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Introduction: The segmentation of the carotid vessel wall using black-blood
magnetic resonance images was a crucial step in the diagnosis of
atherosclerosis. The objective was to accurately isolate the region between the
artery lumen and outer wall. Although supervised learning methods achieved
remarkable accuracy in vessel segmentation, their effectiveness remained limited
due to their reliance on extensive labeled data and human intervention.
Furthermore, when confronted with three-dimensional datasets featuring
insufficient and discontinuous label data, these learning-based approaches
could lose their efficacy. In this paper, we proposed a novel Joint 2D–3D
Cross-Pseudo Supervision (JCPS) method for accurate carotid vessel wall
segmentation.
Methods: In this study, a vascular center-of-gravity positioning module was
developed to automatically estimate the region of blood vessels. To achieve
accurate segmentation, we proposed a joint 2D–3D semi-supervised network to
model the three-dimensional continuity of vascular structure. In addition, a
novel loss function tailored for vessel segmentation was introduced, consisting
of four components: supervision loss, cross-pseudo supervision loss, pseudo
label supervision loss, and continuous supervision loss, all aimed at ensuring the
accuracy and continuity of the vessel structure. In what followed, we also built
up a user-friendly Graphical User Interface based on our JCPS method for end-
users.
Results: Our proposed JCPS method was evaluated using the Carotid Artery
Vessel Wall Segmentation Challenge dataset to assess its performance. The
experimental results clearly indicated that our approach surpassed the top 10
methods on the leaderboard, resulting in a significant enhancement in
segmentation accuracy. Specifically, we achieved an average Dice similarity
coefficient increase from 0.775 to 0.806 and an average quantitative score
improvement from 0.837 to 0.850, demonstrating the effectiveness of our
proposed JCPS method for carotid artery vessel wall segmentation.
Conclusion: The experimental results suggested that the JCPS method had a high
level of generalization performance by producing pseudo labels that were
comparable with software annotations for data-imbalanced segmentation tasks.
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1. Introduction

Cardio-cerebrovascular disease (CCVD) manifests as systemic

vasculopathy affecting the heart and brain, making it a global

public health concern and a leading cause of mortality. Vascular

medical images are extensively used to visualize the three-

dimensional (3D) morphology of cardiac and cerebral vessels,

playing an essential role in the diagnosis and treatment of

CCVD. Blood vessel segmentation is aimed at extracting well-

defined vessel structures from these medical images. Therefore,

computer-based automatic detection and segmentation of blood

vessel walls are of great clinical significance, as they represent a

crucial step in ensuring precise diagnosis, early intervention, and

surgical planning for CCVD.

However, medical image segmentation has not been adequately

handled due to the complexity and diversity of the medical images.

Consequently, researchers have dedicated significant efforts to

develop effective segmentation methods, including both

traditional and deep learning–based approaches in recent years.

Traditional image segmentation techniques, such as thresholding

(1, 2), region growing method (3–5), active contour model (6, 7),

and level set method (8–10), have been widely recognized.

However, these methods have their limitations. They are often

semi-automatic and rely on human input, making them prone to

noise interference and intensity unevenness. Deep learning

methods have shown remarkable performance in medical image

segmentation tasks. For instance, the fully convolutional network

(FCN) can take inputs of arbitrary sizes and produce

correspondingly sized output with efficient inference and

learning for image segmentation tasks. Since then, the FCN has

been extensively used in the fields of medical image

segmentation (11–13), e.g., the segmentation of breast tumors on

MR images (13) and the segmentation of human torsos on CT

images (12). However, the FCN suffered from issues such as

inaccurate edges and loss of details. The U-Net architecture (14)

used the jump connections to effectively realize the integration of

features and performed more efficiently in training. Since then, it

was widely used for medical image segmentation (15–18). To

deal with small organs or tissues, a coarse-to-fine segmentation

framework was established to enhance the accuracy by extracting

regions of interest (ROI) during the coarse segmentation stage

and using ROI as inputs for the fine segmentation network.

These kinds of approaches have achieved satisfactory

performance in various image segmentation tasks (19, 20) and

were also successfully applied to handle vascular segmentation

problems (21–24).

Indeed, the vessel segmentation had unique characteristics such

as the significant imbalance of blood vessel proportions, complex

structures of blood vessels, and difficulties in acquiring blood

vessel labels. Samber et al. (25) applied a convolutional neural

network (CNN) to segment the carotid artery after extensive

manual preprocessing to improve carotid artery segmentation

accuracy. Oliveira et al. (26) combined the multiscale analysis

provided by the stationary wavelet transform with a multiscale

FCN for the purpose of automatic vessel segmentation. Ni et al.

