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Over recent decades, a variety of advanced imaging techniques for assessing
cardiovascular physiology and cardiac function in adults and children have been
applied in the fetus. In many cases, technical development has been required to
allow feasibility in the fetus, while an appreciation of the unique physiology of
the fetal circulation is required for proper interpretation of the findings. This
review will focus on recent advances in fetal echocardiography and
cardiovascular magnetic resonance (CMR), providing examples of their
application in research and clinical settings. We will also consider future
directions for these technologies, including their ongoing technical
development and potential clinical value.
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Introduction

As we increasingly regard the unborn fetus as a patient and develop improved prenatal

diagnosis and treatment of a range of fetal conditions, we require more sophisticated

approaches to assessing fetal wellbeing. There is no better example of the evolution of

prenatal diagnosis and therapy than our imaging approach to the fetal heart and

cardiovascular system. The prenatal diagnosis of congenital heart disease has transformed

the perinatal management of these common birth defects, resulting in improved outcomes

and offering families an opportunity to make informed choices about a range of

management options. The transplacental treatment of fetal arrhythmias represents one of

the earliest and most widely used forms of fetal therapy. With the advent of minimally

invasive catheter interventions for severe forms of congenital heart disease, we have

learned that in selected cases it may be possible to modify the natural history of

congenital heart disease, thereby avoiding the need for single ventricle palliation while

improving fetal development. The advent of increasingly sophisticated approaches to fetal

cardiac imaging has played an essential role in this story, with advances in the assessment

of fetal cardiac function occurring in tandem with new treatments (1, 2). For example,

abnormalities of myocardial loading and performance manifesting as cardiac enlargement,

reduced contractility or hydrops may be observed in the setting of congenital heart

lesions such as Ebstein’s anomaly or critical aortic stenosis as well as other fetal cardiac
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conditions such as cardiomyopathies and fetal arrhythmias (3–5).

The severity of the cardiac compromise in these settings may

determine the indication for fetal treatment and serve as a

marker of response to therapy. Similarly, the detection of subtle

abnormalities of cardiovascular physiology or heart function may

provide clues to the presence of extra-cardiac pathologies,

including fetal growth restriction (FGR), fetal anemia and twin-

to-twin-transfusion syndrome (TTTS).

Echocardiography is a widely available and non-invasive

technique that is used to identify structural heart disease and

predict prognosis (6, 7). Through technical advances and

growing expertise, fetal echocardiography, which was first

described in 1964, is now increasingly integrated into routine

obstetric ultrasound (8–10). Ultrasound provides excellent

contrast between the myocardium and blood pool with high

spatial and temporal resolution, allowing exquisite visualization

of cardiac anatomy and function. Conventional 2-dimensional

(2D) echocardiography is used to visualize myocardial

deformation and measure fractional shortening, obtained with

standard grey-scale imaging or M-mode and converted to

ejection fraction using the cube method or Teichholz formula. By

contouring the endocardial border in systole and diastole from

2D echo images, more accurate measures of ejection fraction can

be obtained using Simpson’s method. Ventricular function can

also be further quantified in utero using M-mode

echocardiography. A variety of Doppler techniques further

enhance the assessment of cardiac physiology, as well as

providing information about vessel tone and resistance in the

various fetal vascular beds. Color Doppler allows direct

visualization of the flow of blood through the heart and vessels,

while pulsed Doppler provides peak and mean velocities across

valves, vessels, and cardiac chambers, as well as the

characterization of flow patterns throughout the cardiac cycle.

Thus, left ventricular stroke volume can be calculated as the

product of left ventricular outflow tract area and mean flow

velocity. Systemic and pulmonary venous flow patterns and

inflow velocity profiles across the atrioventricular valves provide

information about diastolic function. Systolic and diastolic

function can be further interrogated using Tissue Doppler

Imaging (TDI), while three-dimensional (3D) or four-

dimensional (4D) echocardiographic techniques yield alternative

approaches to measuring chamber volumes, stroke volume and

ejection fraction. Speckle tracking provides an approach to

regional and global strain and strain rate imaging. However,

accurate prenatal diagnosis by fetal echocardiography depends on

the skill and experience of the operator, particularly in the

setting of complex cardiac anatomy. The correct interpretation of

the imaging may be challenging when ultrasound imaging is

hampered by poor visualization of the fetal heart resulting from

adverse maternal body habitus, fetal positioning or

oligohydramnios. With advancing gestation, image quality may

also be affected by the progressive calcification of the fetal ribs

and spine (11) and by the increasing distance between the

ultrasound probe and the fetal heart (12). At younger gestations,

vigorous fetal motion may compromise fetal cardiac imaging,

while difficulties in obtaining certain cardiac views may be
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further aggravated by the more horizontal orientation of the long

heart axis due to a relatively large fetal liver (13, 14). The fetal

electrocardiogram (ECG) is not readily available for advanced

techniques that require synchronization of image collection to

the cardiac cycle, which has led to the implementation of

alternative gating methods i.e., via anatomic M-mode, or mitral

movement (12, 15–17).

