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Improvement of a prediction
model for heart failure survival
through explainable artificial
intelligence
Pedro A. Moreno-Sánchez*

Faculty of Medicine and Health Technology, Tampere University, Seinäjoki, Finland

Cardiovascular diseases and their associated disorder of heart failure (HF) are major
causes of death globally, making it a priority for doctors to detect and predict their
onset and medical consequences. Artificial Intelligence (AI) allows doctors to
discover clinical indicators and enhance their diagnoses and treatments.
Specifically, “eXplainable AI” (XAI) offers tools to improve the clinical prediction
models that experience poor interpretability of their results. This work presents an
explainability analysis and evaluation of two HF survival prediction models using a
dataset that includes 299 patients who have experienced HF. The first model
utilizes survival analysis, considering death events and time as target features,
while the second model approaches the problem as a classification task to
predict death. The model employs an optimization data workflow pipeline
capable of selecting the best machine learning algorithm as well as the optimal
collection of features. Moreover, different post hoc techniques have been used
for the explainability analysis of the model. The main contribution of this paper is
an explainability-driven approach to select the best HF survival prediction model
balancing prediction performance and explainability. Therefore, the most
balanced explainable prediction models are Survival Gradient Boosting model for
the survival analysis and Random Forest for the classification approach with a c-
index of 0.714 and balanced accuracy of 0.74 (std 0.03) respectively. The
selection of features by the SCI-XAI in the two models is similar where
“serum_creatinine”, “ejection_fraction”, and “sex” are selected in both approaches,
with the addition of “diabetes” for the survival analysis model. Moreover, the
application of post hoc XAI techniques also confirm common findings from both
approaches by placing the “serum_creatinine” as the most relevant feature for the
predicted outcome, followed by “ejection_fraction”. The explainable prediction
models for HF survival presented in this paper would improve the further
adoption of clinical prediction models by providing doctors with insights to better
understand the reasoning behind usually “black-box” AI clinical solutions and
make more reasonable and data-driven decisions.
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1. Introduction

Cardiovascular diseases (CVD) are the global leading cause of death and disability with

17 million dead people approximately per year (31% of the total deaths globally). In this

decade (2020–2030), an increase from 31.5% to 32.5% will result in 3.7 million additional

deaths worldwide (1). In the US, the direct and indirect medical costs are expected to
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triple by 2030 respectively from $273 billion to $818 billion, and

$172 billion to $276 billion. Therefore, it is crucial to develop

preventive strategies to reduce CVD progression as well as

minimizing the associated costs.

The term CVD involves different disorders of the heart and

circulatory system manifested in different pathologies such as

stroke, heart failure, or coronary heart disease. Heart Failure

(HF) contributes significantly to CVD morbidity and mortality,

as well as a large portion of related healthcare expenses (2). HF

occurs when the heart is unable to pump blood effectively to the

rest of the body and is accompanied by symptoms like shortness

of breath or weakness (3). HF is often a consequence of other

chronic diseases like diabetes or hypertension, as well as other

patient conditions such as obesity, drug abuse or smoking (2).

Globally, at least 26 million people are affected by HF, and

presents a high mortality rate (about 50% of HF patients will die

within 5 years) (4, 5). Given the vital importance of the heart for

a person’s life, the prediction of HF onset and its consequences

(e.g., mortality) has become a priority for doctors and healthcare

providers, not only due to its implications for patient health but

also because of the increased resources required for patient

follow-up (e.g., economic, humans resources, etc.). However,

despite this urgent need, the clinical practice has so far failed to

achieve high accuracy in these tasks (6).

As a result, modelling survival patients with HF remains

currently challenging concerning the early identification of

clinical factors associated with its mortality and achieving high

classification accuracy (7). Currently, angiography is considered

the most precise method for predicting CVD. However, its high

cost poses a barrier to access, particularly for low-income

families (8). In this context, the increasing availability of

electronic data implies an opportunity to democratize access to

prediction models for HF survival. Machine Learning (ML) and

Artificial Intelligence (AI) have emerged as promising tools in

healthcare, supporting clinicians in detecting disease patterns,

predicting risk situations for patients, and extracting clinical

knowledge from vast amount of data. Computer-aided diagnosis

systems, through ML algorithms implementation, offer a

diagnosis of complex health issues with good accuracy and

efficiency (9, 10). Therefore, ML is seen as a means to provide

healthcare professionals with appropriate solutions to discover

latent correlations between HF survival and clinical indicators

enabling early detection of those patients at risk.

Nevertheless, when the decisions made by computer-aided

diagnosis systems affect the patient’s life, their use in the clinical

routine is not straightforward. In the healthcare domain, clinicians

require far more information from the prediction models than a

simple binary decision. Therefore, providing explanations that

support the outputs of ML models is crucial to ensure their

adoption. The field of eXplainable Artificial Intelligence (XAI) has

emerged to address this requirement. XAI is defined as follows:

“Given an audience, an explainable Artificial Intelligence is one

that produces details or reasons to make its functioning clear or

easy to understand” (11). In the medical context, the lack of

explainability in certain prediction models needs be addressed, as

clinicians find it challenging to trust complex ML methods that
Frontiers in Cardiovascular Medicine 02
require high technical knowledge (12). Thus, XAI enables

healthcare experts to make more informed and data-driven

decisions, providing personalized and trustworthy treatments and

diagnoses (13). However, XAI is not a “one-size-fits-all” solution

because an inherent tension between accuracy and explainability

appears depending on ML models employed. Typically, the best-

performing models are more complex and less interpretable (e.g.,

ensemble trees or neural networks) and vice versa. Additionally,

despite the benefits XAI might bring to ease the path for clinical

adoption, ML models, especially in the healthcare domain, can

often be riddled with different issues related to ethics (fairness,

non-discrimination, accessibility) and regulation (accountability,

privacy, and data governance) that hinder their uptake by doctors

and healthcare professionals (14).

This paper aims to describe the development of two prediction

models for HF survival, achieving a balance between prediction

performance and explainability. The first model utilizes survival

analysis, considering death events and time as target features, while

the second model approaches the problem as a classification task

to predict death. In addition, the paper analyzes the influence of

the different clinical indicators on the prediction results by

applying explainability post hoc techniques to the model. To

develop the explainable prediction model, an optimization data

pipeline is used to select different model parameters such as the

ML algorithm for the survival analysis or classification problem,

and the selected features that indicate the best classification

performance. The study follows the standardized practices of

reporting prediction models in medicine by adopting the TRIPOD

statement guideline, which includes a 22-item checklist (15)

provided as Supplementary Material.

The remainder of this paper is structured as follows: Section 2

provides a review of related works that have developed an HF

survival prediction model with the same dataset used in this paper.

Section 3 describes the dataset, the different ML algorithms, feature

selection methods, metrics employed in this work, along with the

optimization pipeline employed to build the predictive model.

Section 4 presents the evaluation results in terms of prediction

performance of both approaches (survival analysis or classification

problem) and explainability, and the analysis of the importance of

features. In section 5, the obtained results are discussed. Finally,

Section 6 includes the conclusions drawn from the work.
2. Related works

The demand for tools that increase the accessibility of AI to

healthcare professionals is steadily growing, as AI solutions

usually require expert knowledge of ML algorithms (16). This

need is particularly crucial in precision medicine, where disease

diagnosis requires interpretable and transparent information (17).