(27) proposed a global channel attention network (GCA-Net) to
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segment intracranial blood vessels. Liu et al. (28) developed a

novel residual depth-wise over-parameterized convolutional

(ResDO-conv) network for automatic and accurate retinal vessel

segmentation. Imran et al. (29) designed an intelligence-based

automated shallow network with high performance and low cost

named Feature Preserving Mesh Network (FPM-Net) for the

accurate segmentation of retinal vessels. Tan et al. (30) proposed

the U-Net using local phase congruency and orientation scores

(UN-LPCOS), which showed a remarkable ability to identify and

segment small retinal vessels. However, the aforementioned

methods were all built up for dealing with 2D vessel

segmentation tasks. Zhou et al. (31) proposed an approach that

combined a voxel-based fully convolution network (Voxel-FCN)

and a continuous max-flow module to automatically segment the

carotid vessel wall. Tetteh et al. (32) presented the

DeepVesselNet to extract vessel trees in 3D angiographic

volumes. Xia et al. (33) proposed an edge-reinforced network

(ER-Net) for 3D vessel-like structure segmentation, which

incorporates a reverse edge attention module. Alblas et al. (34)

formulated the vessel wall segmentation as a multi-task

regression problem in polar coordinates to automatically segment

the carotid artery wall with high accuracy. However, the

performance of these methods was hindered when insufficient

labeled data were available. As such, semi-supervised

segmentation methods became increasingly popular to alleviate

the demand for labeled data, which could be broadly classified

into entropy-minimization–based methods (35) and consistency

determination–based methods (36–39). Recently, a novel

approach known as cross-pseudo supervision (CPS) has emerged

to enhance performance in semi-supervised learning problems

(40, 41). The CPS method enforces consistency among slightly

different network outputs, leading to satisfactory results even

with limited labeled data. More importantly, the CPS method

effectively avoids confronting the strong coupling between the

teacher and student networks (42).

In this paper, we presented a novel coarse-to-fine vessel wall

segmentation method. In the coarse segmentation stage, we

developed a modified Deeplabv3+ network to estimate both the

vessel location and signed distance function. Based on the coarse

segmentation, we calculated the location of the blood vessel’s

center of gravity using the first-order moment method. This

information was then utilized to crop the original images,

specifically selecting the ROI that contained the vessels. In the

fine segmentation stage, we proposed a joint 2D–3D CPS

network to ideally exploit the spatial information of 3D volumes

and used the continuity prior of blood vessels, which helped

enhance the blood vessel features and improved the segmentation

accuracy. It is worth mentioning that the CPS operation involved

both labeled and unlabeled data, which improved the

generalizability using the lower cost of manual annotation. In

comparison to existing coarse-to-fine methods, our model

incorporated both the position of the center of gravity and the

continuity of the target blood vessel to enhance the utilization of

carotid artery features. The proposed method was evaluated on

the 3D carotid black-blood MRI dataset obtained from the

Carotid Artery Vessel Wall Segmentation Challenge, which was a
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typical semi-supervised segmentation task with only around 20%

labeled data. Through numerical experiments, we were able to

demonstrate that our JCPS method surpassed the state-of-the-art

results on the competition’s leader board, exhibiting a significant

improvement in segmentation accuracy when compared to both

the baseline U-Net model and single CPS model. Furthermore,

we designed an effective and user-friendly Graphical User

Interface (GUI) for the automated segmentation of MRI images

of black-blood carotid arteries, aimed at providing valuable

assistance to clinicians in their diagnostic.

The rest of this paper is organized as follows. Section 2.

introduces our joint 2D–3D cross-pseudo supervision method,

including coarse and fine segmentation models, a loss function,

and implementation details. Section 3. presents experimental

results and ablation studies. We briefly discuss the proposed

approach and conclude with a summary and possible future

work in Section 4.
2. Materials and methods

2.1. Data source

The training set and test set data used in this study were both

from the Carotid Artery Vessel Wall Segmentation Challenge, in

which 25 cases with various carotid vessel wall conditions were

used as the training set, and the other 25 cases with various

carotid vessel wall conditions were used as the test set. A total of
FIGURE 1

An overview of the proposed JCPS framework, where CAT is short for concate
employed to locate objects in high-resolution images. The vascular center-of-
was utilized to identify the vascular center of gravity in both 2D and 3D origina
enabling efficient utilization of limited labeled data and a large amount of unl
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12,920 vessel wall images of sufficient quality in the training set

(2,584 images with manual contour labels) were used for

training, and a total of 2,412 images with manual contour labels

in the test set were used for testing. Each vessel wall image is an

axial slice of a carotid black-blood MRI image, and the size of

each original image is of 720� 720 in order to facilitate

subsequent evaluation and meet the Carotid Artery Vessel Wall

Segmentation Challenge.
2.2. Our approach

The proposed automatic carotid artery vessel wall segmentation

approach, known as the Joint 2D–3D Cross-Pseudo Supervision

(JCPS), comprised two stages, as illustrated in Figure 1. The

coarse segmentation model consisted of a vascular center-of-

gravity positioning model, and the fine segmentation model

consisted of a joint 2D–3D CPS network.
2.2.1. Coarse segmentation
Since the target vessel occupied only a small fraction of the

whole image and varied in sizes and locations in 2D axial slices,

we needed to automatically determine the approximated

location of the center of gravity for the blood vessel. This was

crucial for providing a region of interest specific to the local

vessel area, which would be utilized for subsequent vessel wall

segmentation. To achieve this, we developed a vascular center-

of-gravity positioning module within the coarse segmentation
nation. In the coarse segmentation model, a 2D Deeplabv3+ network was
gravity positioning module, derived from the lumen coarse segmentation,
l images. For the fine segmentation model, the CPS network was adopted,
abeled data to achieve precise segmentation.
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FIGURE 2

The structure of the 2D Deeplabv3+ network with the encoder module and the decoder module. The high-level feature information is first transferred
through the deep convolutional network into two parallel feature pyramid modules, and each enters the Multi-Layer Perceptron (MLP) of the decoder
module, which simultaneously outputs the pixel-level classification and the corresponding signed distance function.

