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Secondary lymphedema is a common condition among cancer survivors, and
treatment strategies to prevent or treat lymphedema are in high demand. The
development of novel strategies to diagnose or treat lymphedema would benefit
from a robust experimental animal model of secondary lymphedema. The purpose
of this methods paper is to describe and summarize our experience in developing
and characterizing a rat hindlimb model of lymphedema. Here we describe a
protocol to induce secondary lymphedema that takes advantage of micro computed
tomography imaging for limb volume measurements and visualization of lymph
drainage with near infrared imaging. To demonstrate the utility of this preclinical
model for studying the therapeutic benefit of novel devices, we apply this animal
model to test the efficacy of a biomaterials-based implantable medical device.
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Introduction

Lymphedema is a common side effect of cancer treatment with an overall incidence of

15.5%, and increased risk among patients who undergo pelvic dissections (22%) or radiation

therapy (31%) (1–3). The average incidence of secondary lymphedema in women following

breast cancer treatment is 20% (3) and a number of studies report an increased incidence of

up to 60% (4–6). With sustainable treatment options remaining scarce, major efforts to

reduce the incidence of lymphedema have been focused on early diagnostics, refinements

in surgical techniques for cancer surgeries, and a combination of multiple imaging

modalities used pre-, intra-, and postoperatively. A recent surgical approach to prevent

lymphedema in high-risk patients, such as those undergoing axillary lymph node

dissection (ALND), is lymphovenous bypass to an axillary vein tributary that is
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performed at the time of ALND (7–14). It decreases the rate of

lymphedema down to as low as 4% (14, 15). In parallel, to treat

symptomatic secondary lymphedema patients, microsurgical

techniques such as vascularized lymph node transfer (VLNT)

and lymphovenous anastomosis (LVA) have been increasingly

used. The reported rates of volume reduction following VLNT or

LVA are typically less than 60% (16) and underscore the need

for further improvements in treating lymphedema.

To investigate effective management strategies for the treatment

of lymphedema, a stable and reproducible animal model is needed.

Lymphedema models usually involve relevant lymph node removal

that may be coupled with radiotherapy. Physiologically, a porcine

model approximate features of clinical lymphedema. Hindlimb

lymphedema in pigs was induced by removal of superficial

inguinal and popliteal lymph nodes followed by irradiation (17),

and then evaluated by bioimpedance, contrast computed

tomography (CT) and magnetic resonance imaging (MRI). The

limitations of using this model include the high cost of animal

maintenance, along with the availability of CT and MRI

equipment. In addition, the thickness of the porcine skin prevents

the use of indocyanine green (ICG) for intravital monitoring of

lymphatics. Other models of lymphedema involve the removal of

popliteal lymph nodes and adjacent lymphatic vessels in the

hindlimbs (canine, sheep, and rabbit models) (18–20), and

axillary lymph nodes in forelimbs (rat model) (21). The effect of

irradiation prior to lymph node removal in hindlimbs was

elegantly studied in mouse model (22). The removal of both deep

and superficial lymphatic vessels around the circumference of the

thigh muscle coupled with radiation therapy (45 Gy) in rat

hindlimb induced a chronic lymphedema condition persisting up

to 9 months (23), as evaluated by tape measurements of limb

circumference and water-fill method, although this radiation dose

was associated with considerable mortality. A lower dose of 20

Gy following removal of both inguinal and popliteal lymph nodes

in rat hindlimb induced lymphedema with minimal morbidity in

4 months (24). Microcomputed tomography (microCT) imaging

was used to precisely evaluate volumetric changes of

lymphedematous and contralateral healthy limb, and

lymphoscintigraphy to explore lymph drainage. The 20 Gy

irradiation dose was adopted in a forelimb lymphedema study

with a two-month follow-up (25). The hind limb location of the

rat model is economically and technically reproducible, thus

enabling the investigation of surgical treatments to combat

chronic lymphedema. In addition, microCT imaging technology

is available in many research centers, and this model has the

advantage of using ICG imaging to detect lymph drainage

patterns. For these reasons, the rat lymphedema model has

become a well-accepted model of lymphedema.

