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cardiac magnetic resonance LGE
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2Artificio, Cambridge, MA, United States, 3Faculty of Medicine, University of Queensland, Brisbane, QLD,
Australia, 4MedStar Health Research Institute, Georgetown University, Washington, DC, United States,
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Background: Late gadolinium enhancement (LGE) cardiovascular magnetic
resonance (CMR) imaging is the gold standard for non-invasive myocardial tissue
characterisation. However, accurate segmentation of the left ventricular (LV)
myocardium remains a challenge due to limited training data and lack of quality
control. This study addresses these issues by leveraging generative adversarial
networks (GAN)-generated virtual native enhancement (VNE) images to expand the
training set and incorporating an automated quality control-driven (QCD) framework
to improve segmentation reliability.
Methods: A dataset comprising 4,716 LGE images (from 1,363 patients with
hypertrophic cardiomyopathy and myocardial infarction) was used for development.
To generate additional clinically validated data, LGE data were augmented with a
GAN-based generator to produce VNE images. LV was contoured on these images
manually by clinical observers. To create diverse candidate segmentations, the QCD
framework involved multiple U-Nets, which were combined using statistical rank
filters. The framework predicted the Dice Similarity Coefficient (DSC) for each
candidate segmentation, with the highest predicted DSC indicating the most
accurate and reliable result. The performance of the QCD ensemble framework was
evaluated on both LGE and VNE test datasets (309 LGE/VNE images from 103
patients), assessing segmentation accuracy (DSC) and quality prediction (mean
absolute error (MAE) and binary classification accuracy).
Results: The QCD framework effectively and rapidly segmented the LV myocardium
(<1 s per image) on both LGE and VNE images, demonstrating robust performance on
both test datasets with similar mean DSC (LGE: 0.845+ 0.075; VNE: 0.845+ 0.071;
p = ns). Incorporating GAN-generated VNE data into the training process
consistently led to enhanced performance for both individual models and the overall
framework. The quality control mechanism yielded a high performance
(MAE = 0.043, accuracy = 0.951) emphasising the accuracy of the quality
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control-driven strategy inpredicting segmentationquality inclinical settings.Overall, no statistical
difference (p = ns) was foundwhencomparing the LGEandVNE test sets across all experiments.
Conclusions: The QCD ensemble framework, leveraging GAN-generated VNE data and an
automated quality control mechanism, significantly improved the accuracy and reliability of
LGE segmentation, paving the way for enhanced and accountable diagnostic imaging in

routine clinical use.
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data augmentation, generative adversarial networks, quality control, segmentation, late gadolinium
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1. Introduction

Late gadolinium enhancement (LGE) is a cardiovascular

magnetic resonance (CMR) imaging technique that provides

crucial information about the extent and location of myocardial

damage, allowing clinicians to make accurate diagnoses and

treatment decisions (1). It is considered the imaging gold

standard for non-invasive myocardial tissue characterisation in a

variety of cardiovascular diseases. LGE can identify areas of scar

tissue or fibrosis (2), which are often associated with heart

disease, such as myocardial infarction (MI) (3) and hypertrophic

cardiomyopathy (4). Its quantification provides important

information, such as scar-burden, which can predict adverse

clinical outcomes like heart failure and sudden death, and may

guide risk-modification strategies, such as the use of implantable

cardioverter-defibrillator devices (5).

To quantify the extent and location of myocardial pathology in

LGE images, the left ventricular (LV) myocardium must be

segmented. Manual contouring by experts has been the

conventional method, but it is time-consuming and subjective.

Recently, there has been growing development in automated

segmentation methods to improve efficiency and reduce inter-

observer variability. These methods can be broadly categorised as

either model-driven (6) or data-driven (7). Model-driven

methods use prior knowledge about the structure of the LV

myocardium to guide the segmentation process, while data-

driven methods use machine learning algorithms to learn from

examples in a training dataset, typically yielding superior results

than model-driven methods (8). However, despite progress in

automated segmentation techniques, clinical translation has been

limited by two major challenges. First, data-driven methods

require a large amount of high-quality training data (9), which

may not always be available, particularly for rare or

heterogeneous diseases. Second, even with sufficient training

data, unflagged segmentation errors can still occur (10), leading

to inaccurate scar quantification, posing a significant concern for

clinical decision-making. Thus, there remains a pressing need for

a well-validated, automated quality control (QC) mechanism that

can detect and flag segmentation errors in a reliable and efficient

manner (11).