Zhou et al. 10.3389/fcvm.2023.1203400
model to estimate the center of the vessel. The backbone of the

coarse segmentation model was chosen as DeepLabv3+ (43),

which had been commonly used for medical segmentation

(44, 45).

In the first stage, we identified 2D slices with the sufficient

image quality from 3D carotid black-blood MRI images

I3D [ RD�H�W , where D, H, and W represent the depth,

height, and width of the 3D volume, respectively. The input

and output of the coarse segmentation model were represented

as I2D [ RH�W and Q2D [ RH�W , respectively. Different from

the classical Deeplabv3+ network, our approach involved

learning both the pixel-level classification task and the signed

distance function. These components were utilized to achieve

binary classification results for the lumen area and to accurately

capture the lumen boundary, respectively. For a detailed

overview of the network architecture, please refer to Figure 2.

The input image was processed utilizing a deep convolutional

neural network (DCNN) to extract both low-level and high-
FIGURE 3

The MLP module in the decoder. The high-level feature information through
stacked with the low-level feature information in the channel dimension, while
convolution and a quadruple upsampling.
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level features. Following that, the high-level features were fed

into the Atrous Spatial Pyramid Pooling (ASPP) module, which

consists of parallel dilated convolutional layers and pooling

layers to extend the receptive field. It is capable of extracting

relevant features from original images with a relatively low

proportion of vessel regions, and subsequently merging them at

different scales, thereby enhancing the accuracy of the coarse

segmentation stage. Within the decoder, the Multi-Layer

Perceptron (MLP) module concatenated the low-level and high-

level features derived from the encoder. Subsequently, the

outputs were restored to the original image resolution by

employing interpolation and upsampling techniques. For a

detailed illustration of the network structure, please refer to

Figure 3. Based on the coarse segmentation, we used the vessel

center-of-gravity positioning model to crop the data into 2D or

3D patches, which were utilized as inputs for the fine

segmentation model. Subsequently, the fine segmentation model

accurately predicted binary labels for 3D carotid black-blood
the feature pyramid module is upsampled by quadruple interpolation and
the output is the same as the original input image resolution after a 3� 3
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MRI volumes, with “0” representing the background and “1”

denoting the vessel wall.
2.2.2. 2D CPS network
To calculate the center of gravity of the 2D lumen area, we

utilized the first-order moment as follows

G2D ¼ g2D(Q2D), (1)

with

g2D(Q2D) ¼
P

I

P
J i � Q2D(i, j)P

I

P
J Q2D(i, j)

,

P
I

P
J j � Q2D(i, j)P

I

P
J Q2D(i, j)

 !
,

where Q2D(i, j) represents the gray value of the binary

segmentation map Q2D at point (i, j). Obviously, the center of

gravity of the segmented lumen was an approximation for the

centerline of the vessels. Subsequently, the estimated center of

gravity was used to crop local patches X2D [ Rh�w with a fixed

size h� w. These patches were then employed as inputs for the

fine segmentation model.

Assuming that the manual labels were randomly distributed in

the 3D carotid black-blood MRI volumes, comprising

approximately 20% of the total slices, we endeavored to exploit a

limited amount of 2D labeled data and a substantial amount of

2D unlabeled data to generate more precise pseudo labels for the
FIGURE 4

The structure of the 2D CPS network, which consists of two 2D U-Net netwo
loss and cross-pseudo supervision loss, where supervision loss represents the l
supervision loss represents the loss of mutual supervision of the pseudo labe
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latter. To achieve this, we employed a 2D semi-supervised

method CPS to integrate the pseudo labels and consistency

regularization, thereby maximizing the utilization of both labeled

and unlabeled data. Specifically, the U-Net architecture was

adopted as the backbone of the CPS network, as depicted in

Figure 4. The U-Net consisted of a contracting path and an

expansive path. Notably, the number of channels in the network

was halved compared to the traditional U-Net. Each

convolutional layer (Conv) was followed by a batch

normalization (BN) and a rectification linear unit (ReLU),

denoted as a composite layer (Conv-BN-ReLU).

As depicted in Figure 4, two U-Net networks, denoted as f (w1)

and f (w2), were initially generated. These networks shared the

same structure but had different initialization parameter. The

patches X2D, obtained from the coarse segmentation stage and

containing both labeled and unlabeled data, served as inputs for

both U-Nets. Their objective was to estimate the segmentation

confidence maps Pn
2D [ RC�h�w (n ¼ 1, 2), which can be

expressed as

Pn
2D ¼ f (X2D; wn), (2)

where C represented the number of categories, i.e., the images were

divided into C categories. The corresponding one-hot labels

Sn2D [ Rh�w (n ¼ 1, 2) were then obtained through the argmax

operation. These labels were considered the pseudo labels

predicted by the two networks. During the training of unlabeled
rks with varying parameters. Our loss function comprises the supervision
oss between the output of U-Net and the ground truth, and cross-pseudo
ls of the two U-Net outputs.
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FIGURE 5