XAI solutions, aimed at providing healthcare professionals with

prediction models’ global explanations, have been used for over a

decade. Transparent models such as logistic and linear

regression, naïve Bayes, decision tree, or k-nearest neighbors have

been employed in various clinical fields, including urology

(18, 19), cardiology (20), toxicology (18, 21), endocrinology (22),
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1219586
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Moreno-Sánchez 10.3389/fcvm.2023.1219586
neurology (23), psychiatry (24, 25), occupational diseases (26),

knee osteoarthritis (27), breast cancer (28), prostate cancer (29),

severity of Alzheimer’s disease (30), diabetes (31) and mortality

rates of CVDs such as myocardial infarction or perinatal stroke

(32, 33). Model-agnostic explainability solutions such as

SHAP (SHapley Additive exPlanations) or MUSE (Model

Understanding through Subspace Explanations) have been

applied to complex AI solutions based on deep learning to

diagnose depression (34), predict chronic kidney disease (35), or

detect acute intracranial hemorrhage in images (36).

HF outcome prediction is critical to accurately apply available

therapeutic options, ranging from pharmacologic to highly invasive

mechanical ventricular assistance and cardiac transplantation (37).

ML techniques can be valuable in early-stage risk prediction using

the variables derived from the complex and diverse EHR data of

patients. Several accurate methods, such as the ADHERE model

(38) and the Seattle Heart Failure Model (39), have been

developed in the last decade to estimate the risk of death for

patients with HF. However, these models were unintuitive and

relied on extensive medical records, making them challenging to

apply in a clinical setting (40). Other studies have been

developed to classify CVD diseases and to accurately predict

abnormalities in the heart or its functioning (41–43). Various

ML algorithms have been employed in CVD prediction models,

including Support Vector Machines, Logistic Regression,

Artificial Neural Networks, Random Forest, Decision Tree,

Ensemble Learning approaches, Deep Neural Networks, Fuzzy

experts system, or K-nearest Networks (44). However, modelling

survival heart failure is still lacking in terms of driving factors

identification, since existing models present limited

interpretability of their prediction variables (45, 46). Another
TABLE 1 Classification results of related works and ML classifiers (best ones

Author Acc.
(Bal Acc)

Sens. Spec. Prec. F1 #Feat

Kumar et al. (54) 0.96 0.93 – 0.95 0.94 5b Rando
K-Nea

Kaddour (7)a 0.90 (0.91) 0.93 0.90 – – 4 FeedF

Ishaq et al. (44)a 0.88 0.89 – 0.89 0.89 12b Rando
Vecto

Sandhu et al. (55) 0.88 0.83 – 0.81 0.84 12b Bayesi
Vecto

Kucukakcali et al. (56) 0.87 (0.82) 0.69 0.95 – 0.77 12b Associ

Rahayu et al. (57) 0.83 – – – – 12b Rando
Neura

Srujana et al. (58) 0.85 – – – – 3b Rando

Özbay et al. (59) 0.84 – – – – –b Logist
Trees,

Chicco and Jurman (60) 0.84 0.78 0.86 0.72 3b Rando

Gürfidan and Ersoy (61) 0.83 – – – – 12b Suppo
Discri

Muntasir et al. (62) 0.83 0.86 – 0.90 0.88 12b Decisi
Neigh

Wilstup and Cave (40) 0.82 – – – – 3b Cox m

Khan et al. (63) 0.81 0.82 0.74 – – 5 Suppo

Taj et al. (64) 0.72 – – – – 7b Fuzzy

Acc, accuracy; Bal Acc, Balanced Accuracy; Sens, Sensitivity; Spec, Specificity; F1, f1-sc
aStudies that perform the best classifier over unseen new data.
bTime is considered as a feature.
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issue observed in the literature is the lack of consensus regarding

the relevance of HF indicators, as studies employ different

datasets that affect the models’ reliability to be deployed in

clinical routine (37, 47). Consequently, partial approaches tackle

the model’s effectiveness through cohorts with specific types of

patients (e.g., elderly o diabetic) (48, 49), although their models

developed have not achieved optimal performance (50, 51).

Therefore, to ensure an objective comparison with other HF

prediction models, it is essential to maintain homogeneity

regarding the dataset. The dataset released by Ahmad et al. (52)

in the UCI public repository (53) allows for benchmarking the

other authors’ prediction models. Table 1 shows the most recent

studies that employ Ahmad’s dataset to build a prediction model

for HF survival. However, the different works reviewed reflect

two approaches in the built of the survival prediction model, i.e.,

through a classical classification machine learning problem where

the target feature is the event of death, or through a survival

analysis where the relation between the event of death and the

censored time is analyzed. The reviewed works that tackled the

prediction as a classification problem, which is the major option

among the reviewed works, are sorted in a descendant order of

accuracy (Acc.), and additional information for each study is

expressed such as Sensitivity (Sens.), Specificity (Spec.), f1-score

(F1), and Precision (Prec.); the number of features (#Feat.) after

applying feature selection; and the Machine Learning (ML)

technique. The comparison table also indicates if the studies

consider the feature “time” in their modeling since we have

detected that some studies leave “time” out of their datasets.

It should be noted that since the dataset is imbalanced in its

target feature, some works consider also balanced accuracy in their

metrics. In addition, there are other works that address the
in italic).

ML classifiers

m Forest, XGBoost, Decision Tree, Logistic Regression, Support Vector Machine,
rest Neighbour, Gradient Boosting, Stochastic Gradient Descent, Gaussian Naïve Bayes

orward Neural Network, Deep Neural Network

m Forest, XGBoost, Decision Tree, AdaBoost, Extra Trees, Logistic Regression, Support
r Machine, Gradient Boosting, Stochastic Gradient Descent, Gaussian Naïve Bayes

an generalized linear model, Artificial Neural Network, Bagged CART, Support
r Machine, Random Forest, Decision Tree

ative Classification

m Forest, Decision Tree, K-Nearest Neighbour, Support Vector Machine, Artificial
l Network, Naïve Bayes

m Forest.

ic Regression, Naïve Bayes, Support Vector Machine, K-Nearest Neighbour, Bagged
Boosted Trees, Multilayer NN

m Forest, Gradient Boosting, Support Vector Machine with radial kernel

rt Vector Machines, Logistic Regression, Decision Tree, K-Nearest Neighbour, Linear
minant Analysis, Gaussian Naïve Bayes

on Tree, Logistic Regression, Gaussian Naïve Bayes, Random Forest, K-Nearest
bour, Support Vector Machine

odels plus symbolic regression

rt Vector Machine (Kernel Linear, Radial Basis Function, Cubic and Quadratic)

Preti nets plus Rough Set Theory

ore; Prec, Precision; the number of features for modelling excluding target (#Feat.).
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imbalance by applying auxiliary techniques such as SMOTE (65, 66)

to equalize the number of instances in the target feature. However, as

we have not applied such techniques, we have not included the

results of these works in the table to avoid any misunderstanding

in the comparison. Additionally, the application of these

techniques, while improving the performance of the model in

controlled environment, does not reflect the true population where

the distribution of the classes in the target feature is unequal,

implying a risk of overfitting and bias that lead to misclassification

when the model is applied in a real-world setting.
3. Material and methods

3.1. Heart failure survival dataset

The dataset employed in this paper, released by Ahmad et al.