To overcome the challenge of data scarcity, or limited access, in

medical applications, various approaches have been proposed, such

as transfer learning, domain adaptation, and data augmentation

(12). Transfer learning and domain adaptation aim to leverage
02
knowledge from pre-existing datasets, while data augmentation

methods generate new data by applying transformations to existing

data. Among these approaches, data augmentation with synthetic

data, using Generative Adversarial Networks (GANs), has gained

popularity due to its potential to generate large amounts of diverse

and realistic data, which can be particularly useful for limited

datasets (13, 14). However, the use of synthetic data for medical

applications poses a challenge of clinical validation, as the generated

data may not accurately reflect the true biological and pathological

variations seen in real-world data (15). Therefore, it is crucial to

validate the synthetic data before using it for medical purposes.

Automated approaches for flagging inaccuracies in automatic

segmentation have gained increasing attention in recent years

(11). Post-analysis QC tools have been recently proposed to

assess the reliability of segmentation outputs, which are

considered the final indicator of a model’s performance. These

methods typically act as binary classifiers (16, 17), assigning

correct/incorrect labels to a segmentation, or as regressors (18,

19), which attempt to infer well-known validation metrics or

uncertainty estimates. While these approaches have been

successfully applied to CMR T1 mapping (20) and short-axis

cines (21), a QC pipeline for LGE segmentation—an important

clinical tool—is still missing.

In this study, we present a novel approach for LGE

segmentation that overcomes the challenges of both limited

training data and lack of quality control for clinical applications.

Our framework leverages the power of GAN-generated data,

incorporating virtual native enhancement (VNE) images (22, 23),

to further expand the training dataset with clinically-validated

data. This emerging contrast-agent-free CMR modality exploits

native signals to produce “virtual” LGE images. Additionally, we

extend an automated quality control mechanism to flag

problematic cases for focused inspection before clinical use. We

build upon the quality control-driven (QCD) framework (19, 20),

which can predict a confidence metric in absence of ground truth.
2. Materials and methods

2.1. Imaging data

The development dataset of 4,716 LGE images (1,363 patients) was

obtained from the following: (1) the multi-centre Hypertrophic

Cardiomyopathy Registry study (24) (HCMR, n ¼ 3,286 images
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from1,129 patients, 24 centres); (2) theUniversityofOxfordCentre for

Clinical Magnetic Resonance Research clinical service (OCMR,

n ¼ 712 images from 109 patients), and (3) the Oxford Acute

Myocardial Infarction study (25) (OxAMI, n ¼ 718 images from 125

patients), with institutional review committee and ethics approvals.

Altogether, the 4,716 LGE images comprised of 3,286 LGE images

from 1,129 patients with hypertrophic cardiomyopathy, and 1,430

LGE images from 234 patients with MI (255 images from 65 patients

with chronic MI; 1,175 LGE images from 169 patients with acute

MI). CMR scanning was undertaken in Siemens MR scanners

(Siemens Healthcare, Germany) with magnetic field strengths of 1.5T

(71% of data) and 3T (29% of data). CMR protocols included cine

steady-state free precession imaging, native and post-contrast T1

mapping using the ShMOLLI (Shortened Modified Look-Locker

Inversion recovery) sequence (26, 27), and LGE imaging acquired at

around 10min after intravenous administration of 0.1 to 0.2 mmol/

kg of a gadolinium-based contrast agent, typically with the phase-

sensitive inversion recovery sequence (24). Briefly, the manual quality

control involved selection of uncorrupted, paired cines, T1 maps and

LGE images, which were manually segmented by experienced trained

observers (MKB, YPL and IA), in previous studies (22, 23, 28).
2.2. Data augmentation using a generative
adversarial network