The structure of the 3D CPS network, where CAT is short for concatenation. The original image patches and the pseudo labels output by the 2D CPS
network are concatenated to form the input of the 3D CPS net. It consists of two 3D U-Net networks with varying parameters. The loss function of
the 3D CPS network consists of four parts: the supervision loss, pseudo supervision loss, continuous supervision loss, and cross-pseudo supervision loss.
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data, we adopted the method of pseudo-label mutual supervised

learning, where the pseudo labels S12D were used to supervise P2
2D,

and the pseudo labels S22D were used to supervise P1
2D. The goal

was to enforce a high degree of consistency between the

predictions of the two perturbed networks. Subsequently, the

continuous 2D pseudo labels S2D [ Rh�w obtained after

sufficient training were concatenated as additional inputs for the

3D CPS network. These pseudo labels also provided auxiliary

supervision for the outputs of the 3D CPS network.
2.2.3. 3D CPS network
Although the 2D CPS model estimated the 2D pseudo labels,

it lacked the modeling of three-dimensional continuity. On the

other hand, employing 3D methods that take 3D images as

inputs often incurs high computational costs. To mitigate such

issues, the use of smaller 3D patches can be considered to

balance the performance and computational efficiency. Thus,

we proposed a novel method for acquiring 3D patches by

utilizing the vascular center-of-gravity positioning model and

2D pseudo labels to extract the relevant local vascular regions

of interest. In addition, an overlapping sliding window

approach was employed to preserve more contextual

information within the extracted patches. Firstly, we split the

3D volumes into a series of small-size 3D patches

J3D [ Rd�H�W , where d represented the depth of the desired

3D patch. For each J3D, there was a corresponding 3D lumen

binary segmentation map Q3D [ Rd�H�W , which was obtained

by gathering the 2D lumen coarse segmentation Q2D. The

vascular center of gravity G3D of the 3D image J3D was

calculated using Q3D according to the following equation:

G3D ¼ g3D(Q3D), (3)
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where g3D denoted the 3D first-order moment function, which

was a direct extension of the equation (1). Specifically, only

the x-axis and y-axis coordinates of G3D needed to be

determined since the patch depth had already been fixed to d.

Therefore, we used the position information of the vascular

center of gravity G3D to crop the input patch J3D into

X3D [ Rd�h�w, where the sizes were d � h� w. Finally, the

obtained 3D patches and pseudo labels were used as inputs for

the newly proposed 3D CPS network to estimate the

segmentation results. The specific architecture of this network

is illustrated in Figure 5.

Similar to the 2D CPS model, the 3D CPS network was

constructed using two 3D U-Net networks, denoted as g(u1) and

g(u2), which had identical structures but different parameters.

The input of the 3D CPS network consisted of both the 3D

patches and the pseudo labels estimated by the 2D CPS.

The output of the 3D CPS network was represented by the

confidence map Pm
3D [ RC�d�h�w(m ¼ 1, 2). Therefore, the

relationship could be expressed as follows:

Pm
3D ¼ g(X3D, P2D; um): (4)

Consequently, we obtained the corresponding pseudo labels

Sm3D [ Rd�h�w (m ¼ 1, 2) through the argmax operation. In

contrast to the 2D CPS model, the limited availability of 2D

labeled data within the 3D patches, which accounted for less

than 10%, posed difficulty for the semi-supervised network CPS

to achieve accurate segmentation. To address this challenge, we

additionally used the pseudo labels obtained by the 2D CPS

network to supervise the predictions of the 3D CPS network.

Simultaneously, the pseudo-label supervised learning enforced

the prediction of 3D CPS to be of high consistency with the 2D
frontiersin.org
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CPS model. In addition, we exploited the spatial continuity of the

vessels in order to enhance the plausibility of the predictions made

by the 3D CPS network.

2.2.4. Loss function
In the following, we will discuss the loss functions used for

coarse segmentation and fine segmentation, respectively.

In the coarse segmentation stage, the network output the

classification and signed distance function (SDF) simultaneously.

We used the Focal Tversky (FT) loss function (46) to calculate

the loss of the pixel-wise classification, given as follows:

LFT ¼ (1� LT)
g,

with

LT ¼ jP> Y j
jP> Y j þ ajP � Y j þ bjY � Pj ,

where LT represents the Tversky Loss, P and Y represent the predicted

pixel-level classification results and ground truth, and a and b

controlled the proportion of false positives and false negatives,

respectively. As can be seen, the Focal Tversky loss introduced a focal

mechanism based on the Tversky index. Compared to the traditional

cross-entropy loss function, it was proven to be better suited for

addressing class imbalance issues in image segmentation. In addition,

it can enhance penalty on boundary regions and suppress the

classification of pixels being misclassified. Therefore, we adopted the

Focal Tversky loss to address the challenging vessel segmentation

problem in coarse segmentation.

The SDF reflected the position information and boundary

information of the segmented lumen, which was defined as follows:

w(x) ¼
�inf
y[@V

kx � yk2, if x [ V;

0, if x [ @V;
inf
y[@V

kx � yk2, if x [ V n V;

8>><
>>:

where V represents the vascular area, y was the point on the border

of the vascular area, w :V , R2 ! R, the signed distance function

was expressed as the infimum of the minimum value to the border

of the vascular area for a given point x. Thus, the loss function for

the coarse segmentation stage consisted of the following two terms:

L ¼ LFT þ LSDF:
In order to balance the loss contributions from both tasks, we

used the homoscedastic uncertainty for weighting a dual-task loss

function as follows:

L(s1, s2) ¼ 1
s2
1
LFT þ 1

s2
2
LSDF þ logs1s2, (5)

where parameters s1 and s2 corresponded to the homoscedastic
Frontiers in Cardiovascular Medicine 07
uncertainties of the Focal Tversky loss and the signed distance

function loss, regarding the classification task and the regression

task, respectively. By minimizing the loss L and the noise

variables s1, s2, task-specific losses could be balanced during the

training process.