(52), consist of the medical records of 299 patients (194 men and

105 women) who suffered an HF episode. The dataset was

collected from April to December 2015 at the Faisalabad Institute

of Cardiology and at the University Allied Hospital in Faisalabad

(Punjab, Pakistan). Pakistan is among the countries where

prevalence of CHD is increasing significantly reaching about

200,000 per year, i.e., 410/100,000 of the population.

Additionally, this region is characterized by lack of exercise, poor

health care policies, and poor and oily diet which are different

from other of South Asia like India, Bangladesh, Nepal and Sri

Lank. Faisalabad, specifically, is the country’s third most

populous city making obtained the result potentially

representative of the urban population of Pakistan.

The dataset comprises 7 numerical and 5 categorical or

nominal features along with one binary target feature (“death

event”). This dataset presents an imbalance concerning its target

feature since 203 out of the 299 instances belong to patients who

survived HF (“death event” = 0), and the remaining 96 instances

represent deceased patients (“death event” = 1). All instances of

the dataset are entirely complete with no missing values in any

of their features. The dataset description is presented in Table 2.
TABLE 2 Dataset’s features description.

Id Feature (units) Range (mean ± std)/
binary values (number of

instances per class)
1 Age (years) 40–95 (60.83 ± 11.89)

2 Anaemia (boolean) 0 (170) or 1 (129)

3 High Blood Pressure (boolean) 0 (194) or 1 (105)

4 Creatinine phosphokinase-CPK (mcg/L) 23–7,861 (581.83 ± 970.29)

5 Diabetes (boolean) 0 (174) or 1 (125)

6 Ejection fraction (percentage) 14–80 (38.08 ± 11.83)

7 Sex (boolean) 0 (194-Men) or 1 (105-Women)

8 Platelets (kiloplatelets/ml) 25,100–8,50,000
(2,63,358.03 ± 97,804.23)

9 Serum creatinine (mg/dl) 0.50–9.40 (1.39 ± 1.03)

10 Serum sodium (mEq/L) 113–148 (136.62 ± 4.41)

11 Smoking (boolean) 0 (203) or 1 (96)

12 Time-Follow up period (days) 4–285 (130.26 ± 77.61)

13 [Target] Death event (boolean) 0 (203) or 1 (96)
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An exploratory data analysis over the numerical variables

reveals that the features creatinine_phosphokinase,

ejection_fraction, platelets, serum_creatinine, and serum_sodium

presents outliers in their values distribution according to a

greater distance than 1.5 IQR from the 3rd quartile (see

Supplementary Figure S1). Due to the low number of instances

in the dataset (299), removing the instances that contain outliers

might be detrimental for the model performance. Therefore, we

adopt the winsorization at percentiles strategy, which involves

replacing the extreme values beyond a certain percentile with the

nearest value within that percentile. In this case, we set an upper

limit of 90, which only affects the feature creatinine_

phosphokinase due to its outlier distribution. Consequently, the

statistical summary (range, mean ± std) of its values becomes

23–1,203 (416.77 ± 369.20).

Another aspect derived from the features in the dataset is the

relation between the feature “time” and the target feature

“death”. The target feature indicates whether the patient died

during the follow-up period, while the feature “time” represents

the number of days until the ocurrence of death or, in the case

of surviving patients, the censored time according to the duration

in days of the follow up. Consequently, if the prediction model is

addressed as a classification machine learning model the feature

“time” could be considered a surrogate variable for the target

feature. Additionally, both features present a significant

correlation (0.53) as Supplementary Figure S2 shows. Therefore,

excluding the feature “time” from the model development in the

classification problem might be recommended. However, most of

the related works considered in our analysis did not account for

this surrogate phenomenon and include “time” as a feature in

their modeling. With the aim of comparing our proposed

optimization pipeline which balances interpretability and

prediction performance, we address both approaches found in

the literature (survival analysis and classification problem).

Subsequently, the optimal models obtained are analyzed trough

an explainable perspective.
3.2. Ensemble tree algorithms

Ensemble trees techniques, by weighting and combining

various models generated from a base decision tree, typically

offer reasonably good accuracy in classification tasks and are

commonly used in different research fields such as health,

economy, biology, and more (67). These ensemble methods not

only outperform the weak base classifier but also help mitigate

challenges such as class imbalance or the curse of dimensionality

(67). However, due to the lack of explainability capabilities,

ensemble trees might be avoided by professionals who needs to

interpret the predictions. Consequently, post hoc explainability

techniques are needed to interpret the black-box behavior of

ensemble trees. The different ensemble trees algorithms

employed in this work are described as follows:

• Random Forests: Random Forest is one of the most widely used

ensemble tree methods due to its good predictive performance
frontiersin.org
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and the capability to handle datasets of different sizes. To train

its base classifier (decision tree), Random Forest employs the

bagging method, which selects a random group of features at

each splitting in its nodes (67).

• Extreme Randomized Trees (Extra Trees): Extra Trees is another

ensemble method that improves the accuracy of tree-based

bagging classifiers by selecting random cut-points in the node

splitting process and using the entire training dataset for all

the base classifier trees. This method is similar to Random

Forest, but it introduces additional randomness in the node

splitting process, resulting in a more diverse set of trees. This

additional randomness can help to reduce overfitting and

improve generalization performance (68).

• Adaptive Boosting (AdaBoost): AdaBoost is a boosting ensemble

method that focuses on training the model on misclassified

instances, which receive modified weights over successive

iterations. The base classifiers also receive weights based on

their performance, which influence the classification output of

a new instance. This technique results in a strong classifier

that combines the output of multiple weak classifiers (67).

• Gradient Boosting: Gradient boosting trains their base classifier

over the residual errors from the precedent classifiers, hence,

reducing the classification error. The overall classification

result is obtained through a weighted average of all base

classifiers’ results (69).

• eXtreme Gradient Boosting (XGBoost): XGBoost applies several

optimizations and regularization processes to the gradient

boosting algorithm in order to increase the speed and

performance as well as make the algorithm simpler and more

generative (66).

3.3. Machine learning algorithms for survival
analysis

Currently, there is a growing number of ML algorithms for

survival analysis that provides data scientists with alternatives to

the regular survival techniques such as Kaplan-Meier curves and

Cox proportional hazard. In this work we consider several ML

techniques aimed for survival analysis that are available in the

python library scikit-survival (70).

- Cox proportional hazard (CPH) is a semiparametric technique

used to determine the influence of a specific set of covariates

(also known as features) on the risk or hazard of an event,

such as death in our context. It calculates the hazard for a

patient based on a combination of the population’s baseline

hazard (which varies over time) and the patient’s static

predictor covariates, each multiplied by their respective

coefficients. In this work, we also considered penalization

mechanisms such as Elastic Net, which is recommended for

addressing situation with high-multidimensionality and high

correlation (71).