In this methods paper, we describe and summarize our

experience in generating and validating a rat hindlimb model of

lymphedema. This protocol employs the established experimental

design with microCT-based limb volume measurements, refines

the visualization of lymph drainage with ICG imaging, and is

used to evaluate the efficacy of therapeutic biomaterials and

implantable medical devices (26–28) to improve the treatment of

lymphedema.
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Materials and equipment

Animals:

Sprague-Dawley female rats (300 g, Charles River).

General supplies:

rat ear tag kit (Fine Science Tools).

hair removal cream (Nair).

bandage/ flexible wrap (generic brand).

povidone iodine (generic brand).

sterile gauze pads (generic brand).

alcohol prep pads (generic).

Anesthetics, analgesia, and injections:

Isoflurane (Isoflo; Abbott Laboratories).

lidocaine.

Analgesia (ie buprenorphine or carprofen).

Xylazine (Xylaject; Phoenix Pharmaceuticals or generic brand).

Ketamine (Ketaset; Fort Dodge Animal Health or generic

brand).

Evans blue (Sigma–Aldrich).

Indocyanine Green (ICG) dye (MedChemExpress LLC).

Surgical supplies:

scalpels disposable # 15 (VWR).

cauterizer with bipolar tips (Fine Science Tools).

small scissors straight (Fine Science Tools).

small scissors curved (Fine Science Tools).

forceps flat (Fine Science Tools, CA).

forceps w/teeth (Fine Science Tools).

forceps thin (Fine Science Tools).

needleholder small (Fine Science Tools).

needleholder medium (Fine Science Tools).

GEM 1521 SuperFine MicroClips titanium hemostatic clips

(Synovis MCA).

SuperFine MicroClip Applier (15 cm, Synovis MCA).

4-0 Prolene sutures (Ethicon).

9-0 ETHILONTM Nylon Suture 9-0 (Ethicon).

Michel Suture Clips—11 mm × 2 mm (Fine Science Tools).

Magnifying surgical glasses (individually fitted on prescription

glasses) or alternatively, surgical microscope.

Equipment:

Surgical bench with anesthesia set-up with isoflurane and

oxygen supplies and heating pad.

CT Scanner (TriFoil eXplore CT 120).

Polaris 225-MXR Mobile x-Ray System (Kimtron, Inc).

MXR-226 Unipolar x-Ray Tube (Comet Technologies USA, Inc).

Near-infrared PDE-NEO camera equipped with Swann HD

Digital Video Recorder [or UR-4MD recorder (TEAC Corp)].
Methods

The outline of procedures and timeline is summarized in

Table 1.
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TABLE 1 Procedure time point and duration details.

Time point
(day)

Procedure Procedure time per
animal (min)

−1 or 0 MicroCT procedure 40

0 Removal of left inguinal and
popliteal lymph nodes

45–60

Device implantation as
preventive approach.

10–20

10–14 Irradiation of the surgical site 40

30 MicroCT procedure 40

Device implantation as treatment 20–30

60 MicroCT procedure 40

90/120 MicroCT procedure 40

ICG injection; NIR imaging 30–45

Nguyen et al. 10.3389/fcvm.2023.1214116
Results

Pre-operative and post-operative micro-CT
imaging

MicroCT imaging and analyses were performed preoperatively

and at 1-, and 3-months postoperatively by using microCT (TriFoil

eXplore CT 120) (Figure 1). Volumetric analyses of the healthy

and affected limbs were performed using the following protocol.

After induction of anesthesia with 2%–2.5% isoflurane, female
FIGURE 1

MicroCT procedure and image analysis steps. (A) Animal positioning in the scan
(C) Selection and verification of the ROI by limb slice area. (D) Final calculated