The training of 2D CPS consisted of the supervision loss Ls2D
and cross-pseudo supervision loss Lcps2D such as

L2D ¼ Ls2D þ l0L
cps
2D , (6)

where l0 was the trade-off weight. The supervision loss for the

labeled data included the cross-entropy and dice loss as given

below:

Ls2D ¼ 1
2

X2
n¼1

(lce(Y
n, Pn

2D)þ ld(Y
n, Pn

2D)),

where Yn represented the ground truth, lce was the cross-entropy

loss, and ld was the dice loss. In addition, the cross-pseudo

supervision loss formula for labeled data and unlabeled data was

also considered

Lcps2D ¼ lce(S
2
2D, P

1
2D)þ lce(S

1
2D, P

2
2D):

In addition, the loss function for 3D CPS included the

supervision loss Ls3D, the cross-pseudo supervision loss Lcps3D , the

pseudo label supervision loss Lps3D, and the continuous

supervision loss Lcs3D, which was defined as follows:

L3D ¼ Ls3D þ l1L
cps
3D þ l2L

ps
3D þ l3L

cs
3D, (7)

where l1 and l3 were the trade-off weights, and l2 was the pseudo

label weight. Because the labels were in 2D format, the supervision

loss construction for the labels for the 3D CPS network was the

same as for the 2D CPS network, i.e.,

Ls3D ¼ 1
2jAj

X
i[A

X2
m¼1

(lce(Y
m
i , P

m
3D(i))þ ld(Y

m
i , P

m
3D(i))),

where A was the set of labels, Ym
i represented the ground truth, and

Pm
3D(i) represents the ith layer of the output Pm

3D of the 3D CPS

network. In addition, the cross-pseudo supervision loss was

defined as follows

Lcps3D ¼ lce(S
2
3D, P

1
3D)þ lce(S

1
3D, P

2
3D),

where Sm3D represents the pseudo label estimated by the 3D CPS

network for m ¼ 1, 2. The pseudo-label supervised loss formula
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for unlabeled data was described as

Lps3D ¼ 1
2jBj

X
i[B

X2
m¼1

(lce(S2D, P
m
3D(i))þ ld(S2D, P

m
3D(i))),

where B was the unlabeled dataset, and S2D was the pseudo labels of

the segmentation from the 2D CPS network. Finally, the

continuous supervision loss was defined as follows:

Lcs3D ¼ 1
2

X2
m¼1

Xd�1

i¼1

lce(S
m
3D(iþ 1), Pm

3D(i))þ
Xd
i¼2

lce(S
m
3D(i� 1), Pm

3D(i))

 !
:

2.3. Evaluation metrics

In the testing phase, the performance of the proposed method

was evaluated using manually corrected ground truth. The

segmentation effectiveness of the vessel wall, lumen, and outer

wall was assessed using the following designed quantitative

metrics (QS), the Dice Similarity Coefficient (DSC) of the lumen

region (DSCL), and the DSC of the wall region (DSCW). QS was

calculated based on six additional indicators: the DSC of the

vessel wall region, Lumen area difference (Lad), Wall area

difference (Wad), Normalized wall index difference (Nwid),

Hausdorff distance on lumen normalized by radius (Hdol), and

Hausdorff distance on wall normalized by radius (Hdow). The

calculation of QS was as follows:

QS ¼ 0:5� DSCþ 0:1� (f (Lad)þ f (Wad))þ 0:2� f (Nwid)

þ 0:05� (f (Hdol)þ f (Hdow)),

where f (x) ¼ max (0, 1� x). As an ensemble similarity measure,

DSC was computed to assess the similarity between the vessel

wall segmentation result and the ground truth, which was

defined as follows:

DSC ¼ 2(X > Y)
X þ Y

:

where X and Y represent the binary vessel wall segmentation result

and ground truth, respectively. Therefore, DSC equaled 1 when the

segmentation result was the same as the ground truth. The Lad and

Wad calculated the area difference between the lumen and outer

wall and the ground truth, respectively, which were defined as

follows:

Lad ¼ jXAL � YALj
YAL , Wad ¼ jXAW � YAW j

YAW :

where XAL, XAW , YAL, and YAW represent the area of the lumen

segmentation, the area of the outer wall segmentation, and their

corresponding ground truth areas, respectively. In addition, the
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Nwid represented the difference between the normalized outer

wall area and the normalized outer wall ground truth area using

the following formula:

Nwid ¼

�����XA
W � XAL

XAL � YAW � YAL

YAL

�����
YAW � YAL

YAL

:

The Hdol and Hdow were calculated by the Hausdorff distance

between the contours of the lumen and outer wall to the ground

truth, respectively, such as

Hdol ¼ max (h(XOL, YOL), h(YOL, XOL))ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XAL=p

p ,

and

Hdow ¼ max (h(XOW , YOW), h(YOW , XOW))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XAW=p

p ,

where h(B, C) ¼ max
b[B

{min
c[C

kb� ck}, and XOL, XOW , YOL, and

YOW represent the contour point set of the lumen segmentation

result, the contour point set of the outer wall segmentation

result, and their corresponding ground truth contour point sets,

respectively.
3. Experiments and results

Our method was implemented by using PyTorch, and all

experiments were performed on a server with one NVIDIA

Geforce RTX 3090 Founders Edition GPU. In the coarse

segmentation stage, the total training time was 12 h. In the fine

segmentation stage, the total training time was 7 h.
3.1. Data processing

Manual vessel contour labels were given by a customized vessel

wall annotation software (CASCADE), so that some labels in the

test set had a certain offset error, as shown in Figure 6. To

address this issue, we manually corrected the label images to

eliminate the offset errors. Specifically, a total of 526 labels with

offset errors were manually adjusted to achieve the closest

approximation to the ground truth, as shown in Figure 6(B,D).
3.2. Implementation details

The training details of our proposed JCPS network are

described as follows. In the coarse segmentation stage, a

Deeplabv3+ coarse segmentation network was trained, and its

input patch size was the original resolution H �W, where H
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FIGURE 6

Example of manual contour label correction. (A,C) Test set label data with offset error. (B,D) Manually corrected test set label data.
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and W were both set to 720. The epoch number and batch size

were set to 400 and 12, respectively. The Deeplabv3+ was

optimized using an Adam optimizer, with a learning rate of

0.001, multiplied by 0.9 in iterations of 1,000. In the fine

segmentation stage, a joint 2D–3D CPS network was trained to

finely segment the vessel wall. For the 2D CPS network in JCPS,

the input patch size was h� w, where h and w were both set to

96. The iteration number, batch size, and batch size of the

labeled data were set to 30,000, 4, and 2, respectively. We

employed the Poly learning rate strategy, where the learning rate

was set to 0.01 and was changed by the initial learning rate

multiplied by (1� iter=max iter)0:9 for each iteration. In

addition, we employed mini-batch stochastic gradient descent

(SGD) with momentum to train 2D CPS, where the momentum

was fixed at 0.9 and weight decay was set to 0.0001. For the 3D

CPS network in JCPS, the input patch size was d � h� w, where

d, h, and w were set to 32, 96, and 96, respectively. The iteration

number, batch size, and batch size of the labeled data were set to

30,000, 4, and 2, respectively. The settings of the learning rate

strategy and SGD were the same as in 2D CPS. In the loss

function of the coarse segmentation stage, we set the weights as
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a ¼ 0:7, b ¼ 0:3, and g ¼ 0:7. In the loss function of the fine

segmentation stage, we empirically set the weights as

l0 ¼ l1 ¼ l3 ¼ e�5(1�t)2 , t ¼ epoch=max epoch [ [0, 1], which

were a weight ramp-up equation (37) that increased with time,

and l2 ¼ 1. In particular, the parameter settings of all variants of

our method were the same as those described above.

Note that the erroneous segmentation in the coarse

segmentation may affect the selection of central points and

subsequently impact the fine segmentation stage. The failure in

the first stage can be roughly divided into three cases: (1) there

are scattered fragments around the vessel wall, causing the center

point to deviate from its geometric center; (2) due to the

inability of coarse segmentation to accurately distinguish between

internal and external carotid arteries at the bifurcation of blood

vessels, the central point is located in the external carotid artery

region; (3) in areas of carotid artery stenosis, especially extremely

narrow areas, the coarse segmentation may not even be able to

identify vascular, thus unable to locate the center point.

Therefore, we applied the morphological post-processing to the

results of the coarse segmentation. We eliminated fragmented

regions in the coarse segmentation results by selecting the largest
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TABLE 1 Performance of carotid vessel wall segmentation in comparison
to the other top four teams.

DSC Lad Wad Nwid Hdol Hdow QS
Team 1 0.775 0.086 0.072 0.080 0.246 0.215 0.837

Team 2 0.761 0.064 0.075 0.079 0.554 0.515 0.728

Zhou et al. 10.3389/fcvm.2023.1203400
connected region. In the bifurcation area of the carotid artery, we

used the position of the center point before and after the

bifurcation to estimate the correct center point relying on the

spatial continuity of vessels. Finally, we used the segmentation

results of regular regions to interpolate the narrow regions.

Team 3 0.736 0.089 0.136 0.139 0.366 0.358 0.727

Team 4 0.697 0.170 0.144 0.130 0.407 0.361 0.694

Ours 0.806 0.063 0.068 0.054 0.305 0.297 0.850

Teams 1–4 are the top four methods in the Carotid Artery Vessel Wall

Segmentation Challenge. Evaluation indicators include DSC of the vessel wall

region, Lad, Wad, Nwid, Hdol, Hdow, and QS.

The bold values represent the optimal results achieved in the respective columns

for the indicators.
3.3. Performance on the test dataset

In the first place, we used coarse segmentation to estimate the

center of gravity and the local patches. As shown in Figure 7, our

modified Deeplabv3+ model accurately identified the center of

gravity in all slices. According to statistical analysis, we found

that the diameter of carotid artery vessels is smaller than 64

pixels. Therefore, we set the patch size to 96� 96 to capture

sufficient information on the carotid vessels. Furthermore, we

also validated that the segmentation results using 96� 96 sized

patches were optimal in numerical experiments.