The data were augmented with a conditional generative

adversarial network (cGAN) approach to generate VNE images

(22, 23) from paired short-axis cine and T1 map. These VNE images

exploited native components, including native T1 mapping and

pre-contrast cine frames throughout the cardiac cycle. This provided
FIGURE 1

Data augmentation framework. A late gadolinium enhancement (LGE) image
virtual native enhancement (VNE) image, using a modified conditional gener
features from native signals, which are fused through a shallow autoencode
are used to enhance the D1 image “clarity” and the image “realness” with per
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image contrast, alterations in myocardial tissue properties,

myocardial structure (such as wall thickness/thickness), motion data

of the cardiac wall, and more distinct myocardial borders. The deep

learning generator processed these inputs to produce VNE images

that closely resembled LGE images in terms of structure and

contrast. The clinical utility of VNE lies in its ability to generate

“virtual” LGE images without the need for gadolinium, enabling

faster, lower-cost, and contrast-free CMR scans.

The VNE generator (Figure 1) consisted of parallel

convolutional neural network streams that processed cine frames

and motion-corrected T1 maps (29) individually. Each stream

utilised a six-level encoder-decoder U-Net structure (30). The

encoder computed image features at various scales, with

successive convolutional layers for feature extraction and

downsampling at each level, offering a multiscale feature

representation. The corresponding decoder fused these multiscale

features to generate the final feature maps, with symmetrical

upsampling layers and convolutions for sequential combination

of the multiscale features. These feature maps from the streams

were concatenated and fed into an additional two-level encoder-

decoder block, which combined information from the different

modalities to create the final VNE image in a late fusion manner.

Each encoder-decoder block was followed by a tanh activation

function.

In the customised cGAN approach (31), the architecture

included two discriminators, D1 and D2, modelled after the

VGG16 model (32). Discriminator D1, aimed at verifying the

“clarity” of larger images, used an expanded architecture with an

input layer accommodating the resultant VNE and the input cine

stack, which ensured sharper clearer images. This involved a

series of convolutional layers, alternating between feature
is augmented by using its paired short-axis cine and T1 map, producing a
ative adversarial network approach. Parallel deep auto-encoders extract
r to derive a VNE image. The discriminators, D1 and D2, during training,
ceptual similarity, respectively.
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extraction and downsampling, each followed by leaky rectified

linear unit activation functions. Discriminator D2, designed to

check the “realness” in single-channel images, adopted a similar

and more compact structure, processing both the resultant VNE

and the paired LGE. The generator’s objective was to create VNE

images that had a high perceptual similarity (33) to LGE images

and were indiscernible from LGE contrast images. The

discriminator’s objective was to differentiate between VNE and

LGE images. After training the neural networks in an adversarial

manner, we obtained a trained generator capable of translating

native CMR signals into LGE-like representations.

With the previously trained VNE generator (22, 23), we expanded

the LGE images in the development data by producing corresponding

VNE images (Figure 2), in independent datasets. Expansion of the

imaging data was successfully carried out for all cases, except for the

subset related to acute myocardial infarction, which is awaiting

further validation before inclusion. All augmented data were also

manually segmented. Through the utilisation of position-matched

T1 maps and cine, the derived VNE closely resembled the position-

matched LGE; however, in some cases, there were slight differences

in slice position between the paired T1/cine and the final LGE, for

instance, due to patient movement between the image acquisitions

(Figure 2, cases 5 and 6). Serendipitously, this introduced increased

diversity and realism into the training data, thereby enhancing the

robustness of the model.
FIGURE 2

The resultant database includes the late gadolinium enhancement (LGE) data
and additional validation.
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2.3. Quality control-driven ensemble
framework

Aquality control-driven ensemble framework (19) (Figure 3) was

developed to enhance the accuracy and reliability of the segmentation

process by leveraging the strengths of multiple convolutional neural

networks. This framework utilised various U-Nets (30) with

different depths to create a diverse set of candidate segmentations.

These segmentations were then combined using statistical rank

filters in a pixel-wise fashion (34), further expanding the pool of

segmentation candidates and improving robustness.

In the ensemble framework, six U-Nets (30), with depths

ranging from 1 to 6 levels, were employed. Each U-Net consisted

of an encoder and a decoder. The encoder had convolutional

layers followed by dropout layers (35) for regularisation, with

increasing dropout rate with each layer to mitigate overfitting.

