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With the global rise of cardiovascular disease including atherosclerosis, there is a high
demand for accurate diagnostic tools that can be used during a short consultation. In
viewof pathology, abnormal bloodflowpatterns havebeendemonstrated tobe strong
predictors of atherosclerotic lesion incidence, location, progression, and rupture.
Prediction of patient-specific blood flow patterns can hence enable fast clinical
diagnosis. However, the current state of art for the technique is by employing 3D-
imaging-based Computational Fluid Dynamics (CFD). The high computational cost
renders these methods impractical. In this work, we present a novel method to
expedite the reconstruction of 3D pressure and shear stress fields using a
combination of a reduced-order CFD modelling technique together with non-linear
regression tools from the Machine Learning (ML) paradigm. Specifically, we develop
a proof-of-concept automated pipeline that uses randomised perturbations of an
atherosclerotic pig coronary artery to produce a large dataset of unique mesh
geometries with variable blood flow. A total of 1,407 geometries were generated
from seven reference arteries and were used to simulate blood flow using the CFD
solver Abaqus. This CFD dataset was then post-processed using the mesh-domain
common-base Proper Orthogonal Decomposition (cPOD) method to obtain Eigen
functions and principal coefficients, the latter of which is a product of the individual
mesh flow solutions with the POD Eigenvectors. Being a data-reduction method,
the POD enables the data to be represented using only the ten most significant
modes, which captures cumulatively greater than 95% of variance of flow features
due to mesh variations. Next, the node coordinate data of the meshes were
embedded in a two-dimensional coordinate system using the t-distributed
Stochastic Neighbor Embedding (t-SNE) algorithm. The reduced dataset for t-SNE
coordinates and corresponding vector of POD coefficients were then used to train a
Random Forest Regressor (RFR) model. The same methodology was applied to both
the volumetric pressure solution and the wall shear stress. The predicted pattern of
blood pressure, and shear stress in unseen arterial geometries were compared with
the ground truth CFD solutions on “unseen” meshes. The new method was able to
reliably reproduce the 3D coronary artery haemodynamics in less than 10 s.
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1. Introduction

Atherosclerosis is the leading cause of death in the developed

world, accounting for more than 40% of total mortalities per

year. While it has been accepted that risk factors like

hypertension, high cholesterol and diabetes play a pivotal role in

the progression of the disease, they do not explain the

prediliction of atherosclerotic plaque formation near sites of

arterial bifurcation, side branching and curvature (1). These

predilection sites have been associated with disturbed blood flow

and endothelial shear stress patterns (2). Numerous experimental

and clinical studies in the last few decades have posited an

essential role for disturbed shear stress in initiating

atherosclerosis, in progression from simple to advanced plaques,

and in rupture of advanced, vulnerable plaques (2). Furthermore,

disturbed shear stress patterns are also associated with in-stent

restenosis and atherosclerosis (3). Despite the overwhelming

number of studies demonstrating the decisive role of blood flow

in clinical atherosclerosis, disturbed shear stress patterns have not

yet been considered whilst making clinical decisions during

catheterization or surgery. This is mainly due to the high

computational cost and long convergence times required for

sufficiently accurate numerical solutions. Several propositions

have been made to reduce time requirements, of which one of

the earliest attempts was by applying supercomputers to the

numerical solvers (4). While this reduced convergence time from

a full day to a few hours, a condition now met by standard

modern computers, this is still not sufficient to aid in

diagnostics. Clinical decisions depend on data which can be

reliably obtained within minutes, preferably seconds. Hence,

newer statistical modelling methods were used to further reduce

convergence time of Computational Fluid Dynamics (CFD)

simulations based on machine learning (5). These can roughly be

divided into two categories, the classical machine learning

methods and physics-based machine learning methods. Classical

machine learning methods use the power of deep learning to

estimate wall shear stress profiles (5). The advantage of these

methods is the flexibility of the feature space to predict these

wall shear profiles primarily due to the high expressivity of Deep

Neural Networks (DNN) and their ability to identify high

dimensional features. However, such methods are not based on

capturing the inherent physical conservation laws of the

governing fluid flow. Consequently, any change in feature space

will necessitate a DNN recalibration cycle.