- Random Survival Forest (RSF) is an extension of the random

forest method that can capture complex relationships between

the predictors and survival without requiring prior

specification. RSF can handle multiple features, noise features,
Frontiers in Cardiovascular Medicine 05
as well as complex, nonlinear relationships between features

without the need for prior specification. The algorithm builds

survival trees by recursively partitioning the feature space

using binary splits to form groups of subjects who are similar

according to the survival outcome (72).

- Extra Survival Trees is an extension of the Extremely

Randomized Trees that consider censoring and is used to

model the relationship between the survival time and a set of

features. It is a non-parametric method that recursively

partitions the data into homogeneous subgroups based on the

features. The resulting tree is used to predict the survival time

of new observations (73).

- Gradient Boosted Models (GBMs) for survival analysis is an

extension of the Gradient Boosted Trees models. GBMs are

constructed sequentially in a greedy stagewise fashion, and the

base learners are regression trees that try to minimize a loss

function that depends on the problem (71).

- Survival support vector machines (SSVMs) are an extension of

the standard SVM and aim to find a hyperplane that separates

the data into two groups: those that have experienced the

event of interest and those that have not. The hyperplane is

found by maximizing the margin between the two groups (71).

3.4. Explainability techniques for ML

In terms of explainability, decision trees are considered as

“transparent” models due to their graphical structure and

decomposability, which provides a fully interpretable

functionality, making them suitable for domains such as

healthcare where understanding the outputs of ML models is

necessary. Conversely, ensemble trees and other ML models such

as SVM require the support of post hoc explainability techniques

since their classification decision is based on the combination of

multiple decision trees’ results. Post hoc explainability techniques

offer understandable information about how an already

developed model produces its predictions by employing common

methods that humans use to explain systems, such as visual,

local, or feature relevance explanations (11). These kinds of

techniques are also used in this research, and are described below.

- Feature Permutation Importance: Permutation feature

importance measures the increase in the prediction error of

the model after permuting a specific feature’s values (74). This

model-agnostic technique (non-dependent on the ML

algorithm to explain) indicates a feature as important if the

error increases by shuffling the feature’s values a specific

number of times. Vice versa, if the error does not change by

shuffling the feature’s values, the feature is “unimportant”.

- Partial Dependence Plot: Partial Dependence Plot (PDP) is a post

hoc explainability technique that provides a visual explanation

by showing the marginal effect of a given feature on the

predicted outcome (75). The concept of marginal effect

indicates how a dependent variable changes when a specific

independent variable changes its values, while keeping other

covariates constant. Therefore, PDP can be used as a model-

agnostic method for global explainability to determine the
frontiersin.org
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TABLE 3 Classification and explainability metrics formulas.

Ensemble trees algorithm Description

Accuracy
(TP þ TN)

(TP þ TN þ FP þ FN)
(1)

Sensitivity/Recall TP
(TP þ FN)

(2)

Specificity TN
(TN þ FP)

(3)

Balanced accuracy Sensivity þ Specificity
2

(4)

Precision TP
(TP þ FP)

(5)

F1-Score 2� Precision � Sensivity
Precisionþ Sensivity

(6)

Interpretability (I) masked features
total input features

(7)

Interpretability-accuracy index (IAI) I �Acc (9)
Interpretability-concordance index (ICI) I �Cindex (9)

(TN as true negative, FN as false negative, FP as false positive, and TP as true

positive)

Moreno-Sánchez 10.3389/fcvm.2023.1219586
average effect of a feature over a range of different observed

values. For classification tasks, such as the one performed in

this study, PDP displays the probability (average and

confidence interval) for a certain class as a function of the

feature value. PDP also offers a multivariate option, where, for

instance, the marginal effect of two features can be analyzed

over the output probability.

- Shapley Values: The Shapley Additive exPlanations (SHAP)

technique is a model-agnostic method that combines

explanations by example with feature relevance. The technique

computes an additive feature importance score for each

individual prediction with local accuracy and consistency (76).

SHAP computes the contribution of each feature to the

predicted outcome/class by applying coalitional game theory

(77). In classification tasks, the SHAP technique computes a

signed importance score that indicates the weight of a feature

towards the predicted outcome as well as its direction, where

positive values increase the probability of class 1 and negative

ones decrease such probability. In addition, SHAP can also be

applied for survival analysis by using the library SurvSHAP

(78) which can discover patterns in the predicted survival

curves that would identify significantly different survival

behaviors, and utilizing a proxy model and SHAP method to

explain these distinct survival behaviors.

3.5. Feature selection

Feature selection cannot be considered as a specific

explainability technique; however, it can enhance model

explainability since when performed during the data

preprocessing phase, those unimportant features that bring non-

relevant information to the classification are removed. Feature

selection also allows decreasing overfitting in models’ prediction

and reducing computing time. Moreover, searching for a relevant

features subset involves finding those features that are highly

correlated with the target feature, but uncorrelated with each

other (79).

Generally, there are three types of feature selection methods:

filters methods where intrinsic properties of data justify the

inclusion of an attribute or a subset of attributes; wrappers

methods, which are similar to filters but utilize a classification

algorithm; and embedded methods that combine filter and

wrapper to achieve a better classification performance.

Concerning filter methods, different techniques are applied

depending on the data type of the features and the target

variable (80). For instance, ANOVA correlation coefficients are

used in the case of numerical input and categorical output, and

Chi-Squared test when both categorical input and output occur.

Mutual information is another filter method applied when the

output variable is categorical but does not depend on the input

data type. As regards wrapper methods, one of the most

frequently employed is Recursive Feature Elimination (RFE) that

use an estimator, like logistic regression, to reduce recursively the

features in a dataset by discarding those features with the

smallest weights during recursive iterations. These four methods

have been considered in this research.
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3.6. Performance metrics

This paper considers different metrics to evaluate the

performance of the prediction model when tackling the

prediction of the death event as a classification problem or as a

survival analysis, as well as its explainability. Table 3 summarize

the formulas of some these metrics.

Accuracy measures the rate of true predictions in all

classifications made with a dataset and it is a recommended

metric for dealing with balanced datasets. However, the dataset

used in this work is not balanced in its target feature, thus, the

accuracy metric can give a wrong idea about the model’s

classification performance. Thus, the balanced accuracy gives a

better insight since it accounts for the imbalance in classes. The

rest of the metrics considered are especially useful when

evaluating a classification model within the healthcare domain

where false positive and false negative are important (18).

For survival analysis problems, the most commonly used

metrics is the concordance index (C-index), which measures the

rank correlation between predicted risk scores and observed time

points. It calculates the ratio of correctly ordered (concordant)

pairs to comparable pairs. The C-index ranges from 0 to 1,

where a value of 1 indicates perfect concordance between risks

and event times, a value of 0 indicates perfect anti-concordance

between risks and event times, and a value of 0.5 indicates

random assignment (81). However, C-index can be overly

optimistic with increasing censoring, and it may not be useful

when a specific time range is of primary interest (e.g., predicting

death within 2 years). o address these limitations, the C-index

based on inverse probability of censoring weights (C-index

IPCW) is employed. The C-index IPCW is unbiased and

consistent, as it does not depend on the distribution of censoring

times and provides a population concordance measure free of

censoring. In addition, when extending the receiver operating

characteristics (ROC) curve to continuous outcomes, such as

survival time, a patient’s disease status is typically not fixed and

changes over time, thus, the sensitivity and specificity become
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time-dependent measures. In this work, we consider cumulative

cases (individuals who experienced an event prior to or at time t)

and dynamic controls (those without event at time t yet) at a

given time point. o address these limitations, the C-index based

on inverse probability of censoring weights (C-index IPCW) is

employed. The C-index IPCW is unbiased and consistent, as it

does not depend on the distribution of censoring times and

provides a population concordance measure free of censoring.

