (k = 2), the number of clusters is the most stable

(Figures 10A–C, Supplementary Figures S5A–G and S6A–I). The

PCA analysis results showed that the 2 clusters were clearly

separated (Figure 10D). The results of GSVA showed significant
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FIGURE 5

Evaluation of the diagnostic value of S-DEGs. (A) The LASSO coefficient of 13 S-DEGs of the diagnostic value. (B) The optimal lambda value was selected
by LASSO regression based on cross-validation. (C) Evaluation of the diagnostic value of 6 hub S-DEGs individually by ROC analysis. (D) The residual
boxplots of 3 machine learning models. (E) The cumulative residual distribution curves of 3 machine learning models. (F) The ROC curves of 3
machine learning models. (G) The nomogram for predicting the risk of depression based on 6 hub S-DEGs. (H) The calibration curves of the
nomogram. (I) The DCA of the nomogram.
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differences in leukocyte proliferation between the 2 clusters

(Figures 10E,F). The immune cell infiltration analysis results of

the 2 clusters showed that there were certain differences in the

infiltration levels of CD4+ T cell, natural killer cell, monocyte and

neutrophil, even if the differences did not reach statistical

significance (Figures 10G,H). The single gene ROC analysis

results showed that some genes had well recognition value of

myocardial infarction molecular subtype (Figure 10I) and the

machine learning model based on the 6 genes showed more

satisfactory recognition value (Figures 10J–L). Finally, we

performed RT-qPCR on 40 blood samples to further verify the

changes in expression levels of 6 hub S-DEGs in myocardial

infarction and depression. The results found that, compared with
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the control group, CD24 gene showed an up-regulated trend in

both myocardial infarction group and depression group, and

showed further up-regulated trend in the myocardial infarction

complicating depression group, while the other 5 genes showed an

opposite trend (Figures 11A–F). These results were consistent with

the analysis results of the training set.
3.7. Regulatory molecular prediction of hub
S-DEGs

First, we constructed a ceRNA network based on 6 hub S-

DEGs. The network included 165 nodes (4 mRNA, 116
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FIGURE 6

Single-gene GSEA analysis of 6 hub S-DEGs. (A) Single-gene GSEA GO analysis of CD24. (B) Single-gene GSEA GO analysis of CSTA. (C) Single-gene GSEA
GO analysis of EXTL3. (D) Single-gene GSEA GO analysis of RPS7. (E) Single-gene GSEA GO analysis of SLC25A5. (F) Single-gene GSEA GO analysis of
ZMAT3. (G) Single-gene GSEA KEGG analysis of CD24. (H) Single-gene GSEA KEGG analysis of CSTA. (I) Single-gene GSEA KEGG analysis of EXTL3.
(J) Single-gene GSEA KEGG analysis of RPS7. (K) Single-gene GSEA KEGG analysis of SLC25A5. (L) Single-gene GSEA KEGG analysis of ZMAT3.
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miRNAs and 45 lncRNAs) and 186 edges (Figure 12).

The interactions of each mRNA, miRNA and lncRNA

in the network were summarized in Supplementary

Table S4. Next, we predicted the targeted drugs of 6 hub

S-DEGs from the DSigDB database, and a total of 27 drugs

were obtained, among which 22 drugs may target ZMAT3

gene, 4 drugs may target CSTA gene and 3 drugs may

target CD24 gene (Figure 13). However, no corresponding

targeted drugs were found for EXTL3 gene, RPS4

gene and SLC25A5 gene. Finally, we performed

molecular docking of drugs and genes to predict their

binding sites and binding free energy, and visualized

the 2 drugs that bind most stably to each gene

(Figures 14A–F).
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4. Discussion

In recent years, with the establishment of the bio-psycho-social

medical model, the relationship between cardiovascular disease and

mental disease has attracted more and more attention. Myocardial

infarction is one of the most serious cardiovascular diseases, and its

occurrence and development are closely related to psychological

factors. Myocardial infarction complicating depression not only

leads to decreased quality of life in patients, but also increases

the incidence of adverse events and mortality (18). However,

myocardial infarction complicating depression is still in a state of

low recognition rate and low treatment rate. One of the main

reasons for this phenomenon is that the diagnosis of depression

relies on scale scores and lacks objective biomarkers (19). Once
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FIGURE 7