To overcome the above, physics-based machine learning

technologies have raised interest recently. These methods are

predicated on capturing the underlying physics either via

incorporation of the actual conservation laws (6) or by data-

driven extraction of physically interpretable flow characteristics

(7) as features for regression. For instance, Reduced-order

modelling of CFD simulations are motivated by the presence of

coherent structures, identified from their statistical moments in

the datasets available from short duration simulations (8, 9). By

applying orthogonal decomposition theory, it is possible to

identify high energy Eigenvectors, also known as modes, of these
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coherent structures using essential information of the flow

solution field (e.g. 3D velocity and pressure) while reducing

dimensionality of the data. Initial studies used both temporal and

spatial information of the velocity field to reduce its dimensions

in non-health related areas (7). The first health applications used

these methods to study coherent structures in the velocity field of

idealised phantoms of bifurcations, saccular and aortic aneurysm

(10). Patient-specific applications, which are noisier, have been

successfully studied by accounting for such noise in the signal

(11). In order to apply these reduced order flow solution fields to

novel objects, an interpolation needs to be carried out.

In light of these advances in closely related fields of research,

this paper establishes the foundation of our novel method

amalgamating these techniques and applies it to a well-

characterised experimental dataset of atherosclerotic pig coronary

arteries (12). We will show how to modify classical POD,

introduce a shape optimizer for blood vessels, and present a

suitable Random Forest Regressor (RFR) model to predict flow

fields in novel arteries.
2. Outline of methodology

We have developed an automatic pipeline which generates

synthetic data from existing 3D reconstructed blood vessels (12),

performs proper orthogonal decomposition (POD) on the shear

stress and pressure field solutions, and t-distributed Stochastic

Neighbour Embedding (t-SNE) on the mesh coordinate data to

enable feature reduction. The reduced mesh and flow parameter

fields are then used to train, validate and test a RFR model to

perform interpolation; thereby enabling a fast reconstruction of

CFD solution in a given geometry. In the case of an unseen

geometry as test input, the position of the corresponding

geometry in the t-SNE space is calculated analytically, and the

mode coefficients are predicted using RFR. Recombination of the

previously extracted mesh-wise modes along with the newly

predicted POD mode coefficients is then used to produce the

flow field solutions for the new geometry. The pipeline is

summarised in the form of a flowchart as shown in Figure 1,

and the methods are described in Sections 3, 4, 5 and 6.
3. Creating a well-annotated synthetic
data repository

Synthetic data has been proposed to meet the huge data

requirement of artificial intelligence (AI) (13). Here, we

developed a hybrid technique which uses a combination of

realistic and synthetic data. The realistic data was obtained from

a validated 3D reconstruction method of coronary arteries based

upon a pullback of OCT images and angiography (Figure 2).

This 3D vessel anatomy was then used as a seed to generate

synthetic data by applying random spatial perturbations to the

original mesh. To prevent unnatural, discontinuous geometric

differences within each mesh phantom, the perturbations are
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FIGURE 1

The data processing pipeline is summarized in this flowchart. OCT images are obtained in the cath. lab. and used to extrapolate a 3D contour. Mesh
generation and Computational Fluid Dynamics are done through an automatic pipeline. The velocity profiles obtained from CFD will act as the
ground truth. Synthetic data generation (n = 1407) is done by random purturbation of the length-wise diameter of each independent blood vessel
(n = 7). Data reduction is performed on the shear stress, and pressure fields obtained from CFD, via POD (see text for details), and on the input
meshes through t-SNE (see text for details). These reduced data sets are used to train (using 90% of the data) and validate (using 10% of data) the
machine learning learning module

FIGURE 2

10 randomly selected phantom geometries from the dataset are visualised. All phantoms shown were generated from the same OCT image. Variation in
shape is due to random synthetic perturbations applied to the artery diameter, the function of which is a composite of two sinusoids with randomised
amplitude, frequency, phase and vertical displacement. This ensures smooth, continuous variation along the length of the artery regardless of input
parameters.