Frontiers in Cardiovascular Medicine 03
Sprague–Dawley rats (300 g) were transferred to the rat holder in

microCT scanner. The animals were placed in the supine

position and fit with the nose cone with inflow isoflurane and

outflow evacuation tubing. Isoflurane inflow was turned on to

maintain anesthesia. The rat’s position with symmetrically full

hind limb extension was secured with soft surgical tape

(Figure 1A). After the scan area was set to span the femoral

head to the ankle joint, the resultant 8-cm transaxial field of

view encompassed both lower extremities (Figure 1B). A 15-min

scan with 100 kVp energy, an exposure time of 1,000 ms, and

100 lA energy was performed. All images were reconstructed

with filtered back-project into a three-dimensional image volume

with pixel size of 0.2 mm in both the transverse and axial

directions, by sequential selection and verification of the region

of interest (ROI) that encompassed the limb slice area, for each

image and for each hind limb (Figure 1C). All images were

saved in DICOM format and analyzed with software (PMOD

Technologies, Zurich, Switzerland). The volume of the hind

limb was calculated from ankle joint to hip joint with

reconstruction of transverse, sagittal and coronal sections

(Figure 1D). The relative amount of excess volume (in %) was

defined as the volume of the affected (left) limb minus the

volume of the healthy (right) limb divided by the volume of the

healthy (right) limb, multiplied by 100% (see the details in Data

analysis section).
ner. (B) Selection of the scanning area from the femoral head to the ankle.
hindlimb volume (red highlighted area). Reproduced with permission (29).
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Unilateral hind limb lymphedema rat model

Unilateral hind limb lymphedema was established in female

Sprague–Dawley rats (300 g) based on a published protocol (24).

All animal procedures were approved by the Institutional Animal

Care and Use Committee at Stanford University.

General anesthesia was induced and maintained with 2.5%

isoflurane. The surgical site spanning the inguinal region toward

below the knee was shaved and wiped with 70% ethanol and

iodine. The animals were placed in supine position onto a sterile

surgical pad, with their limbs and tails secured with soft tape to

ensure the correct position, followed by subcutaneous

administration of lidocaine (2 mg/kg) for local pain control. An

injection of 0.1 ml 10% Evans blue (Sigma–Aldrich, Saint Louis,

MI) was made intradermally to the paw on the surgical site side.

A full skin incision of 4–5 cm was made from inguinal area to a

point below the knee, and inguinal and popliteal lymph nodes as

well as accompanying lymphatic ducts were identified by

absorbed blue stain (Figures 2A–D). Both inguinal and popliteal

lymph nodes were excised, as well as thorough removal of the

lymphatic tissue around the nodes, based on visualization of

Evans blue–stained lymphatics (Figure 2) (24). Large vessels
FIGURE 2

Schematics of mapping (A) and identifying the inguinal (B) and popliteal (C) ly
lymph node excision. IngLN (inguinal lymph node); pLN (popliteal lymph nod
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supplying lymph nodes were closed by applying microclips, and

small afferent and efferent blood and lymphatic vessels were

cauterized to minimize bleeding and loss of tissue fluids. Skin

incisions were closed with metal clips. A soft sport bandage wrap

was applied around the body from the forelimbs down to the

inguinal area to prevent the animal from interfering with the

wound. Buprenorphine at 0.05 mg/kg or carprofen at 5 mg/kg

was administered post-operatively for at least 2 days.
Therapeutic implantation of BioBridge
collagen scaffolds

To demonstrate the utility of this disease model for

translational applications, we then tested the efficacy of

implanted nanofibrillar collagen scaffolds denoted as BioBridge

scaffolds as a medical device to bridge the region of

lymphedema. Implantation of BioBridge or other experimental

therapies may be performed immediately after the lymph node

removal surgery (preventive approach) or after development of

lymphedema was confirmed by microCT-based limb volume

analysis [treatment option (27)]. The general schematic of
mph nodes after injection of Evans Blue in the paw in preparation (D) for
e). Reproduced with permission (24).
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implantation and two suggested options of BioBridge implantation

are shown in Figure 3.
Lymphedema prevention model

At the end of the lymphedema initiation surgery, five ∼5-cm
strands of BioBridge medical devices were implanted by placing

one end below the knee and the other end toward the midline

and/or the proximal border of inguinal area surgical site toward

the ipsilateral proximal lymphosome border and then securing

the devices (Figure 3B). Importantly, BioBridge ends should

cross the midline/border by several mm in order to reach the

area with healthy lymphatics. BioBridge can be attached to the

surrounding connective or subcutaneous fat tissue with

microclips or 9-0 nylon sutures. The attachments were done at

the periphery of the scaffold to avoid occluding the central

parallel channels. The wounds were closed with staples/clips.
Lymphedema treatment model

In animals with confirmed lymphedema (4–5 weeks after

lymph node resection and irradiation), after induction of

anesthesia, the animals receive implantations of five BioBridge

devices following a similar design as the prevention model.