Functional analysis of 6 hub S-DEGs. (A,B) The correlation analysis of 6 hub S-DEGs. (C) The correlation analysis of infiltrated immune cells and 6 hub S-
DEGs. (D) The position of 6 hub S-DEGs on the chromosome.
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patients intentionally or unintentionally conceal their true mental

state, it is difficult for doctors to make accurate judgments. In

terms of treatment, there is no specific treatment for myocardial

infarction complicating depression. Treatment measures for

general depression, including cognitive behavioral therapy (20),

exercise therapy (21), and selective serotonin reuptake inhibitors

(22–24), have been shown to improve depressive mood in some

studies of myocardial infarction complicating depression, but the

overall efficacy is still controversial. More importantly, none of

these treatments had significant effects on the long-term

prognosis of myocardial infarction complicating depression

patients. This may be due to the particularity of the pathogenesis

of myocardial infarction complicating depression, which requires

in-depth research to find more valuable targeted therapeutic

measures. Therefore, it can be seen that there are still many
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unsolved problems in the research field of myocardial infarction

complicating depression. To our knowledge, this study is the first

to use bioinformatics analysis techniques to integrate and analyze

multiple human blood samples with myocardial infarction or

depression in an attempt to find solutions to the current challenges.

In this study, a comprehensive analysis of 4 GEO datasets,

including differential analysis, GO analysis, KEGG analysis,

GSVA analysis, GSEA analysis, immune cell infiltration analysis,

and correlation analysis, found that immune inflammatory

response may be the shared pathogenesis of myocardial

infarction and depression, which is consistent with the results of

previous studies. Many results of previous studies have supported

immune inflammation as the central link between myocardial

infarction and depression. On the one hand, both the onset of

myocardial infarction and depression are associated with the
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FIGURE 8

Identification of myocardial infarction molecular subtypes clusters and evaluation of the molecular subtype identification value of 6 hub S-DEGs. (A) The
consensus clustering matrix when k = 2. (B) The CDF curves. (C) The CDF delta area curves. (D) The PCA analysis of the 2 molecular subtypes clusters. (E)
The results of GSVA analysis showing the differences in biological functions between cluster 1 and cluster 2 (red bars represent activation of these
biological functions in the cluster 2, blue bars represent inhibition of these biological functions in the cluster 2). (F) The results of GSVA analysis
showing the differences in signaling pathways between cluster 1 and cluster 2 (red bars represent activation of these signal pathways in the cluster 2,
blue bars represent inhibition of these signal pathways in the cluster 2). (G) The box plot showing the differences in infiltrated immune cells between
cluster 1 and cluster 2. (H) The bar plot showing relative proportion of 22 infiltrated immune cells in cluster 1 and cluster 2. (I) Evaluation of the
molecular subtype identification value of 6 hub S-DEGs individually by ROC analysis. (J) The residual boxplots of 3 machine learning models. (K) The
cumulative residual distribution curves of 3 machine learning models. (L) The ROC curves of 3 machine learning models.
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abnormal activation of the immune inflammatory system, and the

levels of immune cells or inflammatory factors in the blood and

tissues of patients are significantly up-regulated (25, 26). On the

other hand, the immune inflammatory response caused by

myocardial infarction and depression can influence each other to

cause the occurrence or exacerbation of the diseases. For

example, the activated immune inflammatory response after

myocardial infarction can change the permeability of the blood-

brain barrier and induce neuroinflammatory response in the
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brain, which may lead to depression (27). Depression, in turn,

can aggravate the immune inflammatory response of myocardial

cells and vascular endothelial cells, and accelerate the death

process of myocardial cells after myocardial infarction (28).