Morgan et al. 10.3389/fcvm.2023.1221541
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TABLE 1 Parameters of the Carreau-Yasuda model.

n1, m2=s� 106 n0, m2=s� 106 t, s a n
3.45 56 3.313 2 0.3568

Morgan et al. 10.3389/fcvm.2023.1221541
based on the amplitude of a sinusoid, which distributed the

perturbation lengthwise. The sinusoid components have

independently randomised amplitude, frequency, phase and

vertical offset. With this method, 200 phantom meshes per each

of the 7 unique blood vessels available were generated. Including

the 7 natural artery shapes, this results in a total of 1407 3D

meshes in this preliminary dataset. These geometries were then

input to the CFD solver Abaqus (v16.2) to obtain the pressure

and shear stress field by solving the governing steady-state

incompressible Navier-Stokes equations. In the solver, the

governing equations were discretised on �100,000 mixed

hexahedral and triangular prismatic elements in accordance with

the second order of approximation. The advection term in the

momentum equation was discretised using second-order least

squares. To accelerate convergence of the steady solution with

imposing the divergence free velocity field, the pressure-

correction method (SIMPLE) was used with an efficient solution

of the Poisson pressure equation. Boundary conditions were

imposed as constant inflow (100 cm/s), and zero pressure

outflow. On all vessel walls, a zero velocity and logarithmic wall

function boundary condition was specified. Blood rheology was

modelled as a non-Newtonian fluid following the Carreau-

Yasuda model, which at high strain rates incorporates the effect

of shear thinning in the definition of kinematic viscosity as:

n ¼ n1 þ (n0 � n1)(1þ (t _g)a)(n�1)=a,

where _g ¼ @u=@y is the flow shear gradient near the wall, and the

model coefficients are summarised in Table 1. For turbulence

modelling, the standard k– 1 RANS (Reynolds Averaged Navier

Stokes) model was used. All calculations were performed using

APOCRITA, the HPC cluster of Queen Mary University of

London (14).
4. Data reduction of the CFD solution
fields using proper orthogonal
decomposition

POD is a tool in CFD post processing and is derived from the

Singular Value Decomposition (SVD) method for matrix

factorisation commonly used in statistical analysis. The method

finds correlations in the vector flow solution field, which

contains small linear perturbations, to obtain an Eigenbasis onto

which the mesh flow data can be projected. In classical POD, the

correlations are obtained in the time domain to identify flow

structures that are most dynamically important in time during

the evolution of turbulence. The same methodology is also

extended to varying flow cases based on different experimental

setups (e.g. considering a number of unsteady flow experiments
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performed on the same CFD mesh), this is known as common

base POD (cPOD) (15). In our methodology for obtaining

common mode functions underlying multiple meshes, the time

domain is replaced with the domain of the mesh geometries. It is

assumed that a few smoothly varying variables can be used to

represent the mesh cases. The goal is to obtain the hidden

common modes in the stationary solutions, on multiple meshes,

while the mesh is smoothly varied. To obtain the modes

underlying the variations in pressure and shear stress fields, we

use the method of SVD. We begin with a dataset of CFD

simulated steady-state flow solutions. For one simulation, the

chosen output variable (e.g. pressure and wall shear) is organised

into a N-length vector, where N is the number of nodes in the

mesh. These vectors are oriented horizontally and then stacked

vertically. With M meshes, the resulting 2D solution matrix A

has the dimensions M � N . Our application of SVD follows the

theory of snapshots (16), similar to other use cases. However,

each snapshot (stacked vector) in our solution matrix is not a

different time frame of the same simulation, but rather a steady

state solution ran with identical conditions on a different,

uniquely shaped mesh. SVD factors the matrix into a product of

three matrices A ¼ UDVT , where the columns of U and V are

orthonormal (V is transpose), and the singular matrix D is

diagonal with positive real numbers, organised by magnitude in

descending order. The sum of the singular values represents the

total amount of information in the system. They are analogous

to the Eigenvalues of the Eigen decomposition, and represent the

magnitude, or significance, of each Eigenvector, or POD mode.