Additionally, as one of the goal of this work is to identify the

most balance prediction model in terms of explainability and

prediction performance, specific metrics for explainability are

needed, such as Interpretability which is proposed by Tagaris et al.

(82). The interpretability of the model, I (model), is defined as the

percentage of masked features that do not bring information to

the final prediction result, divided by the total number of features

of the dataset. The Interpretability-Accuracy Index is a metric

used to identify the model that achieves the best balance between

accuracy and interpretability. It serves as a measure to assess the

trade-off between the two factors and determine the optimal

model. In addition, to quantify the balance between

interpretability and survival prediction, we introduce the

Interpretability-Concordance index. This index evaluates how well

a model performs in terms of predicting survival outcomes while

taking into account its level of interpretability. It provides a

measure of the model’s ability to strike a balance between accurate

predictions and the ability to explain its reasoning. These indices

are valuable tools in evaluating and selecting models that not only

deliver accurate predictions but also provide interpretable insights,

thus aiding in decision-making processes in various domains.
FIGURE 1

SCI-XAI data workflow optimization pipeline.
3.7. Data workflow optimization pipeline

To develop the explainable prediction model for HF survival, we

used the automated data workflow pipeline named SCI-XAI

published in (83).1 As shown in Figure 1, the SCI-XAI pipeline

utilizes the GridSearchCV module of python scikit-learn package

(84) which applies a brute force algorithm to find the optimal

combination of classification ensemble tree technique or survival

machine learning techniques, the number of features selected, and

of feature selection method in terms of classification performance.

As a first step, the original dataset is divided into two sub-

datasets: a training set with 280 instances and a test set with and

120 instances. A split ratio of 70/30 is adopted with a stratification

approach that ensures the same proportion of the target feature

(“Death_event”) in both sets. This initial split is intended for

building the prediction model exclusively using the train set’s

instances. Subsequently, the model’s performance is evaluated using

unseen new data stored in the test set. This approach prevents any

influence of the test set instances o feature selection and classifier
1The source code of this work can be found in https://github.com/

petmoreno/Heart_Failure_Predictor.
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training modules. The data preprocessing phase encompasses

modules such as data missing imputation, normalization (in case of

numerical features), encoding (for nominal and ordinal features),

and finally the feature selection. This data preprocessing module

handles features depending on their type (numerical, nominal and

ordinal). The modelling or training phase is carried out using a

5-fold cross-validation approach to fit different types of

classification ensemble tree technique or survival machine learning

techniques on the training data to identify the best model, which is

subsequently evaluated in terms of classification and explainability.

It is important to note that data imputation module is not applied

in this work, since the dataset used does not contain any missing data.
4. Results

4.1. Classification performance

The results obtained from applying different ensemble tree

learning algorithms in the 5-fold cross-validation training module

are presented in Table 4 along with the number of nominal and
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TABLE 4 Classification results of the training set (cross-validation approach) and test set with new unseen data.

Classifier Training set (cross-validation approach) Test set (new unseen data)

Acc. BAcc Sens. Spec. Prec. F1 #F Acc. BAcc Sens. Spec. Prec. F1
Random Forests 0.78 (0.02) 0.74 (0.03) 0.64 (0.09) 0.84 (0.05) 0.66 (0.06) 0.65 (0.05) 2(N), 1(C) 0.75 0.71 0.58 0.83 0.62 0.60

Extra Trees 0.76 (0.04) 0.72 (0.03) 0.61 (0.07) 0.83 (0.08) 0.66 (0.10) 0.63 (0.04) 3(N), 1(C) 0.74 0.70 0.59 0.81 0.61 0.59

AdaBoost 0.73 (0.06) 0.69 (0.05) 0.50 (0.06) 0.88 (0.05) 0.68 (0.09) 0.57 (0.06) 3(N), 1(C) 0.73 0.64 0.48 0.85 0.60 0.54

Gradient Boosting 0.76 (0.04) 0.71 (0.05) 0.59 (0.11) 0.84 (0.04) 0.63 (0.04) 0.60 (0.07) 3(N), 1(C) 0.72 0.64 0.41 0.87 0.60 0.49

XGBoost 0.77 (0.04) 0.73 (0.05) 0.65 (0.11) 0.82 (0.07) 0.65 (0.09) 0.64 (0.06) 3(N), 2(C) 0.74 0.69 0.55 0.83 0.61 0.58

Acc, accuracy; Bacc, balanced accuracy; Sens, sensitivity; Spec, specificity; Prec, precision; F1, F1-score; #F, number of features; N, numerical; C, categorical. The results

indicates mean and standard deviation in parenthesis.
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categorical features selected. The Table 4 displays the best

performance of each classifier that intrinsically selects a group of

features by using the SCI-XAI framework. The classifier with best

classification performance in the cross-validation in terms of

balanced accuracy is Random Forest (mean: 0.74, std: 0.03),

followed by XGBoost (mean: 0.73, std: 0.07) and Extra Tree (mean:

0.72, std: 0.03). Finally, the optimal classifier is applied to new

unseen data, and the results are also shown in Table 4. The

Random Forest classifier achieves the highest classification results,

with a balanced accuracy value of 0.71.
4.2. Feature selection

The SCI-XAI pipeline not only identifies the best performance

for each classifier but also determines the optimal number of

features that contribute to that performance. Acc: Accuracy,

Bacc: Balanced accuracy, Sens: Sensitivity, Spec: Specificity, Prec:

Precision, F1: F1-Score, #F: Number of features. (N): Numerical,

(C): Categorical. The results indicates mean and standard

deviation in parenthesis.

Table 5 shows the number of selected numerical and categorical

features, along with their names and the techniques employed for
TABLE 5 Numerical and nominal features selected (# feats: number of
features).

Classifier #
Feats

Numerical features
(select method)

#
Feats

Categorical
features (select

method)
Random
Forests

2 “ejection_fraction”,
“serum_creatinine”
(ANOVA)

1 “sex” (mut-inf)

Extra Trees 3 “ejection_fraction”,
“serum_creatinine”,
“serum_sodium”

(ANOVA)

1 “sex” (mut-inf)

AdaBoost 3 “ejection_fraction”,
“serum_creatinine”,
“serum_sodium” (mut-
inf)

1 “anaemia” (chi-
squared)

Gradient
Boosting

3 “ejection_fraction”,
“serum_creatinine”,
“serum_sodium”

(ANOVA)

1 “sex” (mut-inf)

XGBoost 3 “ejection_fraction”,
“serum_creatinine”,
“serum_sodium”

(ANOVA)

2 “sex”, “anaemia”
(mut-inf)
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feature selection, i.e., ANOVA, chi-squared, Mutual information

(mut-inf), or recursive feature elimination (RFE). Among the

classifiers, the lowest number of features is obtained with Random

Forest where two numerical features are selected by ANOVA

namely “ejection_fraction”, and “serum_creatinine” and only one

categorical feature “sex” is selected by the mutual information method.
4.3. Explainability performance

When determining the best combination of relevant features

for each classifier, it is also possible to evaluate the explainability.