Specifically, the devices were implanted towards the midline and/

or toward the ipsilateral proximal lymphosome border or

vascularized lymph node transfer. One approach to implant the

devices is to perform an open surgery as in preventive option.

The second approach is to use large gauge needles (18G to 14G)

as trocars (Figure 3C, details in Figure 4). In the latter case, a

small incision was made at the insertion and at the exit points

(Figure 4A). The trocar was inserted under the skin through the

insertion point and then pushed to the exit point. With a trocar

in place, the BioBridge was then inserted into the trocar all the
FIGURE 3

Schematic of BioBridge medical device implantation in a rat lymphedema mod
red color) implantation to bridge the area of obstruction from the lymph nod
option where the devices are implantated immediately after lymph node
developed (C). Reproduced with permission (27).
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way, with its end left protruding from the trocar (Figure 4B).

This protruding end was held in place, and the trocar was gently

removed (Figure 4C), keeping the BioBridge implanted along the

trocar-made path (Figure 4D). The punctured skin openings

were closed with 5-0 chromic sutures to prevent scaffold

migration. The advantage of using a trocar-like device for

collagen scaffold implantation is that an additional treatment,

such as cultured cells, can also be applied.
Irradiation

Regardless of the choice of a prevention or treatment model,

the animals were subjected to irradiation one week (±4 days)

after lymph node resection, when the wounds have healed. The

animals were anesthetized with ketamine (80 mg/kg) and

xylazine (12 mg/kg) for radiotherapy. Once the animals were

under deep anesthesia, they were placed on the work stand under

the irradiator, and all body parts except for area intended to be

irradiated were covered with lead shielding. Animal limbs and

tails were secured with soft surgical tape where needed to ensure

correct positioning. The surgery site was irradiated with a single

dose of 20 Gy (Polaris 225-MXR Mobile x-Ray System; Kimtron,

Inc.; Oxford, CT) using a MXR-226 Unipolar x-Ray Tube

(Comet Technologies USA, Inc.; Shelton, CT). The dimensions of

the radiation field were 3 × 4 cm with a depth of 1.5 cm.
Allocation of animals to control and
treatment groups

Lymphedema was confirmed at 4-5 weeks after lymph node

resection when the affected hind limb had the volume increased

by 5% or more vs. the normal hind limb. Hindlimb volume was

calculated for the entire volume from ankle joint to hip joint by
el (A). Depiction of BioBridge collagen scaffold-based device (denoted by
e excision site to the foot. (B-C). Specifically, it is shown as a preventive
resection (B), or as a treatment option after lymphedema has already
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FIGURE 4

Detailed schematics of BioBridge medical device implantation in a rat lymphedema model. (A). Exit and entry incisions are made. (B). Trocar is inserted
through the incisions, and BioBridge (BB) is inserted into the trocar opening. (C). BB is held in place with forceps, while trocar is being removed. (D). After
the trocar was removed, the BB is left in place.
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micro-CT imaging. Animals that did not show at least a 5% volume

increase were excluded.
NIR fluoroscopy

To visualize the lymphatics at higher resolution than Evans

blue dye, ICG imaging was performed after the final microCT

procedure. The animals were anesthetized with 2.5% isoflurane.

A 0.1-ml aliquot of 3.3 mM ICG (MedChemExpress LLC, NJ,

US) aqueous solution was injected intradermally into the paw,

and the uptake of ICG was monitored by near-infrared PDE-

NEO camera equipped with Swann HD Digital Video Recorder.