In the fine segmentation stage, we evaluated the segmentation

performance of our proposed method using the public 3D carotid

black-blood MRI dataset. The segmentation accuracy of the top

four methods on the leaderboard, as well as our method, is

presented in Table 1. The results clearly demonstrated that our

method surpassed the top-ranked team by more than 1% on

quantitative scoring metrics and 3% on the Dice coefficient,
FIGURE 7

Visualization of the coarse segmentation. The first column are the original-reso
by coarse segmentation, and the last column are local patches obtained after
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while also surpassing other teams by a significant margin. In

addition, the Lad, Wad, and Nwid indicators indicated a

substantial reduction in errors within the segmented area using

our JCPS model. Although the Hdol and Hdow indicators were

slightly higher than those of the top-ranked team, the overall

performance of our JCPS model was superior to all others.

The effectiveness of each component in our method is

demonstrated in Table 2 and Figure 8. First, we examined the

effectiveness of the semi-supervised method CPS by comparing

U-Net and 2D–CPS during the fine segmentation stage. The

results presented in Table 2 and Figure 8 indicate a significant

improvement in segmentation accuracy with 2D-CPS compared
lution MRI images, the middle column are the centers of gravity estimated
passing through the vascular center-of-gravity positioning model.
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TABLE 2 Performance comparison of the carotid vessel wall segmentation between JCPS and its variants.

Method DSC DSCL DSCW Lad Wad Nwid Hdol Hdow QS
U-Net 0.766 0.908 0.911 0.108 0.112 0.104 0.491 0.478 0.791

2D-CPS 0.778 0.924 0.927 0.090 0.108 0.094 0.416 0.397 0.810

3D-CPS 0.784 0.938 0.933 0.075 0.097 0.092 0.364 0.350 0.821

3D-CPS-w/-CSL 0.788 0.938 0.934 0.074 0.083 0.084 0.346 0.331 0.828

JCPS-w/o-CSL 0.799 0.937 0.935 0.072 0.080 0.073 0.315 0.303 0.839

JCPS 0.806 0.939 0.939 0.063 0.068 0.054 0.305 0.297 0.850

U-Net: consists of a vascular center-of-gravity positioning model and a 2D U-Net model. 2D-CPS: consists of a vascular center-of-gravity positioning model and a 2D CPS

model. 3D-CPS: consists of a vascular center-of-gravity positioning model and a 3D CPS model. 3D-CPS-w/-CSL: consists of a vascular center-of-gravity positioning

model and a 3D CPS model with continuous supervision loss. JCPS-w/o-CSL: consists of a vascular center-of-gravity positioning model and a joint 2D–3D CPS

model without continuous supervision loss.

The bold values represent the optimal results achieved in the respective columns for the indicators.

FIGURE 8

Performance metrics (DSC, Lad, Wad, Nwid, Hdol, Hdow) for JCPS and its variants, where ♦ indicates outliers. Note that the proportion of outliers in each
evaluation index of our method is basically less than 3%.
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to U-Net, as evidenced by higher scores across all indicators. This

suggests that the CPS network is better suited for datasets with

limited labeled data and exhibits superior generalization

performance. In addition, the visualization results depicted in

Figure 9 demonstrate a substantial enhancement in our

segmentation accuracy for images containing lesions and those

near the carotid bifurcation, surpassing the performance of plain

U-Net models. This further confirmed the effectiveness of CPS in

improving segmentation accuracy.

Through the comparison between 3D-CPS and 2D-CPS, it can

be concluded that the 3D CPS network yields superior results by

leveraging the information across slices. As shown in Table 2,

Figures 8 and 9, the 3D-CPS outperforms the 2D-CPS in the

fine segmentation stage, which produced more complete contours

for the challenging images, showing the improvement brought by

the 3D segmentation approaches.
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We then investigated the performance of the joint 2D–3D CPS

model. By using the same loss function as the 3D-CPS model, the

JCPS-w/o-CSL demonstrated a significant enhancement in

segmentation accuracy and yielded superior results for

challenging images (refer to Table 2, Figures 8 and 9). It verified

the effectiveness of using 2D CPS to generate high-quality

pseudo labels that aid the 3D CPS networks in achieving

accurate segmentation. Furthermore, it showcases that the joint

2D–3D semi-supervised network is well-suited for processing 3D

carotid image datasets with limited 2D labels available.

Finally, we introduced the continuous supervision loss into the

joint 2D–3D CPS network to ensure the continuity between

adjacent slices. Through a comparison between 3D-CPS, 3D-

CPS-w/-CSL, JCPS-w/o-CSL, and JCPS, it was observed that 3D-

CPS-w/-CSL exhibited slightly better performance across all

metrics (refer to Table 2 and Figure 8). In addition, Figure 9
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FIGURE 9

Visual comparison between JCPS and its variants, where the second column GT represents the ground truth, referring to the high-quality annotations.
These red annotations represent the segmentation of the vessel wall. The case of blood vessels with the plaque are shown on the first row, blood vessels
with fuzzy boundary issues are shown in the second through fifth rows, and images of the carotid artery bifurcation are shown in the sixth and seventh
rows.
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illustrated that 3D-CPS-w/-CSL achieved superior segmentation

results compared to 3D-CPS, but both were slightly inferior to

JCPS-w/o-CSL. Furthermore, the visualization of 3D carotid

vessel wall segmentation in Figure 10 demonstrated that JCPS

outperformed JCPS-w/o-CSL in certain details, indicating the

beneficial effect of CSL in obtaining a more continuous carotid

vessel wall segmentation.