The singular values can then be used to estimate the number of

modes needed to reconstruct the flow solutions without

significant loss of information (16). Both vector matrices U and

V are organised in terms of the singular values, from most to

least significant. The summed energy of each leading mode,

being their corresponding singular values, are then used to define

a tolerance threshold for information loss. Due to spatial

coherence of particular modes of variation of the flow with

respect to the mesh shape, the number of modes that capture the

majority of useful information are the first few, as compared to

the full dataset. Modes that fall outside of a chosen threshold in

terms of correlative significance can be truncated from the

dataset, drastically reducing the dimensionality of the data whilst

incurring a tolerable underestimation of the concerned node-wise

flow parameter. Additionally, although not implemented in the

current case, explicit smoothing can also be applied in the

correlation matrix space to enhance numerical properties of

the meh-wise POD coefficients (8). In this case, the leading 10

modes were found to capture >95% of total information about

both the pressure and wall shear stress, and thus were deemed

sufficient for accurate reconstruction.
5. Data reduction of the synthetic
meshes of coronary blood vessels

Several shape optimizers have been proposed in the literature,

of which t-SNE has acquired a lot of attention (17). The t-SNE is a
frontiersin.org
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statistical method for visualising high-dimensional data by

embedding each N-dimensional data point in a reduced space,

typically of two or three dimensions. A higher number of

embedding dimensions will retain a greater accuracy of

clustering, but also increase the sparsity of data within the space.

More specifically, t-SNE generates the joint Gaussian distribution

of the conditional chance that a nearby mesh coordinate is

sufficiently close in terms of Euclidean distance to an initial

mesh coordinate. The unknown variance of the Gaussian

distribution is obtained from the Shannon entropy. This step

creates a matrix of each mesh coordinate with all other mesh

coordinates where a chance is provided on the basis of distance.

As a next step, a reduced order mapping is obtained by

minimizing the Kullback-Leibler divergence between the

Gaussian distribution of the original points and a Student’s

t-distribution of points in a reduced dimensional space. The

resulting vectors are then used to fill the feature space. In a

sense, the space is “seeded” with the meshes produced from the

natural OCT images. The space around each image is then

populated with the synthetic mesh vectors, which have a small

but significant geometrical difference from the parent mesh. The

goal being to fill the feature space and bridge the empty regions

between the clusters. Given that the principal coefficients are

physics-based, they should maintain a causal link to the values of

the embedding coordinates, which represent variability in mesh

shape. A filled feature space with an intact causal link will aid an

interpolative machine learning model to make accurate

coefficient predictions for an unseen geometry (Figures 5 and 6).

It is worth noting that what constitutes a “filled” feature space is

highly dependent on the chosen t-SNE parameters and the

natural limits of the data that is being reduced. The “natural

limit” is in reference to the fact that a hypothetical dataset

containing all possible natural variations of the artery shape will

produce a “filled” feature space, and the regions that are not

populated will represent shapes that do not occur naturally, and

thus may not be useful for a diagnostic tool. Hence, we aim to

produce synthetic data, which is not so different from the natural

data as to have its shape fall outside of this hypothetical set. It is

for this same reason that it is better to bolster the dataset with

natural shapes wherever possible, with synthetic data playing a

supplemental role. Integration of human OCT patient data is

forthcoming in future research.
6. Random forest regressor and
regressor chain

SVD re-organizes the modes based on their energy level

content and the number of modes are truncated when >95% of

the variance of the field is preserved. This resulted in the first 10

modes for the pressure field and the shear stress field for the

dataset we use for this study, which when used for reconstructing

the solution leads to a root mean squared error less than 5%. In

order to interpolate the POD principal coefficient field that

enables predictions of future objects, simple feed-forward neural

networks and classical machine learning methods were
Frontiers in Cardiovascular Medicine 05
compared. It was found that the RFR algorithm combined with

the Regressor Chain algorithm were best suited for this task.