Alternatively, a UR-4MD recorder may also be used (TEAC

Corp) (27). The PDE-NEO camera was positioned 20 cm from

the examination area and secured in place over the area of

interest with a ring stand or another stable platform. To prevent

signal interference, any ambient infrared light sources were

turned off. Precise visualization of the fluorescence signal with

respect to subject body anatomy was achieved by switching

between color and fluorescence imaging modes. Near-focus

camera mode was used to capture more minute details in the

lymphatic system. Switching between color and fluorescence

imaging modes allowed for precise visualization of the

fluorescence signal location in the animals. After injection, the

ICG signal intensified over time. To maintain image quality

during this change, fluorescence controls for brightness and

contrast were adjusted accordingly. Decreasing the brightness

obviated oversaturation and loss of detail in animals requiring
Frontiers in Cardiovascular Medicine 06
longer ICG signal monitoring. To view downstream lymphatic

pathways, the brightness was increased to adjust for the

decreased ICG signal. The duration of NIR fluoroscopy was

approximately 30–45 min per animal.

Imaging analysis at 3 months post-treatment involved the

evaluation of lymphatics and mapping the lymphatics in the

treated groin area using NIR imaging. The analysis steps

included (1) quantifying the ICG propagation time to the

midline or next closest lymphosome border; (2) counting the

number of lymphatic collectors based on ICG staining; and

(3) describing the pattern of the lymphatics as either tortuous,

curvy, or straight. An example of post-treatment lymphatic

vasculature patterns relative to the current understanding of the

lymphosome map in the rat is shown in Figure 5.
Data analysis

Clinical staging of lymphedema is based on volumetric

measurements. In particular, the relative limb volume change (in

%) or relative amount of excess volume (in %) is the ISL

recommended and widely accepted characteristic of unilateral

edema (30, 31). If A1 and U1 are the volumes of affected and

healthy (unaffected contralateral) limbs at a first time point t1,

A2 and U2 are the volumes of affected and healthy (contralateral)

limbs at a second time point t2 then A1 – U1 is the volume of

the edema at the first time point (e.g., before treatment) and A2

– U2 is the volume of edema at the second time point (e.g., after

the treatment). Thus, relative amount of excess volume (in %) at
frontiersin.org
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FIGURE 5

Rat lymphosomes and lymphatic vasculature patterns revealed by ICG imaging. (A). Schematics of healthy, compromised and regenerated lymphatic
drainage patterns. (B) Lymphatics from affected area were re-routed toward ipsilateral axillary lymph node and contralateral inguinal lymph node.
(C) the main re-routed directions were the (1) contralateral inguinal lymph node (InLN), (2) deep ipsilateral lymphatics, (3) ipsilateral axillary lymph
node (AxLN). Reproduced with permission (27).
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the 1st time point is defined by the formula:

A1 � U1

U1

� �
100% ¼ A1

U1
� 1

� �
100%

and relative amount of excess volume (in %) at the 2nd time point

is defined by the formula:

A2 � U2

U2

� �
100% ¼ A2

U2
� 1

� �
100%

The relative limb volume data make it possible to compare the

edema at different time points. It is especially important to

account for changes in animal weight during the study. Thus, the
Frontiers in Cardiovascular Medicine 07
edema volume reduction and the rate of edema volume reduction

can be measured by the respective formulas:

Er ¼ 1�
A2

U2
� 1

A1

U1
� 1

0
BB@

1
CCA100% and

Er
t2 � t1

:

Another metric for quantifying unilateral lymphedema, accounting

for both the asymmetry of upper extremities’ volumes and their

temporal changes has been developed in (32). It defines the

relative volume change as:

RVC ¼ A2

U2

� �
=

A1

U1

� �
� 1
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There is a similarity between Er and RVC but the latter measure

has no simple physical meaning.

Since volumetric clinical staging of lymphedema doesnot

always correlate with the functional characterization based on

ICG fluoroscopy (33), it is important to take into consideration

both criteria. Therefore, lymphatic drainage should be assessed

quantitatively by ICG fluoroscopy for number and morphology

of new collectors and for the time required for ICG to move

from injection point to the middle line.

Some complementary data can be obtained using

bioimpedance measurement, contrast CT lymphography, and

dielectric constant measurements (17, 26).
Discussion

Secondary lymphedema accounts for 99% cases of

lymphedema and is most frequently presented in patients with

flilariasis or cancer survival patients who underwent

lymphadenectomy and irradiation treatment (34). A translational

model of secondary lymphedema is key to optimizing current

treatments and developing new approaches.