The results of these metrics can be found in Table 6, which

shows that all of the techniques considered in the SCI-XAI

pipeline reduce the number of training features by more than

50%. Considering IAI as the metric that gives a balanced

measure between interpretability and accuracy, prediction model

built by Random Forest with an IAI value of 0.56 can be

denoted as the most balanced model among those evaluated in

terms of explainability and classification accuracy. Therefore, the

prediction model built with Random Forest and its group of

selected features (“serum_creatinine”, “ejection_fraction”, and

“sex”) is used for conducting the explainability analysis when

tackling the survival prediction as a classification problem.
4.4. Survival prediction model performance

The SCI-XAI methodology is applied to the previously

described algorithms, namely Cox-proportional hazard (with and

without the Elastic Net approach), Random Survival Forest, Extra

Survival Trees, Survival support vector machines, and gradient

boosted models for survival analysis. Table 7 illustrates the

optimal performance of each survival ML technique based on the

various considered metrics. The pipeline utilizes the c-index to
TABLE 6 Explainability metrics results.

Classifier Interpretability IAI
Random Forests 0.73 0.56

Extra Trees 0.64 0.48

AdaBoost 0.64 0.47

Gradient Boosting 0.64 0.48

XGBoost 0.55 0.42
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TABLE 7 Survival performance results with training set (cross-validation approach) and test set (new unseen data) with feature selection.

Classifier c-Index #F c-Index c-Index IPWC AUCD_ROC. ICI
Cox proportional hazard 0.700 (0.048) 5(N), 4(C) 0.658 0.670 0.669 0.175

Cox proportional hazard IPCW 0.704 (0.051) 2(N), 5(C) 0.647 0.646 0.654 0.293

Random survival forest 0.706 (0.035) 4(N), 4(C) 0.675 0.723 0.684 0.235

Extra survival trees 0.696 (0.054) 4(N), 1(C) 0.657 0.704 0.666 0.406

Survival support vector machine 0.698 (0.057) 3(N), 5(C) 0.638 0.631 0.649 0.233

Gradient boosting models 0.714 (0.013) 2(N), 5(C) 0.724 0.762 0.748 0.298

Gradient boosting models* 0.714 (0.018) 2(N), 2(C) 0.711 0.754 0.733 0.476

C-index, concordance index; C-index IPCW, concordance index inverse probability of censoring weights; AUCD_ROC, area under the cumulative/dynamic ROC; ICI,

interpretability concordance index.

*Model extracted by manual inspection.
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identify the most effective combination of selected features for

optimal survival prediction. This combination is then evaluated

using the test set through metrics such as c-index, c-index

IPCW, and AUCD_ROC. The Interpretability Concordance

Index is also calculated to determine the model that strikes the

best balance between interpretability and prediction performance.

Based on the results, the Gradient Boosting models emerge as

the best algorithm, both when trained and tested. The SCI-XAI

output indicates that the optimal combination for the GBM

model comprises two numerical features and five nominal

features, resulting in a c-index of 0.714 (0.013) for the training

set and values of 0.724, 0.762, and 0.748 for c-index, c-index

IPCW, and AUCD-ROC respectively in the test set. However,

this model exhibits a low interpretability concordance index of

0.298. Consequently, a manual inspection of all combinations for

the GBM model is conducted to identify a more balanced model

in terms of interpretability and prediction performance. As a

result, it is discovered that the combination of two numerical

features and two categorical features maintains a c-index of 0.714

(mean) and 0.018 (std) in the training set, with slightly reduced

performance in the test set, yielding values of 0.711, 0.754, and

0.733 for c-index, c-index IPCW, and AUCD-ROC respectively.

Significantly, the interpretability concordance index (ICI)

improves to 0.476, indicating that this is the most balanced

model produced by the SCI-XAI. The selected features for this

model include “ejection_fraction”, “serum_creatinine”, “diabetes”,

and “sex”.
4.5. Explainability analysis of the
classification prediction model

As for the explainability assessment of the ensemble trees

algorithms considered in this work, the HF survival prediction

model built with the Random Forest classifier demonstrates the

most balanced model in terms of explainability and accuracy.

Therefore, in this subsection, the relevance of the following

features “sex”, “ejection_fraction” and “serum_creatinine”, is

analyzed to show their influence in the prediction task. As

following, different post hoc explainability techniques are

implemented on the selected prediction model.

Figure 2 demonstrates that permuting the values of the

“serum_creatinine” feature results in the largest increase in
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prediction error, as compared to the other features. Therefore,

the feature permutation technique identifies “serum_creatinine”

(mean: 0.248, std: 0.026) as the most relevant feature, followed

by “ejection_fraction” (mean: 0.194, std: 0.016), and “sex” (mean:

0.045, std: 0.010) in decreasing order of importance.

The PDP post hoc visual explanation provides insights into the

trend of marginal effect or the direction of influence between the

target feature and the distribution values of the features selected in

the model: “ejection_fraction” (Figure 3. top), “serum_creatinine”

(Figure 3. middle), and “sex” (Figure 3. bottom). By exploring the

PDP curve, experts can identify specific values at which the

marginal effect curve changes, enabling them to establish certain

thresholds, intervals or trigger values that affect the prediction

probability. In addition, negatives values of the curve manifest an

inverse influence (negative probability) on the target outcome and

vice versa. Regarding “ejection_fraction”, its influence remains

below 0 for every value of their distributions exhibits a moderate

negative slope for values between 0% and 35%, which continuing

monotonic between 35% and 39%, to drop down to −0.6 at 40%.

Between 40% and 60% the marginal effect increases slightly up to

0.5. The feature “serum_creatinine” presents a varied distribution

accross its values, where a threshold point at 1.45 mg/dl

distinguishes between positive and negative contribution to the

prediction of death. Values below 1.45 mg/dl result in a reduced

marginal effect on the probability of death, having in the value

0.8 mg/dl the largest negative contribution of −0.3. Conversely, for
values above the threshold, a quadratic increase can be observed,

with a contribution of 0.5 at a value of 1.85 mg/dl. In the case of

“sex”, the PDP plot does not show a significant effect neither for

male or female subjects.

By using the SHAP library (77, 85), the Shapley values

technique can be applied to analyze global explainability for a

specific classifier, in this case, Random forest. SHAP allows

depicting the influence for the prediction of each of feature’s

values contained in the dataset. Figure 4 shows the importance

of each feature represented by the width of the dots groups, as

well as showing the positive or negative influence according to

the features’ values (red: high values, blue: low values). This

overall plot provides insights into the influence of the model,

aligning with the findings from the other XAI techniques.