Based on the visualization results depicted in Figure 9, it was

observed that all methods were able to accurately identify the

vessel region of interest by utilizing the vascular center of

gravity obtained during the initial coarse segmentation stage.

This indicates the feasibility of the vascular center-of-gravity

positioning model. The first two rows of Figure 9 demonstrate

that the segmentation methods encountered challenges with
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under-segmentation when dealing with vessel images featuring

blurred boundaries and plaques. However, our method

successfully mitigated these issues by leveraging the semi-

supervised learning approach and ensuring continuity between

adjacent layers. Consequently, our method achieved stable and

precise segmentation outcomes. Furthermore, in the third and

fourth rows, it was also noted that images of blood vessels

with indistinct boundaries could lead to over-segmentation.

Nevertheless, our approach effectively addressed such cases. In

the last three examples, it was evident that accurately

segmenting the target artery near the carotid bifurcation posed

difficulties for other methods due to limited labeled data.

Remarkably, our method overcame this problem in most

instances.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1203400
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 10

3D visualization comparison between the JCPS and its variants, where red annotations represent the segmentation of the vessel wall.
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The 3D visualization results of our method and its variants are

shown in Figure 10. Compared to methods using 3D networks,

both U-Net and 2D-CPS produced discontinuous and incomplete

blood vessels. By looking at the middle two columns, we saw

that 3D-CPS provided a more complete vascular structure but

might still fail in some challenging regions for such a problem

with the dataset of incomplete labels. Also, it can be clearly

observed that our JCPS could estimate complete and reasonable

3D segmentation results with fewer areas of poor segmentation

quality.
3.4. Graphical user interface

In practical applications, end-users exhibit a preference toward

software solutions that are user-friendly and incorporate a GUI.

However, to the best of our knowledge, a comprehensive human–

computer interaction (HCI) system that is exclusively dedicated to

MRI black-blood carotid image segmentation and offers an effective
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HCI verification environment for current deep learning algorithms

has yet to be established, thereby significantly limiting the clinical

application of these algorithms. To address this limitation, we have

developed a complete automatic vessel segmentation system

founded on a deep learning model. Our system encompasses

essential functions including data reading, model import, vessel

segmentation, result display, and segmentation accuracy evaluation,

seamlessly integrated in a pipeline fashion. The system was

implemented using the Python programming language, and the

vessel segmentation model based on deep learning algorithms could

be executed on a single machine. Figure 11 demonstrates the GUI

interface used for both coarse and fine segmentation of the lumen

and outer wall. It allows for the visualization of segmentation

results and evaluation indicators, thereby illustrating the accuracy of

the segmentation process. We tested the CPU time to process one

black-blood MRI data of size 230� 720� 720 on an AMD Ryzen

7 5700U processor. The CPU time for coarse segmentation and

fine segmentation is 80.73 and 139.42 s, respectively, which can

satisfy the clinical needs.
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FIGURE 11

Graphical User Interface of the JCPS method. (A) The vessel segmentation interface can display the original image, run the JCPS method, and display and
save the segmentation results. (B) The evaluation interface can provide six indicators to illustrate the segmentation accuracy of rough segmentation and
fine segmentation.
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4. Concluding remarks

In this study, we developed a two-stage segmentation

framework for carotid vessel wall segmentation. In the coarse

segmentation stage, we achieved automatic detection of the

vascular center of gravity using a vascular center-of-gravity

positioning model. The original images were then clipped into

local patches containing vessels based on centers of gravity and
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used as inputs for fine segmentation modeling. Notably, our

proposed approach enabled accurate localization of vascular

center-of-gravity without any manual intervention. In the fine

segmentation stage, we employed the joint 2D–3D CPS network

to estimate the vessel wall. To ensure accurate segmentation of

vascular structures, we introduced a novel hybrid loss function. In

comparison to the existing approaches, our method did not

require a large amount of labeled data and human interaction, and
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it exhibited improved segmentation performance across a range of

evaluation indicators. Therefore, with reduced costs, the proposed

JCPS network could facilitate clinicians in reading vessel wall

outlines and diagnosing atherosclerosis. Moreover, a user-friendly

and effective graphical user interface has been created to simplify

the implementation of our carotid vessel wall segmentation method.

Our JCPS can handle the task of segmenting the carotid artery

vessel wall with low image qualities. Indeed, our fine segmentation

network has quite good robustness to the results of coarse

segmentation, which can provide reasonable segmentation results

even for coarse segmentation with defects. However, its

performance may deteriorate when dealing with other vessel

segmentation problems. In the future, we plan to explore the

domain adaptive coarse segmentation model to achieve constant

performance on different vessel segmentation tasks. On the other

hand, the two-stage approach we used has high complexity and

the segmentation results also lack interpretability. Thus, we

would like to consider incorporating more effective domain

knowledge to develop reliable vessel stenosis prediction methods.

Indeed, our JCPS method is not restricted to carotid black-

blood MRI images but also can be used for other blood vessel

segmentation and 3D vessel reconstruction tasks. In future

works, we would like to investigate automatic segmentation

methods depending on even fewer manual annotations for

facilitating medical diagnosis. An avenue we plan to pursue

involves developing efficient methods for vessel segmentation

based on few-shot learning (47) and zero-shot learning (48). In

addition, we also intend to evaluate carotid stenosis on the basis

of a vascular model combined with hemodynamic simulation.
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