The RFR algorithm is a supervised machine learning technique

that integrates multiple independent decision trees on a training

data set: the obtained results are ensembled to obtain a more

robust single model compared to the results of each tree separately

(18). RFR is a supervised learning method in the sense that during

training it identifies mappings between inputs and outputs. In our

setup, the t-SNE coordinates of the meshes are the input and the

cPOD principal coefficients are the output. In our approach, an

independent RFR regressor is employed for each of the 10

coefficients. The Random Forest Regression algorithm utilised in

our work is obtained from the popular Machine Learning

library Scikit-learn. Scikit-learn is built to facilitate the use of

Artificial Intelligence and Machine Learning algorithms, and is

used in regression, classification, and clustering tasks. The model

is imported as “sklearn.ensemble.RandomForestRegressor.”

Additionally, a Regressor Chain architecture is used to obtain a

multiple output model that organises the regression of individual

modes in a chained fashion. Thus, RFR creates a regression model

for each pressure coefficient, where each model makes a prediction

for its coefficient specified by the chain by using all the t-SNE

features provided to the model and the predictions of previous

outputs in the chain. This ensures that the correlation between the

features are taken into account to enhance the regression.
7. Results

An automatic pipeline was implemented to perform highly

accurate 3D reconstruction from biplane angiograms and an

OCT pullback (19), to automatically generate a mesh and on

basis thereof, and to generate small perturbations in the topology

of meshes. The latter was then used to generate a full stationary

solution of the shear stress and pressure fields using the Navier-

Stokes solver in Abaqus. The perturbation parameters were

bounded to induce small but significant changes in the

accompanying geometry of the meshes (Figure 2). This also

resulted in appreciable changes to the pressure and wall shear

fields (Figure 3). The cumulative wall shear stress and pressure

fields were then further analysed with the cPOD procedure. The

first 10 modes of the pressure and shear stress fields were

sufficient to reproduce >95% of the variance of both fields,

leading to modest errors in the reproduction of the original fields

of <1% (Figures 4 and 5).

Next was a reduction in the dimensions of the mesh topology

using t-SNE (Figures 6 and 7) for utilisation in a low-dimensional

regression task. The t-SNE algorithm enables control over the

clustering behaviour based on similarity through its perplexity

parameter. This was fine tuned to obtain an approximately

homogeneous distribution of the mesh cases, whilst preserving

noticeable clustering features. This allows for a smooth

geometrical representation suitable for regression. As can be

observed, the t-SNE features resolve to seven clusters

corresponding to seven natural artery shapes. To which, random

perturbations are introduced to generate quantitatively distinct
frontiersin.org
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FIGURE 3

A collection of meshes generated using various OCT images and perturbation parameters, coloured by the pressure (left) and wall shear (right) solutions
from CFD simulations. The mesh dimensions are normalised for the sake of visualisation.

FIGURE 4

(left) Root-mean-squared error for the reconstruction of the original mesh-wise pressure solution from a truncated set of 10 principal coefficients per
mesh. The error is normalised against the range of pressure values across all meshes. (right) Singular values for the decomposition of the pressure
solution, normalised against the largest value. These singular values are ordered by magnitude and represent the relative contribution of each POD
mode to the energy of the overall pressure solution. Subsequent values quickly decay to <1% of the highest value, as the first several modes
represent the overwhelming majority of the information in the pressure field. This indicates that many of these trailing modes can be safely discarded
from the dataset without losing a significant amount of information.

Morgan et al. 10.3389/fcvm.2023.1221541
synthetic datapoints. Additionally, within each of the t-SNE

clusters, the variation of the principal coefficients are also

smooth and continuous since their values are correlated with

variation in mesh shape.