However, previous studies on the pathogenesis of myocardial

infarction complicating depression were all conducted by basic

experimental methods. This study further enriched the

pathogenesis of myocardial infarction complicating depression

from the clinical level by bioinformatics analysis of
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FIGURE 9

Evaluation of the expression levels and diagnostic value of 6 hub S-DEGs in the depression validation set (GSE98793). (A–F) Differences in expression
levels of 6 hub S-DEGs between depression group and control group in the validation set. (G) Evaluation of the diagnostic value of 6 hub S-DEGs
individually by ROC analysis in the validation set. (H) The residual boxplots of 3 machine learning models in the validation set. (I) The cumulative
residual distribution curves of 3 machine learning models in the validation set. (J) The ROC curves of 3 machine learning models in the validation set.
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transcriptomics of patients. In addition, this study identified 6 hub

S-DEGs that were significantly differentially expressed in both the

myocardial infarction and depression training sets. The machine

learning results showed that these genes are not only valuable in

the diagnosis of depression, but also have potential in the

identification of molecular subtype of myocardial infarction. As

we all know, the diagnosis of myocardial infarction has objective

blood biomarkers, while depression does not. After myocardial

infarction, how to early identify patients with depression or high-

risk patients prone to depression is crucial. The results of this

study found that these hub genes contribute to the identification

of myocardial infarction patients who have developed depression.

Previous studies have found that disease can be divided into

different molecular subtypes, and these molecular subtypes have

significant differences in clinical manifestations, treatment

sensitivity and prognosis (29, 30). In this study, we found that 6

hub S-DEGs were able to identify two distinct clusters of

molecular subtypes in patients with myocardial infarction that
Frontiers in Cardiovascular Medicine 13
differ in a variety of immunoinflammatory related biological

functions. This suggests that the hub S-DEGs are promising for

identifying subgroups population with specific

immunoinflammatory characteristics in patients with myocardial

infarction. Since immune inflammation is the common

pathogenesis of myocardial infarction and depression, different

subgroups population may have different risks of depression.

Therefore, for those patients with myocardial infarction who

have not yet developed significant depressive symptoms, the

molecular subtype identification value of these hub S-DEGs may

help to identify people at high risk of depression. In addition,

since these 6 hub S-DEGs are the differential genes shared by

myocardial infarction and depression, they may be key

therapeutic targets for myocardial infarction complicating

depression. Therefore, the ceRNA regulatory network and

targeted drug regulatory network of these genes were constructed

based on the public database, and the binding site and binding

strength of drugs were predicted by molecular docking
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FIGURE 10

Evaluation of the molecular subtype identification value of 6 hub S-DEGs in the myocardial infarction validation set (GSE48060). (A) The consensus
clustering matrix when k = 2 in the validation set. (B) The CDF curves in the validation set. (C) The CDF delta area curves in the validation set. (D) The
PCA analysis of the 2 molecular subtypes clusters in the validation set. (E) The results of GSVA analysis showing the differences in biological functions
between cluster 1 and cluster 2 in the validation set. (F) The results of GSVA analysis showing the differences in signaling pathways between cluster 1
and cluster 2 in the validation set. (G) The box plot showing the differences in infiltrated immune cells between cluster 1 and cluster 2 in the
validation set. (H) The bar plot showing relative proportion of 22 infiltrated immune cells in cluster 1 and cluster 2 in the validation set. (I) Evaluation
of the molecular subtypes identification value of 3 M-CRGs individually by ROC analysis in the validation set. (J) The residual boxplots of 3 machine
learning models in the validation set. (K) The cumulative residual distribution curves of 3 machine learning models in the validation set. (L) The ROC
curves of 3 machine learning models in the validation set.
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technology, in order to provide a valuable reference for the targeted

therapy of myocardial infarction complicating depression. It should

be noted that although the diagnostic value and molecular subtype

identification value of these genes were verified in the validation

set, the expression trends of a few of them (CSTA and EXTL3)

were not completely consistent in the training set and validation

set. By comparing the differences between these datasets, we

found that some of the depressed patients in the validation

set also had anxiety state, which may be the main reason for this
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result. Therefore, in order to further verify the changes in the

expression levels of these genes in myocardial infarction and

depression, we collected blood samples of 40 patients and

performed RT-qPCR experiments. The results showed that the

changes in the expression levels of these genes were basically

consistent with the trends of training set. In addition, it is

important to note that, when performing bioinformatics analysis,

the differential analysis between tumor tissue and tumor adjacent

tissue usually results in many differential genes. However, in
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FIGURE 11