The application of fetal Cardiovascular Magnetic Resonance

has been slower than other fetal Magnetic Resonance Imaging

(MRI) techniques, which may partly reflect the challenges

associated with obtaining diagnostic cardiac imaging of

appropriate quality in the fetus with MRI. Cardiac MRI provides

accurate measurements of right and left ventricular end-diastolic

and end-systolic volumes, and therefore stroke volume and

ejection fraction, typically through the segmentation of a stack of

short axis cine images through the ventricular mass. Thus, fetal

CMR typically generates thicker imaging planes than

ultrasonographic techniques (6), and usually requires significant

attention to postprocessing, but can result in improved image

quality when ultrasound imaging is hampered by maternal

obesity, oligohydramnios, or rib calcification, especially in the

later stages of pregnancy (1, 18, 19). Fetal CMR is challenged by

the lack of an ECG signal for cardiac gating, the high fetal heart

rate and, most importantly, by frequent fetal body motion. Thus,

a series of technical adaptations have been required to make fetal

CMR feasible, including several alternative gating methods

including self-gating (20–25), retrospective metric optimized

gating (26–29), and CTG- or Doppler ultrasound cardiac gating

(30–39) and accelerated acquisition strategies employing under-

sampling methods and motion correction. As a result of the

innate tradeoff between scan time and signal-to-noise ratio

(SNR), fetal CMR has significantly lower spatial and temporal

resolution than ultrasound. Cine phase contrast MRI provides

information about ventricular function by providing accurate

measurements of vessel flow. Myocardial tagging and feature

tracking are MRI techniques for measuring strain and strain rate.

A sensitive marker of LV function that is available by MRI is LV

torsion, whereby apical and basal segments rotate in opposite

directions. Other non-invasive techniques for assessing

ventricular function such as nuclear medicine and computed

tomography typically require ionizing radiation and the injection

of contrast agents, making them unsuitable for fetal imaging.

Contraindications such as claustrophobia can limit the

application of fetal CMR, which may also be poorly tolerated due

to the requirement for immobilization. This issue is particularly

relevant in the late gestation (40, 41). However, fetal CMR is

gaining in popularity as an adjunct to fetal echocardiography and

has been recommended by the American Heart Association in

the setting of complex viscero-sital cardiac abnormalities and for

its evolving role in assessing fetal cardiovascular physiology

(1, 34, 37, 41–43). Some traditional strengths of CMR in

postnatal heart disease include the delineation of vascular

anatomy by angiography, as well as accurate ventricular

volumetry for assessing cardiac chamber sizes and function, and

quantifying vessel flow and valvar regurgitation and myocardial

tissue characterization. While administering gadolinium contrast
frontiersin.org
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agents is contraindicated in pregnant patients, a combination of

late gadolinium enhancement and cardiac cine imaging has been

used to evaluate the biology of myocardial infarctions and

ventricular function in preclinical fetal and postnatal sheep

studies (44, 45). A combination of vessel flow and magnetic

resonance oximetry has also been applied in sheep to assess the

distribution of blood flow and oxygen transport across the fetal

circulation, and as an approach to comprehensively quantifying

the placental oxygen transfer (31, 46–51). Fetal CMR has been

used in human pregnancies to study the effect of congenital

cardiac malformations on fetal cardiovascular physiology,

particularly through the implementation of cine phase contrast

for quantifying vessel flow and relaxometry for characterizing

vessel oxygen saturation and hematocrit, techniques that have

also been applied in the setting of fetal growth restriction and

anemia (19, 25, 29, 33, 37, 38, 50, 52–64).

For this review, authors specialized in different fields worked

together to review literature on advancements in the technology

to assess fetal heart function focusing on the most recent

findings and referring to their first implementations and

development when applicable.
Approaches to assessing cardiac
function

Fetal echocardiography

Several guidelines providing details regarding the correct

acquisition and interpretation of fetal echocardiographic

functional parameters have been published (5, 65–73). Additional

resources detail a range of well-established techniques for
FIGURE 1

Cardiovascular profile score (CVPS) to assess fetal heart function, adapted fro
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assessing fetal cardiac function by echo (3, 5, 6, 18, 65, 74–77).

Summaries of some of the more popular techniques for assessing

ventricular function by fetal echo are provided below. Most

quantitative fetal echocardiographic techniques for assessing

myocardial function have similar limitations in the fetus as they

do in the postnatal heart, which includes finite reproducibility

resulting from challenges in obtaining correct alignment (78). In

common with most non-invasive methods for assessing

myocardial function, standard echocardiographic parameters such

as ejection fraction or ventricular fractional area change are

representative of the load-dependent pumping function of the

ventricle, rather than cardiomyocyte contractility or changing

cavity pressure in the fetal heart (79, 80). Evaluation of strain

rate, on the other hand, mainly reflects maturational changes in

the myocardium while being relatively independent of loading

conditions (81). Scoring systems like the fetal cardiovascular

profile score (CVPS), shown in Figure 1, which incorporates

cardiac functional indices with other imaging and Doppler

findings including extracardiac vessels, as well as more specific

measures of cardiac cycle intervals such as the myocardial

performance index and Tei index have been established in the

fetus (3, 6, 18, 82–89). Figure 2 shows an example of

the application of 2D echocardiography and Doppler to calculate

the CVPS in a fetus with Ebstein’s anomaly with severe

displacement of the tricuspid valve with good LV function.
2D echocardiography and M-mode
Two-dimensional echocardiographic still-frames and cines

include the standard views (abdominal situs view, four-chamber

view, left ventricular outflow tract view, right ventricular outflow

tract, and three-vessel view). Qualitative impairments of systolic

function are typically graded as mild, moderate or severe, and
m (89).
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FIGURE 2