Specifically, it shows that feature “serum_creatinine” has the

most significant contribution, as indicated by the width of its

dots ranging from −0.35 to 0.65, where high values of the feature
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1219586
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 2

Feature permutation importance distribution.
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correspond with positive prediction of death while low values have

small and even negative influence in the prediction. In the case of

“ejection_fraction” is slightly less relevant than “serum_creatinine”,

and low values are associated with positive contribution to death,

while high values have a negative impact. On the other hand, the

feature “sex” has the least contribution compared to

“ejection_fraction” and “serum_creatinine” and there is no clear

difference in the prediction contribution according to its values

(male/female).
4.6. Explainability analysis of the survival
analysis model

Similarly to the prediction model as a classification problem,

the explainability of the survival model can also be analyzed

using SHAP. The SurvSHAP library enables the generation of

plots illustrating the global explainability of the different

features considered, expressed either in absolute values

(Figure 5) or according to the features’ values (Figure 6). In

this analysis, “serum_creatinine” emerges as the most relevant

feature for survival prediction, while “ejection_fraction”

exhibits significantly less relevance, accounting for less than

half of the importance. As for the categorical features “sex”

and “diabetes,” their contribution to the survival prediction is

deemed negligible. By considering the values of these features,

Figure 6 displays high values of “serum_creatinine” positively
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contribute to the prediction of the event (death) in the

survival analysis, while low values can be associated with a

negative contribution to the event occurrence. Regarding

“ejection_fraction”, high values are associated with slightly

negative contribution to the death prediction, while low values

positively influence the prediction of death. On the other

hand, “sex” and “diabetes” does not present a substantial

dispersion of their value dots that can be associated for any

direction of the dead prediction.
5. Discussion

Due to the importance of CVD in the current global context of

chronic diseases increase, the prediction of their outcomes like

survival or disease onset by applying ML could has become a

priority for doctors to achieve early identification of those factors

related to the disease’s effects. Moreover, XAI represents an

advance to those prediction models by addressing clinicians’

understandability requirements on the decision made by the

models. XAI can also contribute to widening the prediction

models’ adoption in clinical practice since the professionals are

enabled to make more reasonable and data-driven decisions.

With more explainable clinical prediction models, doctors could

focus on controlling those underlying features or indicators, and

trying to reverse the worsening condition of patients who has

suffered from HF in this case.
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FIGURE 3

Individual PDP of the features selected: ejection fraction (top), serum creatinine (middle), sex (bottom).
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This paper aims to describe a prediction model for HF survival

that facilitate the early detection of indicators leading to death

events. The prediction model has been developed through

two-fold approach. First, the problem is treated as a classification

problem, where the target is to predict the occurrence of the

death event without considering the time variable in the dataset.

Second, the problem is addressed as a survival analysis, where

the prediction aims to identify the event of death along with

the influence of time on the occurrence of the event. The

development of these models have consider not only on
Frontiers in Cardiovascular Medicine 11
high prediction performance but also on analyzing the

explainability of the results. This research contributes to enlarge

the works dedicated to HF survival prediction by using

ML through a novelty perspective, to the best of our knowledge,

that tackle the model’s explainability as a relevant part

of the overall approach either if the problem is treated as a

classification approach or a survival analysis. By employing post

hoc explainability techniques, this work support “opening” the

black-box paradigm of the ensemble trees classifiers employed in

clinical prediction models.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1219586
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 4

Global explanability of HF death prediction model by using SHAP.

FIGURE 5

Global explanability of HF survival analysis by using SurvSHAP.

FIGURE 6

Global explanability of HF survival analysis according to the values of the features selected by using SurvSHAP.
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The prediction model for HF survival has been developed using

a data management optimization pipeline that was previously

developed by the authors. This pipeline automates the data

preprocessing, modeling, and evaluation phases, allowing for the

automatic determination of various parameters such as the

optimal ML algorithm and relevant features selected. This

approach helps to find the optimal prediction model in terms of

prediction performance and interpretability, while improving its

efficiency and scalability. To ensure the model’s robustness in
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predicting new unseen data, the pipeline performs a double

evaluation of the model’s performance by initially splitting the

dataset for training and testing purposes.

The dataset employed for building the prediction model includes

the target outcome feature “death_event”, which indicates whether

the patient has died or not during the follow-up period after

experiencing a heart attack. Another feature in the dataset is

“time”, which represents the number of days of follow-up

undergone by the patient until a death event occurs or the patient
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ends the follow-up period (censoring). These two variables allow for

approaching the prediction problem as a typical survival analysis,

where the target features are the event to predict (death in our

case) and the time-to-event or censoring. Therefore, the SCI-XAI

pipeline have been implemented by considering various machine

learning algorithm dedicated to survival analysis, and a set of

metrics that allow for measuring the prediction performance of

the model, i.e., c-index, c-index ipcw and AUCD_ROC. The

pipeline was trained through a 5 fold cross-validation approach,

where the c-index was used as a metric to identify the best

combination of feature selection and the survival analysis

algorithm, including Cox proportional hazard, Cox proportional

hazard IPCW, Random Survival Forest, Extra Survival Trees,

Survival SVM, and Gradient Boosting Models. The results

obtained indicate that the Gradient Boosting model perform the

best in terms of prediction performance, with a mean c-index of

0.714 (std 0.013) during the cross-validation step. After evaluating

these algorithms on unseen data (test set), the Gradient Boosting

models continue to achieve the highest performance with a

c-index of 0.724, c-index IPCW of 0.762, and AUCD_ROC of

0.748. To find a more balanced model in terms of prediction

performance and interpretability, manual exploration of the top 10

combinations found by SCI-XAI was conducted. This search

aimed to identify a model with high performance and fewer

selected features, quantified by the Interpretability Concordance

Index (ICI). As a result, another Gradient Boosting model that

utilized only four features (“serum_creatinine”, “ejection_fraction”,

“sex”, and “diabetes”) was identified. This model demonstrated

similar performance during cross-validation and slightly lower

performance on unseen data. However, it achieved the highest ICI

value of 0.476 among all the algorithms, indicating superior

balance between prediction performance and interpretability.

However, considering that the majority of related works have

approached this dataset using a classification machine learning

approach, we have also decided to apply the SCI-XAI pipeline to

predict the occurrence of death using an optimal combination of

ensemble tree methods. These methods include Random Forest,

Extra Trees, AdaBoost, Gradient Boosting, and XGBoost, along with

feature selection techniques. For model training and validation, we

employed a 5-fold cross-validation approach. The best classification

results belong to Random forest with an accuracy and balanced

accuracy of 0.78 (std. 0.02) and 0.74 (std. 0.03). We must note that

due to the imbalance in the target feature (203 for y = 0 and 96 for

y = 1), the balanced accuracy is used to obtain the best model in the

optimization SCI-XAI pipeline. Furthermore, classification

performance generally decreases when dealing with instances in the

test set. In the case of test set evaluation, Random Forest maintains

the best results with 0.75 and 0.71 of accuracy and balanced

accuracy, respectively. It is worth highlighting that the test set

comprises 30% of the entire dataset, which could emulate a

deployment environment where the model encounter new unseen

data. However, the model’s performance in an actual clinical

environment might differ from the results due to the inherent

complexities of medical records, which often contain a large number

of features and more intricate patterns. When benchmarking these

results with the related works identify, our prediction model does
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not achieve outperforming the models, which present a higher

accuracy due to, in part, that authors include time as a predictor

when training the models. Nevertheless, our contribution to these

works is an extensive analysis of the explainability of the results by

using post hoc XAI techniques, which, to the best of our knowledge,

has not been carried out in the literature.