The RT-qPCR results of blood samples of 40 patients. (A) The mRNA expression levels of CD24. (B) The mRNA expression levels of CSTA. (C) The mRNA
expression levels of EXTL3. (D) The mRNA expression levels of RPS4. (E) The mRNA expression levels of SLC25A5. (F) The mRNA expression levels of
ZMAT3. (*P < 0.05, **P < 0.01).
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non-tumor diseases, especially when the blood samples of non-

tumor diseases were used for differential analysis, fewer

differential genes are usually obtained. In this case, it is

sometimes not appropriate to use stringent screening criteria,

such as adjusted P-value less than 0.05 and |log2 fold change|

>0.585. Some previous bioinformatics studies used P-value less

than 0.05 or |log2 fold change| >0.2 as the screening condition

for differential genes (31–33). Therefore, in our study, the P-

value less than 0.05 and |log2 fold change| >0.2 was used as a

differential gene screening condition. However, it should be

admitted that this screening condition would lead to a higher

false positive rate. Another point to be noted is that the weighted

gene co-expression network analysis (WGCNA) is a commonly

used analytical method to identify differential genes for certain

diseases. When we conducted this study, we also tried to use this

analytical method. However, we found that no significantly

differential gene modules could be identified using WGCNA in

training sets or validation sets (Supplementary Figures S7A–F).

Based on the previously research, other differential analysis

methods could be used instead of WGCNA in this case (34, 35).

Admittedly, this may affect the number of differential genes

obtained in this study. We look forward to more high-quality

sequencing or microarray data related to myocardial infarction or

depression in the future to make up for the unfinished work of

our study.
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Cluster of differentiation 24 (CD24) is a glycoprotein that attaches to

the cell surface, and its way of anchoring cells is mediated by

glycosylphosphatidylinositol (36). CD24 plays an important role in

regulating immune inflammatory responses associated with B and T

cells (37). It was found that the level of CD24hi cells was correlated

with the occurrence of myocardial infarction (38). Meanwhile, animal

experiments showed that CD24 gene knockout improved anxiety-like

behavior and cognitive performance in mice (39). In our study, the

expression level of CD24 was also found to be increased in blood

samples of patients with depression, suggesting that CD24 may be

potentially related to emotional regulation. Cystatin A (CSTA), a

cysteine protease inhibitor, is a key precursor protein that constitutes

the cornified cell envelope of keratinocytes and has been proven to

play an important role in epidermal development as well as invasion

and metastasis of various cancers (40). Interestingly, a previous study

had shown a negative correlation between the level of CSTA in tissues

and depressive symptoms (41). This result is consistent with the

detection results of blood samples in the depression training set in

our study, further suggesting that CSTA is related to depression and

may be a potential biomarker for depression diagnosis. Exostosin like

glycosyltransferase 3 (EXTL3) gene encodes a glycosyltransferase

protein, which is closely related to the synthesis of heparin and

heparin sulfate, and plays an important role in maintaining the basic

functions of organisms (42). A recent study found that reduced levels

of a specific glycosyltransferase enzyme in the brain caused
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FIGURE 12

Prediction of ceRNA regulatory network of hub S-DEGs (165 nodes and 186 edges).
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depression-like emotions in mice (43). Our results also showed that in

both the training set and validation set for depression, the expression

levels of EXTL3 in the depression group were lower than those in the

control group, further confirming the association between

glycosyltransferase and depression. However, we found no studies that

reported the role of glycosyltransferase in myocardial infarction.