The assessment of fetal cardiac function and cardiovascular profile in Ebstein anomaly showing severe cardiomegaly (cardiothoracic ratio: 0.69) with
severely dilated right atrium and right ventricle and compressed lungs and mild to moderately reduced RV function, fetal hydrops with a small
pericardial effusion, significant ascites and scalp edema. The Dopplers reveal intermittent a-wave reversal in the ductus venosus and umbilical vein
notching suggestive of elevated cardiac filling pressures and intermittently absent diastolic flow in the umbilical artery consistent with a systemic
steal. (A) Four chamber view suggesting severe cardiomegaly (cardiothoracic ratio: 0.69) and dilated right heart. (B) Color Doppler showing tricuspid
regurgitation. (C) Doppler of tricuspid valve showing biphasic flow with high velocity. (D) Intermittently absent diastolic flow in the umbilical artery.
(E) Umbilical vein notching. (F) The intermittent a-wave reversal in the DV.

Kühle et al. 10.3389/fcvm.2023.1206138
frequently combined with measures of cardiothoracic ratio and

other imaging findings such as vessel Dopplers, the presence or

absence of hydrops and non-specific signs of fetal wellbeing such

as amniotic fluid volume, and fetal growth and activity to

provide an overall assessment of fetal cardiac function (3, 90).

This approach, being fast and easy to execute, is frequently used

as the single diagnostic method (71) despite its potential

limitations. When video sequences of four-chamber view or short

axis are saved, those loops can be post-processed, for example

using the newer speckle tracking approach discussed below.

M-mode, which captures dynamic variation in structures imaged

along a single line of a 2D image, provides an approach to

quantitatively analyzing systolic function, assuming the correct

alignment is achieved and when standard and homogenous

ventricular volumetry is present (6, 18, 68, 74, 91, 92). Stroke

volume can be estimated by applying Simpson’s rule, which

implies an ellipsoid ventricular shape (6), while longitudinal

ventricular function can be assessed based on atrioventricular

plane displacement (77). Figure 3 gives an example of basic

assessment of the heart by 2D echocardiography and M-Mode in

a patient with a family history of hypertrophic cardiomyopathy

and aortic atresia illustrating the information obtained by these

techniques.

Doppler and tissue Doppler
Doppler techniques are routinely used in fetal medicine to

measure circulatory parameters of placental function and

cardiovascular physiology (93, 94). Veins continuous with the
Frontiers in Cardiovascular Medicine 04
right ventricle (ductus venosus, inferior vena cava, hepatic veins)

exhibit typical waveforms (6) that vary with normal maturational

changes in hemodynamics occurring through gestation. By

contrast, the umbilical vein flow is constant from the end of the

first trimester onward (18). Altered velocity profile patterns in

these veins can depict changes in fetal condition or myocardial

dysfunction and serve as predictive parameters for fetal outcomes

(95). Doppler is dependent on the angle of insonation and relies

on the direction of blood flow being parallel to the beam for

reliable measurement of velocity (6). Acquiring Doppler spectra

with correct alignment can be challenging in the fetus, although

mathematical angle corrections are possible (96). In fetal

hypoxia, deep or reversed a-waves in the ductus venosus and

pulsatile flow in the umbilical vein reflect cardiac dysfunction

(64, 97–99) and correlate with poor fetal outcomes (18, 85, 100).

Similarly, middle cerebral artery pulsatility is reduced due to

cerebral vasodilation or “brain-sparing physiology” in the setting

of fetal hypoxemia secondary to placental insufficiency or other

causes (82, 93, 101–103). Pulsed Doppler is also used to assess

flow patterns within the cardiac chambers and across valves

(104). Atrioventricular valve flow patterns can help to evaluate

diastolic function by characterizing the biphasic E and A waves,

their ratio, deceleration time, isovolumetric relaxation time and

change with gestation (6, 14), with normal E/A ratios usually <1

in the developing fetus (18). In congenital heart disease (CHD),

abnormal and non-biphasic patterns can reflect pathologies like

aortic stenosis, while reduced ratios may be seen in FGR and

hydrops, although a high fetal heart rate can lead to the fusion
frontiersin.org
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FIGURE 3

2D and M-mode assessment of left ventricular function in (A) a fetus with a family history of hypertrophic cardiomyopathy at 30 + 1 weeks and (B) a fetus
with severe aortic stenosis and left ventricular endocardial fibroelastosis at 26 + 1 week.
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of E and A waves (18, 81). Tricuspid inflow, hepatic vein flow,

lateral tricuspid annulus TDI, and collapsibility of the inferior

vena cava help to define diastolic function (71), while the

ejection force in the outflow tracts reflects systolic performance

(6). Stroke volume and combined ventricular output (CVO) can

be calculated based on the diameters of the ventricular outflow

tracts, the velocity time integral across the valve and heart rate.