The results obtained demonstrate the effectiveness of the SCI-XAI

pipeline in identifying relevant features when building the prediction

models, whether using the survival analysis approach or the

classification approach. The best models, which strike a balance

between performance and interpretability, achieve a significant

reduction in the number of original features (from eleven to four in

the survival analysis and from eleven to three in the classification

approach). In both approaches, the selected features are consistent.

The features “serum creatinine,” “ejection_fraction,” and “sex” are

selected in both cases, and “diabetes” is also selected for the

survival analysis. The reduction in the number of features and its

impact on model performance are quantified using the

Interpretability Concordance Index (ICI) for the survival analysis

and the Interpretability-Accuracy Index (IAI) for the classification

approach. These indexes enable benchmarking of different machine

learning techniques and facilitate the selection of the most balanced

models for analyzing the explainability of their predictions’ logic.

Regarding the explainability analysis of the prediction model

developed using both approaches, the insights obtained regarding

the relevance of the features are consistent. The feature “serum

creatinine” emerges as the most influential feature for predicting

death cases in both the classification and survival analysis. The

feature “ejection_fraction” is identified as the second most

important feature, while the impact of “sex” and “diabetes” on the

prediction outcome is relatively small. The consistency in the

influence of the features is also observed when exploring the values

of the features. PDP and SHAP plots provide valuable insights into

the direction of the influence on the prediction based on the

feature values. For example, in both approaches, high values of

“serum creatinine” are associated with a positive prediction of the

death event, while lower values have a smaller or even negative

influence on the prediction. PDP plots offer an opportunity to

identify thresholds, intervals, or specific feature values where a

certain feature may significantly increase or decrease the probability

of the prediction. This implies that doctors can consider treatments

or interventions to adjust patient features to safer values that

decrease the probability of the predicted outcome, such as a death

event. In this work, a threshold value of 1.45 mg/dl for “serum

creatinine” has been identified, where the marginal effect of the

feature changes its direction from negative to positive towards the

predicted outcome, i.e., the event of death.

Therefore, the results described in this work demonstrate the

added value of explainability to clinical prediction models.

Additionally, by utilizing post hoc explainability techniques and

feature selection, the baseline prediction model that deals with all

features of the original dataset is improved not only in terms of

prediction performance but also explainability. In addition, by

offering a balance between these two aspects, the prediction model

for HF survival could serve as a valuable tool for healthcare experts

and increase its possibilities for being adopted in clinical routine.
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6. Limitations of the study

Despite the interesting insights achieved in this work, which

could enhance the prediction of survival after an HF event, some

limitations might hinder the feasibility of generalizing the results

to a broader population.

Firstly, the dataset was collected in an urban area of Pakistan,

which may have substantial differences in terms of population

features (poor quality of life, access to healthcare services, life

expectancy) compared to rural areas of the country. Therefore,

the application of the results to other populations within the

country should be taken cautiously. In addition, Pakistan is a

developing country where access to healthcare services is not

comparable to Western societies. Consequently, the prediction

model may yield different results if applied to another dataset

collected from a developed country. This highlights another

limitation of the study because although the SCI-XAI pipeline

establishes an initial stratified split to create a train and test set

enhancing the generalizability of the model with unseen data,

the prediction model is trained and tested by using the same

dataset. Therefore, it would be recommended to use another

dataset collected in a different population location-wise to

assess the generalizability of the model and reduce the inherent

bias associated with employing the same dataset for training

and testing purposes.

Additionally, the distribution of the target feature presents a

substantial imbalance that may bias the model’s performance

toward predicting false positives for survival patients. Therefore,

oversampling techniques like SMOTE could be used to balance

the ratio of the target feature and mitigate this data collection

bias. However, it is important to note that by doing so, the

actual distribution of survival patients may be altered, leading to

a prediction model that misclassifies patients when deployed in a

real clinical setting. To address this concern, we recommend

involving HF experts in the decision-making process regarding

the oversampling approach. Their input can help ensure that the

oversampling technique does not create a non-representative

sample of the survival population after HF.

From the reviewed works, only a few have addressed the

prediction of death events as survival analysis using the dataset

employed in this study. While survival analysis is a well-known

problem in statistics with various applications in healthcare and

other fields, there is a limited literature and lack of tools that

approach survival analysis from a machine learning perspective,

using algorithms commonly employed in classification and

regression problems. This scarcity of resources hampers the

implementation of approaches for conducting comprehensive

explainability analyses of prediction models’ results. However,

with the emergence of new tools and techniques for survival

machine learning models, the findings obtained in this study

could be further refined and improved, providing more

insightful conclusions regarding the importance of the features

in survival prediction.

Furthermore, the fact that the authors have a sole data science

profile highlights the criticality of involving HF experts in this

study. Their participation is essential for interpreting the results
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from a clinical standpoint, especially regarding XAI. This

limitation also impacts the practicality of implementing the

findings in a clinical setting, where the clinical validation of the

XAI outcomes, including the determination of value thresholds

from the PDP diagrams, becomes vital for the adoption of the

prediction model. Therefore, future work will focus on engaging

HF experts to strengthen the clinical validation of the obtained

results. By incorporating their expertise, we aim to enhance the

interpretation and applicability of the model’s outcomes in real-

world clinical scenarios.
7. Conclusions

This work presents the development and evaluation of

explainable prediction models for HF survival considering a

dual approach, first, addressing the survival prediction

through a survival analysis and through a classical ML

classification problem. With the aim of demonstrating the

importance of considering explainability in early diagnosis

clinical systems based on machine learning, the prediction

models developed are improved by adopting a balanced

compromise between the model’s classification performance

and its explainability, which could make it more suitable

for its adoption in clinical practice.

Through an automated data management optimization

pipeline, the best combination of the ML algorithm, i.e.,

ensemble trees algorithms for classification approach, and

survival ML techniques for survival analysis, and the number of

features selected for the model can be identified. Moreover,

different evaluations based on prediction performance and

explainability metrics to detect the best-balanced model in terms

of prediction and explainability. Therefore, the explainable

prediction model identified for the survival analysis approach is a

Survival gradient boosting model over the following four features

“serum_creatinine” (level of creatinine in the blood),

“ejection_fraction” (percentage of blood leaving the heart at each

contraction), “diabetes” (if the patient has diabetes), “sex”

(gender of the patient). Furthermore, the classification problem

approach determines the Random Forest with the following three

features “serum_creatinine”, “ejection_fraction”, and “sex” as the

optimal model.

The novelty presented by this work is the explainability

approach adopted in the both prediction models for HF

survival (classification and survival analysis), aiming to

facilitate healthcare professionals’ understanding and

interpretation of the model’s outcomes. By adopting this

approach, clinicians can early identify changes in a patient’s

health using a smaller set of indicators and focus on

treating those relevant features to potentially prevent

adverse outcomes that put patient’s survival at risk.

In future works, it could be beneficial to test the prediction

model developed in a clinical setting to assess the robustness of

the model in terms of accuracy with new patients’ data.

Additionally, gathering feedback from healthcare professionals

regarding the explainability of the model’s results would
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provide valuable insights for further improvement and

refinement.
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