Post-convolution and dropout, a max pooling operation was

applied. The decoder mirrored the encoder but used transposed

convolutional layers for upscaling. It also utilised skip connections,

coupling outputs from the decoder with corresponding encoder

layers. The final layer underwent additional convolutions and

a softmax activation to produce the final segmentation. The

overall process, which was repeated for each depth, allowed the

generation of diverse candidate segmentations, contributing to

the ensemble’s performance.
and virtual native enhancement (VNE) data, as ways of data augmentation
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FIGURE 3

Illustrative quality control-driven ensemble framework depicted with 3 (out of 6) U-Nets. (A) A late gadolinium enhancement (LGE) image is processed by
(B) an ensemble of independent U-Net segmentation models to produce (C) single candidate segmentations (SCSs). (D) The SCSs are then combined via a
pixel-wise label voting scheme to derive combined candidate segmentations (CCSs). (E) An association matrix of Dice Similarity Coefficients (DSC) is
generated upon the agreement between SCSs and CCSs. The inter-candidate DSCs are supplied to the (F) linear regressors (LR), and (G) each model
outputs the predicted the DSC, in absence of ground truth (GT); finally, (H) the model with the highest predicted DSC and its corresponding
automated segmentation output are selected on-the-fly.
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The automatic quality scoring mechanism at the core of the

framework predicted the Dice Similarity Coefficient (DSC) for

each candidate segmentation by exploiting their differences. It

calculated the pairwise agreement, or inter-segmentation DSC

matrix, between segmentations, capturing the overlap and

divergence between different candidates. These DSC matrices

were then fed into separate linear regression models for each

candidate, with the target being the DSC between the candidate

and the ground truth.

For each input image, the framework assigned a predicted DSC,

with respect to the ground truth segmentation, to every candidate

segmentation, both single and combined. The final segmentation

was selected by identifying the candidate with the highest predicted

DSC, indicating the most accurate and reliable result. This selection

process was performed automatically by the framework, without

any manual intervention. This approach effectively emulated a

multidisciplinary clinical team, where the consistency among

multiple expert opinions served as a marker for the best approach in

managing complex cases. By incorporating this quality control-

driven strategy, the ensemble framework aimed to improve overall

segmentation performance and provide confidence metrics,

particularly useful in clinical settings.
Frontiers in Cardiovascular Medicine 05
2.4. Implementation

The data were augmented with the VNE technology using

available co-located short-axis cines and ShMOLLI T1 maps,

resulting in 3,541 VNE images. The development dataset was

randomly partitioned into: (1) 85% for the training dataset

(4,092 LGE images and 2,917 VNE images from 1,158 patients);

(2) 7.5% for validation (309 LGE/VNE images from 102

patients); (3) 7.5% for the test dataset (309 LGE/VNE images

from 103 patients), per recommended guidelines (36). Image

pixel values were scaled from 0 to 1 and zero-padded to

256� 256. For the segmentation models, the Adam method (37)

was used for optimising the categorical cross-entropy loss, with a

learning rate of 5� 10�5 for 200 epochs; an automated early

stop was used to avoid overfitting, using the validation set. For

the quality prediction models, a linear regressor for each

candidate segmentation was fit with the inter-agreement between

its corresponding candidate segmentation and the rest. These

regressors were trained on the validation set to avoid

autocorrelation with the training set. The models were trained

and tested on TensorFlow (38) with an NVIDIA GeForce RTX

3090 GPU, taking approximately 11.5 h.
frontiersin.org
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2.5. Evaluation

The performance of the QCD ensemble framework was evaluated

for myocardial contours on both LGE and VNE test datasets, and

across the main pathologies. The segmentation accuracy was

assessed by DSC, comparing the agreement between the optimally

selected mask and the ground-truth mask. The predicted

segmentation accuracy was assessed in terms of the mean absolute

error (MAE) and binary classification accuracy, with a DSC

threshold at 0.7 (39). The former was used to measure the difference

between the predicted DSC and the observed ground-truth DSC

derived from the manual segmentation. The latter assessed whether

the segmentations were classified into good (�0.7) or poor quality

(<0.7) to demonstrate the practical usage of the DSC prediction. In

the evaluation, false positives occurred when the predicted DSC was

�0.7 but the real accuracy was <0.7, while false negatives arose when

the predicted DSC was <0.7 despite the real accuracy being �0.7.