The outputs of the ventricles can be indexed to fetal weight

using an estimate based on measurements of head size,

abdominal circumference, and femur length (3). Color Doppler

gives a visual overview of blood flow directions and mean

velocities, which can be particularly helpful for the evaluation of

cardiac symmetry and the direction and continuity of fetal

shunts and valves. Color Doppler is therefore useful in the

detection of congenital cardiac defects and is essential for

visualizing valve regurgitation, which is an important cause of

heart failure in the fetus (5, 75, 82, 105, 106). Color Doppler is

also used to guide the placement of the sample volume for

spectral Doppler measurements (5, 68, 107). Tissue Doppler

Imaging is used to quantitatively analyse segmental wall motion

and individual point changes in myocardial velocity (18). This

allows the evaluation of motion- and time-related events that

provide information about systolic and diastolic cardiac function

(1). Valve motion of the mitral or tricuspid valve annulus relative

to the relatively stable apex assesses longitudinal contractility
Frontiers in Cardiovascular Medicine 05
(18, 71) typically presenting as S’, E’ and A’ waves by pulsed

wave (PW) TDI, representing systolic, early diastolic and late

diastolic annular peak velocities (3, 71). However, the

combination of the relatively small amount of fetal myocardial

tissue and large voxel volume may result in low reproducibility,

and the use of fetal TDI has mainly been limited to research

settings (1). Related techniques like Color TDI and PW Doppler

exhibit inconsistent results with respect to velocities in the adult

heart (10%–20% higher by TDI) (78). Nevertheless, TDI relies

less on image quality or border detection and has higher frame

rates than 2D echocardiography or MRI (96).

3D/4D echocardiography
The extension of two-dimensional imaging into real-time or

reconstructed volume data sets as 3D or gated 4D sequences can

be used to reproduce an unlimited number of adjustable

standard 2D views. This approach to fetal cardiac imaging

achieves reasonable temporal resolution combined with a

relatively low acquisition time to provide a more detailed

assessment of geometric and morphological changes, including

stroke volume, ejection fraction and cardiac output for both

ventricles (1, 6, 18, 24, 108, 109). While cheaper and more

widely available than MRI (71), ultrasound 3D and 4D cardiac

imaging requires dedicated transducers and expertise (1), may

underestimate volumes (25, 71) and lacks temporal and spatial
frontiersin.org
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resolution compared with 2D imaging, especially with ungated

techniques (1). Spatiotemporal image correlation (STIC) allows a

volume reconstruction of a cardiac cycle by extracting temporal

information from 2D images combined with other standard

echocardiographic techniques and leads to a more coherent 4D

reconstruction. However, this approach to cardiac cycle

reconstruction requires a relatively long acquisition time that

may result in motion degraded datasets (1, 5, 6). Newer iSTIC

(intelligent STIC) acquisition algorithms can generate higher

resolution images faster to reduce artifacts (109). Indeed, several

studies have concluded that these methods are a useful addition

to standard 2D images (110).

Speckle tracking echocardiography
Strain is defined as the grade of tissue deformation that

corresponds to the change in length or thickness in response to

an applied force, while strain rate is the velocity of this

deformation (111). Speckles generated by ultrasound backscatter

and interference form natural patterns within the myocardium, a

kernel is their corresponding functional unit. The units, distance,

and velocity among each other reflect strain and strain rate.

Negative strain reflects the shortening that typically occurs in

systole, while positive values depict diastolic lengthening (3, 12).

The results are usually presented as velocity vectors within the

image and as curves for strain and strain rate across the cardiac

cycle. Additionally, peak values and the time and acceleration

needed to reach those can be calculated. Speckle tracking and

velocity vector imaging (VVI) provide an approach to semi-

automatically perform post-processing of 2D four-chamber or

short axis images acquired in standard examinations. This

approach tracks the endocardial border of the ventricles, making

automatic adjustments of the contours and providing calculations

of strain, strain rate and velocity (12, 96). Concerningly, no

imaging standard for this approach has yet been established (113,

114), which reflects both the differences in the software packages

available and the challenge of achieving standardized imaging

planes in the fetus (113–115). Examination consistency is the key

to reducing variability and confounding effects (114, 116). While

2D strain and VVI use the same speckle tracking approach, the

manually selected region for 2D strain usually includes the whole

myocardial wall as opposed to the narrower myocardial layer

tracked in VVI through algorithm border detection (111). The

myocardium is usually divided into at least six segments (basal,

apical, middle left and right) with possible expansion to 16- or

17-segment models for better localization of potentially restricted

segments (91). Several strain types can be measured including

longitudinal shortening, radial thickening, and circumferential

shortening (111). In the small fetal heart, longitudinal, global

strain measurements seem to be the most accurate and sensitive

to pathology (14). Multiple segmental measurements do not

significantly differ from global ones (96), and a globally assessed

longitudinal measurement reduces the overall error by avoiding

inconsistencies with the definition of exact boundaries (117).

Additionally, global measurements are less affected by local noise

(118), and segmental dysfunctions are less likely in the fetus

compared to the adult population (111). By contrast with
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movement, strain and especially Lagrangian strain [strain relative

to initial length, i.e., a single reference length field (12)] and its

velocity (strain rate) are not dependent on adjacent regions,

making them more accurate than simple velocity measurements

(71, 77, 96, 119, 120). Strain measurements, influenced by

extrinsic loading and intrinsic contractile force (14, 71), consider

the contractility of the cardiomyocytes and changes with cardiac

cavity pressure (79). Longitudinal strain and strain rate seem to

reflect the fetal right ventricular dominance with strain and

strain rate values between 1 and 1.5 times higher in the right

compared to the left ventricle (121). Myocardial fiber orientation

in the fetus with a continuous 3D meshwork in the LV

contributing to systolic deformation and ventricular ejection

(122) compared to the longitudinally aligned myocardium in the

RV (71) limits the accuracy of reflecting longitudinal or

circumferential movements in each ventricle (123). The

prominent trabeculation of the RV can make border definition

challenging for structures like the right atrial appendage, crista

terminalis, fossa ovalis (112) or discontinued regions such as the

opening of pulmonary veins into the LA and tissue elasticity can

affect accuracy (14). A high contrast between the endocardium

with chamber cavity and precise tracking of the walls are

necessary to not underestimate strain and strain rate values (124).

