AUTHOR=Zhou Yahan , Yang Lin , Guo Yuan , Xu Jing , Li Yutong , Cai Yongjiang , Duan Yuping TITLE=Joint 2D–3D cross-pseudo supervision for carotid vessel wall segmentation JOURNAL=Frontiers in Cardiovascular Medicine VOLUME=Volume 10 - 2023 YEAR=2023 URL=https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2023.1203400 DOI=10.3389/fcvm.2023.1203400 ISSN=2297-055X ABSTRACT=The segmentation of the carotid vessel wall using black-blood magnetic resonance (MR) images was a crucial step in the diagnosis of atherosclerosis. The objective was to accurately isolate the region between the artery lumen and outer wall. Although supervised learning methods achieved remarkable accuracy in vessel segmentation, their effectiveness remained limited due to their reliance on extensive labeled data and human intervention. Furthermore, when confronted with three-dimensional datasets featuring insufficient and discontinuous label data, these learningbased approaches could lose their efficacy. In this paper, we proposed a novel Joint 2D-3D Cross Pseudo Supervision (JCPS) method for accurate carotid vessel wall segmentation.In this study, a vascular center-of-gravity positioning module was developed to automatically estimate the region of blood vessels. To achieve accurate segmentation, we proposed a joint 2D-3D semi-supervised network to model the three-dimensional continuity of vascular structure. Additionally, a novel loss function tailored for vessel segmentation was introduced, consisting of four components: supervision loss, cross pseudo supervision loss, pseudo label supervision loss, and continuous supervision loss, all aimed at ensuring the accuracy and continuity of the vessel structure. In what followed, we also built up a user-friendly Graphical User Interface based on our JCPS method for end-users.Results: Our proposed JCPS method was evaluated using the Carotid Artery Vessel Wall Segmentation Challenge dataset to assess its performance. The experimental results clearly indicated that our approach surpassed the top-10 methods on the leaderboard, resulting in a significant enhancement in segmentation accuracy. Specifically, we achieved an average Dice similarity coefficient increase from 0.775 to 0.806 and an average quantitative score improvement from 0.837 to 0.850, demonstrating the effectiveness of our proposed JCPS method for carotid artery vessel wall segmentation.The experimental results suggested that the JCPS method had a high level of generalization performance by producing pseudo labels that were comparable with software annotations for data-imbalanced segmentation tasks.