The threshold of 0.7 ensured a balance between sensitivity

and specificity in the classification of good and bad quality

segmentations. As evidenced in our prior works on aortic (19) and
FIGURE 4

Scatter plots of the observed ground-truth Dice Similarity Coefficient (DSC) (x-
gadolinium enhancement (LGE) and (C,D) virtual native enhancement (VNE) im
segmentation (CCS) models (B,D). The shown overall binary classification accu
negative (TN)—light blue background), in a population of both true and negative
binary threshold of DSC �0.7.

Frontiers in Cardiovascular Medicine 06
myocardial segmentation (20, 40), this threshold provided a

standard measure of segmentation quality across different studies. In

this context, a DSC of 0.7 implied that 70% of the segmentation

correctly overlapped with the ground truth, which was considered to

be an acceptable level of accuracy for our applications. A Wilcoxon

signed-rank test was conducted using Python to determine if there

was a statistically significant difference between the segmentation

results obtained on LGE data and VNE data, paired when possible,

and within pathology groups. P , 0:05 was considered significant.

This analysis helped to ascertain the robustness of the model when

segmenting both types of images and the potential benefits of

incorporating VNE data into the training process.

2.5.1. Comparative analysis
A comparative study was conducted to investigate the

pipeline’s main components performance and the impact of

incorporating VNE data. Firstly, the performance of the deepest,

top-performing employed U-Net (depth of 6 levels) and the

QCD segmentation framework were assessed to highlight the

benefit of a higher segmentation accuracy with a quality
axis) versus the predicted DSC (y-axis) for myocardial contours in (A,B) late
ages for the optimal candidates (A,C) and for all single (SCS) and combined
racy is measured as the proportion of true results (true positive (TP) or true
results (false positive (FP) or false negative (FN)—grey background), with a
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predictive capacity. Secondly, transversely, each experiment

involved training with LGE data, VNE data, and both combined,

to thoroughly evaluate the data augmentation capability of the

GAN-generated VNE data. Thirdly, each experiment was also

tested on LGE data, VNE data, and both combined, to exhibit

the robustness of the proposed method. The segmentation

accuracy and the quality prediction accuracy were assessed in all

experiments, to compare the differences. Lastly, the extensive

data augmentation techniques, proposed in the nnU-Net

framework (41) were also implemented, to assess the added

benefit of VNE data in the pipeline.
3. Results

3.1. Segmentation and prediction accuracy

The scatter plots (Figure 4) reflect the parity between the

ground-truth DSC and the predicted DSC for the resultant
FIGURE 5

Examples of true positive (93.9%), true negative (1.9%), false positive (2.3%) and f
late gadolinium enhanced (LGE) images. The left ventricular myocardium is
different single (SCS) and combined candidate segmentation (CCS) models. T
(DSC) and predicted DSC are provided at the bottom.
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framework output and for every candidate model output in the

test set, being able to accurately predict from underperforming

models to highperforming models. The QCD framework

successfully and rapidly segmented the LV myocardium on LGE

and VNE images. The QCD framework demonstrated robust

segmentation performance on both LGE and VNE test datasets,

with similar mean DSC (LGE: 0:845+ 0:075; VNE:

0:845+ 0:071; p ¼ ns). The QCD framework also exhibited

robust segmentation performance across the main pathologies

(hypertrophic cardiomyopathy: 0:845+ 0:069; MI: 0:844+ 0:085;

p ¼ ns). The mean absolute error (MAE) for the predicted DSC

was low at 0:043+ 0:043, demonstrating the accuracy of the

quality control-driven strategy in predicting the segmentation

quality. Moreover, using the DSC threshold of 0.7, the binary

classification accuracy was high at 0.951, further emphasising the

practical usefulness of the proposed ensemble framework in

clinical settings. Figures 5 and 6 show representative test cases of

the QCD framework on LGE and VNE images, respectively, for

true positive, true negative, false positive and false negative cases.
alse negative (1.9%) for predicted quality-controlled (QC) segmentations in
manually segmented in red and automatically segmented in green, from
he corresponding observed ground-truth (GT) Dice Similarity Coefficient
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FIGURE 6