Since ECG gating is not readily available from the fetus,

alternative gating techniques such as using the R-wave or M-

mode to define the end-diastolic to end-systolic cycle help to

keep the stored images at high reliability and frame rate (78).

Beat-to-beat analysis is possible even in arrhythmia (12), and

offline postprocessing is more robust and reproducible (7, 125).

The large number of software packages, albeit with some

variability in measurements (113, 126–128), and the availability

of ultrasound machines may increase the usage of strain imaging

while simultaneously decreasing comparability (122), especially

since only the measurement of global longitudinal strain is

available in all softwares (91, 129). Nonetheless, several studies

have reported better inter- and intra-observer variability than

standard techniques (7, 125, 130). Training in the acquisition

and analyses of high-resolution echocardiographic images (125)

is necessary to establish this method successfully (76). With

more experience, 2D speckle tracking imaging may be feasible

and reproducible in the fetal heart (4, 7, 113, 118). For example,

strain imaging has been shown to detect functional abnormalities

in human fetuses with cardiac disease (111) and hypoxemic

sheep (93). Figure 4 shows cardiac strain imaging in a preclinical

pig model of the artificial placenta (131, 132). In Figure 5 we

applied strain analysis in the two human fetuses with CHD

shown in Figure 2 and revealed changes in strain associated with

reductions in combined ventricular output.

Following the first description of strain imaging for cardiac

assessment by Uematsu et al. in 1995 (133) and Heimdal et al. in

1998 (134), Harada et al. were the first to report the feasibility of

measuring strain in fetal hearts in 1999 (135). In postnatal

subjects, Nesser et al. (136) attempted to use 3D

echocardiographic imaging to generate better correlations with

MRI measurements than 2D strain, which seemed to

underestimate LV volumes, while Enzensberger et al. (137)
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https://doi.org/10.3389/fcvm.2023.1206138
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 4

2D strain in LV and M-mode analysis from 4CV in an artificial placenta piglet model by echocardiography obtained using a voluson S6 (GE healthcare
ultrasound, WI, USA) and post-processing software by TOMTEC (TOMTEC imaging systems GmbH, Germany). A gated M-Mode loop of two cardiac
cycles was generated using a four-chamber cine loop, allowing for automatic LV strain analysis. Compared to the original M-mode measurements,
the post-processing technique seems feasible and generated similar values for ejection fraction, with good repeatability between serial
measurements. (A) Strain Analysis. (B) M-mode. (C) Segmental endocardial strain. (D) Segmental endocardial strain rate. Superimposed anatomical
M-Mode behind graphs, endocardial border detection.

FIGURE 5

2D strain on LV analysis from 4 chamber view in (A) a patient with a family history of hypertrophic cardiomyopathy resulting in increased CVO and overall
elevated strain measurements and (B) a patient with aortic stenosis resulting in reduced CVO and deviating strain measurements between the ventricular
septum due to indirect movement of the hypoplastic and dysfunctional LV by the adjacent RV.

Kühle et al. 10.3389/fcvm.2023.1206138
showed the feasibility of 3D strain imaging. However, the small size

of the fetal heart compared with adults may alter the pixel-to-

myocardial value ratio, making it harder for a speckle to be
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tracked accurately while over-smoothing resulting from lower

spatial resolution is possible (122). Furthermore, exclusion of the

cardiac apex can lead to chamber foreshortening (117), resulting
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in an overestimation of movement between the false apex and the

heart’s base (92, 111). Some softwares may be unsuitable for

assessing a small fetal heart, whereby the smallest available

segment might already be thicker than the whole myocardial wall

(7). There is currently no consensus about the optimal frame rate

for strain imaging, which may be particularly relevant in the

setting of high fetal heart rates. While the highest possible frame

rates are recommended (i.e., above 60–100 fps) (17, 111, 123,

125, 126), accurate results have been reported with frame rates as

low as 30 fps (113). Stable frame rates throughout examinations

can improve comparability (114). Several studies have tracked the

influence of gestational age on strain measurements with highly

varying results from no correlation (13, 80, 138, 139) to

decreasing values with maturation (13, 111, 117, 127, 130). This

variation in findings raises the possibility that the results of fetal

strain imaging are likely to be dependent on equipment and

software, as well as the study population and approach,

emphasizing the importance of establishing standardized

techniques. In addition to healthy pregnancies, strain has been

measured in fetuses that are small for gestational age, and with

FGR and ventricular septal defect (81, 140). Fetal

echocardiographic strain imaging has also been reported as an

approach to assessing disease progression and determining the

optimal timing of intervention in fetuses with maternal diabetes

and pregnancies complicated by TTTS and fetal growth

restriction (111).
Fetal cardiovascular magnetic resonance
imaging

Fetal MRI was initially developed for non-cardiovascular

applications, which partly reflects the technical challenges

associated with applying cardiovascular MRI in the fetus (150).