This model combines lymph node removal and irradiation to

mimic the condition often occurring in cancer patients. This

model causes lymphedema in 81.5% operated animals (24),

provides a long-term condition of lymphedema which remains

unresolved at 4 months after lymph node removal, and allows

for feasibility to evaluate a range of surgical and microsurgical

treatments with the portable equipment that surgeons routinely

use in clinical setting (i.e., prescription magnifying glasses, NIR

camera). A modification of this model omitting the irradiation

resulted in lowering incidence of lymphedema by 46.7% (28).

The key step in the generation of the lymphedema condition,

and its long-term maintenance is the meticulous excision of the

lymph nodes and surrounding lymphatic vessels at the time of

induction surgery. Failure to excise surrounding lymphatics may

preclude development of lymphedema. Post-operatively, it is

critical to monitor the animals daily after the surgery to prevent

them from interfering with the wound. It is important to apply

irradiation procedure once the wounds are healed to prevent the

dehiscence later.

We use adult female Sprague-Dawley rats (300 g) since the

primary goal of the model is to provide a condition that

simulates lymphedema condition in women. Sprague-Dawley are

outbred rats widely used to develop animal models of multiple

human conditions (35). The fact that using a genetically

heterogeneous outbred rodents in the development of animal

models of human disease may introduce variation in disease

manifestation as well as response to therapeutic intervention may

be considered either as an advantage since these aspects are

characteristic to human population as well, or a disadvantage if

the variations are overwhelming.

The described lymphedema model in rat hindlimb causes an

increase in limb volume that is not resolved spontaneously up to

4 months from the induction of lymphedema. This timeframe

provides an opportunity to evaluate translationally relevant
Frontiers in Cardiovascular Medicine 08
treatment modalities including VLNT, LVA, medical devices, cell

therapy, and their combinations. To date, we are aware of only

two medical devices that have been evaluated using this model

and proceeded to the clinical studies. The first medical device is

BioBridge (Fibralign Corp, CA), which has demonstrated the

improvement or prevention of lymphedema in a rat model, as

well as shown efficacy as an adjunct treatment in pilot clinical

studies (27, 29), and is undergoing clinical trial for using in

conjunction with VLNT (NCT04606030). The second device is a

lymph drainage device (LymphoDrain, Lymphatica Medtech SA)

that is based on mechanical pumping of excess lymph out of an

affected area, which showed a decrease in limb volume in this rat

model (26) and is currently undergoing a pilot clinical study

(NCT04858230). The BioBridge is scaffold is expected to

biodegrade within one year after implantation.

Employing the described model can potentially be extended

to other biomaterial devices or scaffolds that have been shown to

induce and support lymphangiogenesis (36). Devices designed

to repair interrupted lymphatic drainage are usually intended to

work as a three-dimensional template for cellular proliferation,

matrix deposition, and structural organization with the ultimate

goal of restoration of functional lymphatic channels (36). They

include scaffolds made from biodegradable biopolymers (i.e.,

polyglycolic acid, fibrin, collagen) with specific biochemical and

topographic features or matrices obtained by decellularization of

materials produced from donor or cadaver tissue, which have the

native tissue microarchitecture conserved. Decellularized scaffold

formats were demonstrated to support lymphatic vessel growth,

both alone (37) and in combination with cellular components

(38, 39). All of the above can be evaluated in the current model,

provided their dimensions are tailored to fit the missing

lymphatic routes. Lymphangiogenesis can also be stimulated by

other bioengineering constructs such as cell-only constructs or

sheets (40) or silicone microgroove templates (25). If scaled up,

these materials can be potentially evaluated in the current

lymphedema model.
Conclusion

The described hindlimb rat lymphedema model has been

successfully used for verification and optimization of medical

devices. It combines the benefits of clinical similarity (precise

volume estimate, clear threshold of lymphedema diagnostics of

5% in excess volume, and comparable ICG imaging pattern) with

high lymphedema incidence rate of about 80% and verified

disease window of about 4 months.
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