Examples of true positive (94.2%), true negative (0.3%), false positive (5.2%) and false negative (0.3%) for predicted quality-controlled (QC) segmentations
in virtual native enhancement (VNE) images. The left ventricular myocardium is manually segmented in red and automatically segmented in green, from
different single (SCS) and combined candidate segmentation (CCS) models. The corresponding observed ground-truth (GT) Dice Similarity Coefficient
(DSC) and predicted DSC are provided at the bottom.
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3.2. Comparative analysis

The comparative analysis (Table 1) highlights the

contribution of the GAN-generated VNE as data augmentation

and the QCD segmentation framework as an automated

quality control mechanism. Firstly, the individual performance

of the deepest U-Net was on par with the ensemble

performance of the QCD segmentation framework, which was

also able to estimate the quality of the resultant segmentation.

When analysing the results using all datasets for training and

testing, the deepest U-Net achieved a segmentation accuracy of

0:845+ 0:070, similar to the segmentation accuracy of the

QCD segmentation framework. Secondly, the performance of

the deepest U-Net, trained on only LGE data, completely

generalised to the VNE test set, with a DSC of 0:836+ 0:082

and 0:838+ 0:075 for the LGE and VNE test sets, respectively.

Similarly, the deepest U-Net, trained on only VNE data, with

30% less data, also generalised to the LGE test set, with a DSC

of 0:791+ 0:119 and 0:824+ 0:084 for the LGE and VNE test
Frontiers in Cardiovascular Medicine 08
sets, respectively. These findings, similar to the ones with the

ensemble framework, effectively support the resemblance of

VNE to LGE images, and validates the data augmentation

approach for virtually yielding the same performance as its

counterpart.

Thirdly, including the GAN-generated data consistently

improved the performance in both experiments of the individual

model and the QCD segmentation framework, in every experiment.

For instance, the QCD segmentation framework trained on only

LGE data yielded a mean DSC of 0:835+ 0:082 and

0:838+ 0:080 for the LGE and VNE test sets, respectively; whereas

the QCD segmentation framework trained on both LGE and VNE

data yielded a higher segmentation performance of 0:845+ 0:075

and 0:845+ 0:071, indicating the benefits of including VNE data

in the training process for the segmentation accuracy. The quality

predictive capacity also improved when trained and tested in both

datasets. Lastly, the individual segmentation performance of the

model trained with only LGE data including extensive data

augmentation (41) (0:846+ 0:072) was also surpassed by the same
frontiersin.org
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TABLE 1 Comparative analysis of individual models (U-Net with depth of 6 levels) and quality control-driven (QCD) segmentation framework.

Models and traning data Test data

LGE (n ¼ 309) VNE (n ¼ 309) LGE + VNE (n ¼ 618)

Models Training set DSC MAE Acc. DSC MAE Acc. DSC MAE Acc.
U-Net LGE 0.836 — — 0.838 — — 0.837 — —

U-Net VNE 0.791 — — 0.824 — — 0.807 — —

U-Net LGE + VNE 0.844 — — 0.846 — — 0.845 — —

QCD LGE 0.835 0.042 0.971 0.838 0.046 0.922 0.837 0.044 0.947

QCD VNE 0.799 0.057 0.922 0.833 0.041 0.958 0.816 0.049 0.940

QCD LGE + VNE 0.845 0.042 0.958 0.845 0.043 0.945 0.845 0.043 0.951

The models were trained on late gadolinium enhancement (LGE; n ¼ 4,092) and/or virtual native enhancement (VNE; n ¼ 2,917) data and tested on LGE (n ¼ 309) and/or

VNE (n ¼ 309) data, evaluated by their segmentation performance with the mean Dice Similarity Coefficient (DSC) and the quality predictive capacity with the mean

absolute error (MAE) and the binary classification accuracy (Acc.). The best results are highlighted in bold.
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framework when the VNE data were added (0:851+ 0:068). Overall,

no significant differences were observed when comparing LGE and

VNE test sets between the experiments.
4. Discussion

In this study, we demonstrated that the proposed framework,

leveraging GAN-generated VNE data and incorporating an

automated quality control mechanism, significantly improved the

accuracy and reliability of LGE segmentation. The comparative

analysis demonstrated the benefits of using VNE data, with

generally better image quality and more consistency (22, 23), in

the training process and the effectiveness of the ensemble

framework in enhancing segmentation performance. Moreover,

the proposed framework revealed robustness in both LGE and

VNE data. This represents an accountable pipeline for automated

segmentation in the gold-standard and emerging contrast-agent-

free modalities, paving the way for faster and reliable diagnosis

of myocardial damage.