Further research on the function of glycosyltransferase is expected to

reveal the common pathogenesis of myocardial infarction and

depression. Ribosomal protein S7 (RPS7) is an important component

of the 40S subunit of the ribosome and is closely related to protein

synthesis (44). Although few studies have reported the relationship

between RPS7 and myocardial infarction or depression, other

members of the ribosomal protein family, such as P70S6K, have been

reported to be significantly down-regulated in both myocardial
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infarction and depression mice (45, 46). These results are similar to

the results of our study, suggesting that ribosomal protein may be

involved in the pathogenesis of both myocardial infarction and

depression, and is a potential biomarker of myocardial infarction

complicating depression. However, it is worth noting that the

expression of ribosomal proteins RPL17 and RPL34 in the blood

samples of patients with depression has been reported to be up-

regulated (47), indicating that the changes in the expression level of

each member of the ribosomal protein family in the disease are not

completely consistent, and the changes in the expression level of RPS7

in myocardial infarction and depression need further confirmation.

The main function of SLC25A5 is to regulate the transfer of ADP and

ATP in cytoplasm and mitochondrial matrix, which acts as a kind of

gating (48). It was found that SLC25A5 was significantly down-
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FIGURE 13

Prediction of targeted drugs of hub S-DEGs (27 drugs and 3 genes).

FIGURE 14

Prediction of binding sites between genes and drugs. (A) Prediction of binding site between CD24 and fulvestrant (binding free energy −5.5). (B) Prediction
of binding site between CD24 and MG-132 (binding free energy −5.4). (C) Prediction of binding site between CSTA and HC toxin (binding free energy
−7.4). (D) Prediction of binding site between CSTA and trichostatin A (binding free energy −6.9). (E) Prediction of binding site between ZMAT3 and
alsterpaullone (binding free energy −7.1). (F) Prediction of binding site between ZMAT3 and irinotecan (binding free energy −7.4).
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regulated in the midbrain raphe nuclei of mice subjected to prolonged

stress (49). Our results also showed that the expression level of

SLC25A5 in the blood of depression patients was low, suggesting that

SLC25A5 may be related to negative mood. Zinc finger matrin-type 3

(ZMAT3) gene encodes an RNA-binding protein containing zinc

finger domains and nuclear localization signals. ZMAT3 could affect

the stability and translation function of RNA by regulating the

alternative splicing process, which plays an important role in the post-

transcriptional regulation of genes (50). Most of the previous studies

on ZMAT3 have focused on the oncology domain (51). The results of

a recent study indicate that ZMAT2, a gene from the same family as

ZMAT3, is a significant transcriptome-wide risk gene for depression

and shows a strong association with depression in the brain

expression quantitative loci data set (52). This finding, together with

our results, suggests that zinc finger matrin family genes are related to

depression to some extent, and the specific mechanism needs to be

further studied in the future.

This investigation integrated 4 studies with large sample sizes

in hematologic transcriptomics of myocardial infarction and

depression to date. In addition, blood samples from myocardial

infarction complicating depression patients were collected to

further validate the analysis results of the public database. Our

study not only provided relatively reliable evidence for the

development of diagnostic markers and targeted therapeutic

measures for myocardial infarction complicating depression, but

also explored a new direction for future research on the

pathogenesis. However, it should be acknowledged that this study

has the following limitations: First, the pathogenesis of

myocardial infarction complicating depression has been studied

through the enrichment analysis of overlapping genes, and the

therapeutic drugs and non-coding RNA targeting hub genes have

been predicted by public databases. However, there is a lack of in

vitro and in vivo experiments to verify these results. Second, the

small number of clinical samples collected in RT-qPCR

validation experiments may affect the rigor of the results. We

believe that these limitations will be addressed in our further

studies in the future.

Overall, through bioinformatics analysis and clinical sample

validation, this study explored the potential pathogenesis of

myocardial infarction complicating depression, found the hub

genes with diagnostic and molecular subtype identification value,

and predicted the potential non-coding RNA and therapeutic

drugs that could target and regulate these hub genes. This study

has explored a new research direction for the field of myocardial

infarction complicating depression, further research on this basis

is expected to make more exciting breakthroughs in the

pathogenesis interpretation, early diagnosis and individualized

treatment of myocardial infarction complicating depression in

the future.
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