However, in animal models these challenges can be overcome

with anesthesia (151) which limits fetal body motion, and

catheterization of fetal vessels, which allows for the detection of a

blood pressure waveform that can be used for cardiac triggering

(31, 50, 152). Thus, the cardiovascular magnetic resonance

techniques that are routinely used for the non-invasive

assessment of ventricular function in postnatal patients have

been applied in fetal sheep to quantify myocardial mass and

right and left ventricular volumes and ejection fractions. Fetal

CMR with late gadolinium enhancement has also been used to

detect cardiac damage in an experimental model of infarction

(44, 153) and to measure vessel flow and oxygen content (48,

154) in an attempt to emulate the invasive hemodynamic

measurements made in fetal sheep that have defined our modern

understanding of normal fetal circulatory physiology. Similarly,

through the development of alternatives to conventional ECG

gating, accelerated imaging and motion correction algorithms,

this combination of vessel flow and oximetry measurements has

been applied in human fetuses to explore the normal circulation

(154) as well as the impact of congenital heart malformations

and vasoactive agents (48) on fetal circulatory physiology

(37, 43). The potential role of fetal CMR as an adjunct to
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ultrasound has also been investigated in the setting of severe fetal

hemodynamic compromise, for example in patients undergoing

fetal cardiac interventions (37, 56). Fetal MRI provides

information about other organ systems that may be affected by

heart disease, including the lungs and brain, which can be

incorporated into management planning (155). However,

significant limitations of fetal CMR, including its inferior spatial

and temporal resolution compared with ultrasound, its cost, and

the requirement for considerable post-processing technology and

time have limited the clinical implementation of fetal CMR

(156). In addition, the FDA recommends limiting the use of MRI

in the first trimester due to safety concerns about the impact of

strong magnetic fields on embryogenesis. Accordingly, clinical

trials and clinical applications of fetal CMR have typically been

limited to second and third-trimester examinations (40).

Cine phase contrast MRI for the assessment of
fetal blood flow

Two-dimensional cine phase-contrast (PC) MRI is the non-

invasive gold standard for vessel flow assessment in children and

adults (31). However, the requirements for adequate spatial and

temporal resolution limit the application of phase contrast for fetal

vessel flow quantification to the larger vessels in the third

trimester. The development of metric optimized gating led to the

initial descriptions of fetal vessel flow quantification by CMR, and

preliminary reference ranges for the distribution of the late

gestation normal human fetal circulation (57). Vessel flows were

also acquired using this approach in fetuses with CHD and FGR

(43, 37, 58). In 2018, Goolaub et al. reported improved image

quality using golden angle radial PC CMR with motion correction

(35). “Four-dimensional (4D) flow” refers to the acquisition of

volumetric datasets that incorporate multidirectional velocity

encoding. This data can be reconstructed in any plane to measure

vessel flow in an analogous approach to conventional 2D cine

phase contrast imaging. 4D flow datasets can also be used to

generate more complex reconstructions such as particle tracking

that provide unique information about flow patterns within the

heart and vessels. This approach has been applied in adult patients

to assess aortic aneurysms and valvular conditions, as well as the

complex hemodynamics of single ventricle physiology (157).

Schrauben et al. (158) applied 4D flow in fetal sheep to visualize

the streaming of the umbilical venous return across the foramen

ovale via the ductus venosus, providing novel information

regarding the spiraling course of flow through the ductus venosus

and confirming the mechanism that results in a gradient in

oxygen saturations between the right and left heart. Darby et al.

(51) then used 4D flow in combination with T2 oximetry to show

that pharmacologically induced dilation of the ductus venosus

results in an increased shunting of umbilical venous return

through the ductus venosus without resulting in increased cerebral

oxygen delivery. This method was also applied to visualize hepatic

blood flow (152) and changes in flow through the ductus

arteriosus at birth (49). Owing to motion corruption during

human fetal MRI, direct 3D imaging is often challenging. To

address this issue, slice-to-volume reconstruction (SVR) combines

multiple stacks of slices with co-registration allowing for
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volumetric fetal imaging. Multi-slice multiplanar accelerated PC

MRI via golden-angle radial acquisition allows retrospective real-

time image reconstruction with a high temporal and spatial

resolution enabling motion correction and fetal heart rate
FIGURE 6

Tracing blood from inferior vena cava (IVC) and ductus venosus (DV) in a human
(red) at different cardiac phases over two heartbeats. Streams from IVC and D
(oxygenated) being mainly directed into the left ventricle (B) to supply the co
from (33).

FIGURE 7

The application of ventricular volumetry in late gestation fetal sheep (A,B) and
applied on the stack of short-axis cine acquisitions in systole and diastole (A
Morphological and quantitative models (green, mass 40 mm3) of a human
ventricle (yellow). Adapted from (31) (A,B) and (40) (C).
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estimation (32, 159, 160). Flow-sensitive cine imaging can be

reconstructed and combined into a 4D flow volume with SVR,

allowing comparable visualization of human fetal streaming

patterns (33), as shown in Figure 6.
fetal heart (A–C). Coronal view showing blood from the IVC (blue) and DV
V with limited mixing enter the right atrium (A), with blood from the DV
ronaries and upper fetal body (C). (D) Corresponding flow map. Adapted

human fetus (C). (A,B) In fetal sheep, manual endocardial contours were
) to generate a 3D reconstruction of the right and left ventricles (B). (C)
fetal heart with a cardiac rhabdomyoma (red), and the compressed left
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Ventricular volumetry
A key component of the assessment of ventricular function by