Data scarcity or lack of access remains a persistent challenge in

developing robust and reliable deep learning models for medical

image segmentation, particularly in the context of LGE

segmentation. This limitation stems from the high costs and

ethical considerations associated with acquiring, labelling, and

sharing large-scale annotated datasets, which often result in

insufficient representation of diverse and rare pathological cases

(9). As a consequence, models may underperform or fail to

generalise well to unseen cases (10), hampering their clinical

utility. The application of generating VNE images (22, 23) assured

a data augmentation technique with more reliable image contrast.

This significantly improves over prior methods of using synthetic

LGE images (42, 43), which had not been clinically-validated and

were not designed for displaying LGE lesion signals. Addressing

data scarcity through the generation of VNE images, as

demonstrated in this study, can alleviate this issue by augmenting

the already-available LGE data, or potentially substituting the data,

leading to a more robust and reliable model that can better handle

the complexity of clinical cases and ultimately improve patient care.

The presented work focused on the integration of an

automated quality assurance framework, which was developed
Frontiers in Cardiovascular Medicine 09
with a traditional encoder-decoder U-Net architecture (30) with

different depths. The quality control-driven strategy provided

reliable quality predictions, crucial for clinical decision-making.

The adapted regression-based quality prediction scheme enables

further exploitation of the diversity of different candidates, with

a deterministic approach of assessing the agreement between

candidates, proven to be more effective than the emerging

Monte Carlo-based quality assurance scheme (40). Newer

network architectures and advanced pre-processing schemes

could be incorporated to increase such diversity, ranging from

existing LGE segmentation approaches (44) to spatial

transformation-based pre-processing (45, 46). Future work will

cover dataset extension, different candidate models, and scar

burden evaluation.

The clinical implications of the proposed QCD ensemble

framework are substantial, as it introduces an automated quality

control mechanism for the first time in automated LGE

segmentation, improving both accuracy and reliability. Moreover,

the quality control-driven strategy allows for the identification

and refinement of suboptimal segmentations, ensuring the

system’s efficiency and trustworthiness, paving the way for

increased adoption in clinical workflows. This enhancement

streamlines the diagnostic process, reduces contouring variability,

and bolsters clinician confidence in automated segmentation

results, potentially leading to easier scar burden quantification on

a routine basis, better-informed treatment decisions and

improved patient outcomes.

This work has some limitations. The main goal has been the

fundamental task of the myocardial delineation, thus avoiding

engaging the generalisation into the known difficulties of scar

tissue quantification (47). In particular the diffuse, less structured

and scattered lesions require lower segmentation thresholds, and

the targets are subject to many methodological choices and

biases in ground truth data (48, 49). While our model was

evaluated on an extensive international database, enabling

potential generalisation to various conditions requiring LGEs, the

findings have been primarily concentrated on patients with

hypertrophic cardiomyopathy and MI, suggesting the need for

future validation across a wider spectrum of pathologies. Lastly,

our selection of the DSC threshold of 0.7 for discerning between

acceptable and unacceptable segmentations, despite being
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effective in our prior work (19, 20, 40), might not address all the

geometric properties of cardiac structures (10). We expect that

proposed methods would generalise well to any single particular

threshold or application, yet further research is needed to explore

the available choices for the clinical routine use beyond the scope

of this work.
5. Conclusion

In conclusion, our study presents a novel approach for

automated LGE segmentation that overcomes the challenges of

limited training data and lack of quality control, for clinical

applications. By leveraging the power of GAN-generated VNE

images and incorporating an automated quality control

mechanism, we demonstrate the potential for improved automated

segmentation performance and reliability. This framework could

be seamlessly integrated into clinical studies, providing an efficient,

quality-controlled and reliable tool for clinicians in diagnosing and

managing patients with myocardial damage.
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