CMR is ventricular volumetry, whereby the endocardial and

epicardial borders of the ventricles are contoured throughout a stack

of cine MR images to measure right and left ventricular myocardial

mass, end-systolic, end-diastolic and therefore stroke volumes as well

as ejection fractions and CVO (31, 161). In late gestation

anesthetized fetal sheep, ventricular volumetry can be obtained using

a standard balanced steady state free precession (bSSFP) sequence

with contiguous short axis cine images acquired using the blood

pressure waveform obtained from an arterial catheter for cardiac

triggering. This approach has confirmed the larger end-diastolic

volume and stroke volume of the right ventricle than the left in the

fetal circulation. Of note, right and left ventricular ejection fractions

are not significantly different in the prenatal heart, presumably due

to differences in loading conditions. The application of ventricular

volumetry in human fetuses has been described in case reports as

shown in Figure 7. However, this approach has not yet been

reported in any systematic way due to the challenges to accurate

ventricular volumetry posed by fetal motion (40).
Myocardial strain
CMR also offers ways of measuring myocardial strain and can

be broadly categorized into myocardial tagging and feature

tracking. Myocardial tagging works by creating locally induced
FIGURE 8

Gadolinium imaging (left) and SSFP short-axis cine feature tracking analysis (ri
and 6 days post-surgery in both injured and sham twins suggesting good correl
lateral wall and evidence of myocardial infarction in the respective segments i
was noted at day of surgery from apex to near-mid ventricle (top row; early g
dysfunction in apical segments as measured by decreased circumferential strai
surgery, injury was noted in similar regions (bottom row; late gadolinium enha
the same regions, overall showing good correlation between injury and reg
tracking. In both scans, the internal sham control (fetus B) remained asympto
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perturbations of the magnetization of the myocardial tissue prior

to image acquisitions and these intrinsic markers, known as tags,

move with the underlying tissue allowing quantification of

myocardial deformation (162, 163). Tagging is widely accepted as

the reference standard in the CMR community and has been

validated extensively (164–172). However, it requires a dedicated

sequence and time-consuming prost-processing. Moreover, the

tags are typically deposited at detection of the QRS complex and

introduces approximately a 30 ms delay, which may be

particularly limiting in fetal population that has a rapid heart rate,

underestimating myocardial strain (163). On the other hand,

feature tracking does not necessitate a dedicated sequence and can

be readily applied on typically acquired SSFP cine acquisitions

(173, 174). Since its introduction in 2009, feature tracking has

gained wide acceptance and has been extensively validated against

myocardial tagging (175–179). However, given the current lack of

standardization of methods and softwares for data analysis, its

clinical translation is sparse and is mostly limited to research-

oriented environment. CMR myocardial strain may prove useful

in assessing regional myocardial dysfunction, and feature tracking

has been explored as an approach to detecting wall motion

abnormalities in a fetal sheep model of myocardial infarction. In

our model, twin sheep fetuses were included in the study,

whereby a branch of the left anterior descending coronary artery

was ligated to induce a myocardial infarction with the other fetus

serving as a sham control (44), as seen in Figure 8.
ght) in a fetal sheep model of myocardial infarction on the day of surgery
ation between regional myocardial dysfunction in the apical left ventricular
n early and late gadolinium enhancement imaging. Anterolateral ischemia
adolinium enhancement; white arrow) and there was regional myocardial
n by feature tracking (top row; right). 6 days after the myocardial infarction
ncement; white arrow) and there was regional myocardial dysfunction in
ional dysfunction measured by regional circumferential strain by feature
matic and did not demonstrate any regional wall motion abnormalities.
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TABLE 1 Reference ranges for LV and RV longitudinal strain and strain rate by echocardiography in healthy fetuses reported in the literature.

Study Parameters n GA
(weeks)

Successful strain
analysis (%)

RV average
strain (%)

LV average
strain (%)

RV average
strain rate (1/s)

LV average
strain rate (1/s)

Di Salvo et al. 2005
(141)

120 17–40 62.5 19 ± 8 17 ± 7 2.1 ± 0.8 2.1 ± 0.9

Di Salvo et al. 2008
(4)

100 20–32 100 −24 ± 4 −25 ± 4 NA NA

Ta-Shma et al. 2008
(118)

28 20–38 94 21 ± 5 18.9 ± 5.7 2.3 ± 0.5 2.3 ± 0.7

Peng et al. 2009 (80) 151 18–40 87 NA −17.78 ± 4.04 NA −2.19 ± 0.65

Barker et al. 2009
(96)

33 17–38 100 −18.0 ± 6.4 −17.7 ± 6.4 −1.9 ± 0.8 −2.4 ± 1.2

Pu et al. 2010 (139) 170 20–41 89 −23.26 to −24.77 NA −2.49 to −2.71 NA

Van Mieghem et al.
2010 (121)

55 16.9–36 83 −18.5 ± 6.8 −15.1 ± 5.2 −2.37 ± 0.93 −1.82 ± 0.68

Matsui et al. 2011
(78)

High FR (27.4–
167.2 fps)

93 14–39 86 −22.3 −21.6 NA NA

Low FR (25 fps) 76 −23.2 −19.6 NA NA

Willruth et al. 2011
(142)

150 13–39 98 −35.88 ± 11.21 −26.01 ± 6.38 −5.43 ± 2.41 −3.69 ± 2.41

Germanakis et al.
2012 (12)

144 14–39 83–85 −22.0 ± 3.7 −21.9 ± 3.7 NA NA

Ishii et al. 2012
(138)

81 17–42 77–79 −16.0 ± 3.3 −15.2 ± 2.7 NA NA

Kim et al. 2013
(143)

122 19–36 78 −22.6 ± 5.0 −21.5 ± 5.5 −2.6 ± 0.7 −2.5 ± 0.7

Kapusta et al. 2013
(127)

Longitudinal 78 20–24 96.2 −25.35 ± 4.03 −24.89 ± 4.57 −2.76 ± 0.62 −2.93 ± 0.88

49 30–34 89.8 −23.20 ± 4.12 −24.68 ± 4.81 −2.29 ± 0.46 −2.58 ± 0.71

Maskatia et al. 2016
(144)

60 20–21 98.3 −18.82 ± 3.13 −19.61 ± 3.71 −2.04 ± 0.70 −2.15 ± 0.60

24–25 93.3 −18.16 ± 2.95 −20.08 ± 2.66 −1.78 ± 0.41 −2.03 ± 0.43

28–29 88.3 −19.47 ± 2.93 −20.95 ± 2.92 −1.78 ± 0.41 −2.00 ± 0.41

32–33 86.7 −19.30 ± 2.75 −20.40 ± 3.13 −1.68 ± 0.37 −1.88 ± 0,37

36–37 86.7 −19.54 ± 2.56 −21.13 ± 2.90 −1.68 ± 0.33 −1.98 ± 0.40

Chelliah et al. 2016
(117)

Longitudinal 58 12–14.5 36 −14.4 ± 5.5 −13.9 ± 5.7 NA NA

40 20–28 100 10 10 NA NA

Dahlbäck et al. 2016
(145)

250 19–42 99.2 −14.6 ± 4.1 −15.1 ± 4.0 NA NA

Enzensberger et al.
2017 (113)

High FR (60 fps) 117 17–39 86.3 −16.47 −17.06 NA NA

Low FR (30 fps) −16.07 −17.54 NA NA

Enzensberger et al.
2017 (146)

33 18.3–36.6 88 −14.65 −16.34 NA NA

Li et al. 2017 (147) 102 15–40 73 NA −22.3 ± 4.3 NA −1.4 ± 0.5

DeVore et al. 2018
(148)

200 20–40 100 −22.70 ± 4.07 −22.93 ± 3.52 NA NA

Alsolai et al. 2018
(111)

Longitudinal 276 36 89.8 −14.2 ± 3.4 −14.6 ± 3.8 −1.2 ± 0.2 −1.2 ± 0.3

38 76.4 −13.4 ± 3.0 −13.6 ± 3.3 −1.1 ± 0.2 −1.1 ± 0.3

40 85.1 −12.8 ± 2.8 −12.3 ± 3.1 −1.1 ± 0.2 −1.0 ± 0.3

Erickson et al. 2019
(149)

Longitudinal 50 16–20 90 −20,7 NA −1.8 NA

21–25 −18.3 NA −1.5 NA

26–29 −18.8 NA −1.5 NA

30–35 −18.4 NA −1.4 NA

36–40 −15.6 NA −1.3 NA

Luo et al. 2021 (79) 59 21.6–36.6 100 −18.9 ± 1.5 −19.8 ± 1.5 NA NA

NA, not available; RV, right ventricle; LV, left ventricle; FR, frame rate.

Kühle et al. 10.3389/fcvm.2023.1206138
Limitation

The accurate assessment of fetal heart function can be

challenged by technical factors arising from the small size of

the fetal heart, frequent fetal body motion and high fetal

heart rate. The reliability of post-processing techniques for

assessing cardiac function depends on image quality and
Frontiers in Cardiovascular Medicine 11
structural detail, which has limited the routine application of

techniques like speckle tracking for the clinical assessment of

fetal cardiac function. Similar factors have limited the

widespread adoption of fetal CMR. Compared with

ultrasound, MRI is more expensive and less portable, and a

clinical role for fetal CMR has not yet been established. MRI

is typically more time consuming to acquire and process
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than ultrasound, which is exacerbated in the setting of fetal

imaging due to artifacts resulting from fetal motion (18). A

major limitation of fetal CMR arises from the intrinsic

tradeoff between obtaining an adequate SNR to resolve small

structures and high heart rates, while attempting to

overcome artifacts arising from fetal motion by limiting scan

time (34). In addition, organizational factors such as the

availability of equipment and personnel to conduct fetal

CMR must also be considered.
Conclusions

Functional assessment of the fetal heart can be undertaken

using a range of techniques. Conventional grey-scale ultrasound

imaging is typically used to gain a subjective impression of global

cardiac function, while 2D speckle tracking for strain imaging

has provided a promising new approach to generating a

quantitative assessment of ventricular function in a routine

clinical setting. Fetal CMR represents an exciting development

with the potential to augment the assessment of fetal cardiac

function through techniques like ventricular volumetry and

feature tracking. However, challenges to the widespread

implementation of these approaches arise from the limitations

imposed by fetal imaging, including the small size of the fetal

heart, high heart rates and difficulties in obtaining standard

views with adequate image quality. Further efforts to improve

fetal cardiac imaging will be needed to exploit the full potential

of fetal cardiac functional assessment, which is an important

objective in the setting of advances in fetal cardiac diagnosis and

therapy.
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