The 1407 t-SNE data points with their respective pressure and

shear stress modes were shuffled and divided into a training data

set (80% of the overall data) and a validation data set (remaining

20%). The training dataset was used for ten iterations to train

the RFR model, where the best maximum tree depth was found
Frontiers in Cardiovascular Medicine 06
to be 20, and the best maximum number of trees for the model

was found to be 70. The machine learning model was applied for

the test data set as well. Figures 8 and 9 show the results for

shear stress and pressure for the two most significant POD

modes respectively. The mean Root Mean Square Error (RMSE)

of the prediction of the dominant mode coefficient was 15.2%

for pressure and 19.7% for shear stress.

With the regression for cPOD principal coefficients completed,

the mesh-wise modes previously generated by the cPOD method
frontiersin.org
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FIGURE 5

The mesh-wise reconstruction error for wall shear (left) is much lower than pressure reconstruction using the same number of coefficients. Additionally,
the singular values (right) decay to 0 in a fewer number of modes compared to the pressure decomposition. These factors are indicative of the wall shear
solution being easier for the POD method to decompose than static pressure, possibly due to the fewer number of CFD nodes for which it is computed.

FIGURE 6

The distribution of all meshes in the database embedded in 2D t-SNE space with colours representing the principal coefficients of the static pressure
solutions for the first (left) and second (right) mesh wise POD modes.

FIGURE 7

The distribution of all meshes in the database embedded in 2D t-SNE space with colours representing the principal coefficients of the wall shear solutions
for the first (left) and second (right) mesh wise POD modes.

Morgan et al. 10.3389/fcvm.2023.1221541
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FIGURE 8

Predictions of POD principal coefficients of shear stress for first two modes using the proposed framework, compared to the ground truth for the test
data set. The first part of the same data set was used for training via the RFR. The regression was performed on the 2D t-SNE representation of the meshes
against the principal coefficients.

Morgan et al. 10.3389/fcvm.2023.1221541
together with the newly predicted coefficients are used to

reconstruct the flow field. Results of the 3D reconstruction of the

shear stress and pressure fields for the CFD method (“ground

truth”) the cPOD reconstruction alone, and the RFR prediction

are shown in Figure 10. These were used for further error

quantification of the flow solution in the physical space, relative

L1 and L2 norm errors, which are analogues to the normalised

mean absolute errors (NMAE) and normalised root mean square

errors (NRMSE), respectively, considered in other studies (20).

The errors were calculated using the dominant 10 POD modes

for the test dataset of 20% of the meshes in accordance with the

following definitions:

NMAE(i ¼ 1, . . . , imeshmax) ¼
P j¼ jnodemax

j¼1 jfML
ij � f GTij j

jnodemax � (max (f)�min (f ))
� 100%

NRMSE(i ¼ 1, . . . , imeshmax) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP j¼ jnodemax

j¼1 (fML
ij � f GTij )2

q

jnodemax � (max (f)�min (f ))
� 100%

where jnodemax is the total number of CFD data points in the

considered volumetric/surface distributions, imeshmax is the

number of meshes in the test dataset, ML and GT denote

the machine learning and the ground truth (CFD) solutions

respectively, and f stands for the pressure or wall shear stress

solution component. The mean values and the corresponding
Frontiers in Cardiovascular Medicine 08
standard deviations of computed errors are summarised in Table 2.

It should be noted that the range of NMAE and NRMSE for

pressure is within the accuracy reported for the machine learning

models of pressure in aortic flows based on autoencoders and

Deep Neural Networks (DNNs) (20). It can also be noticed that

the standard deviation and the mean error values are of the same

order of magnitude in all cases, which suggests that the populated

parameter space for the considered coronary artery problem is

relatively sparse. The latter is in agreement with sparsity of the

t-SNE maps (Figures 6 and 7). The error variation is particularly

large for the shear stresses, which can be explained by a much

smaller statistical ensemble of the wall shear surface points in

comparison with the volume points where pressure was computed.

This is supported by an estimate based on the central limit

theorem (21), which suggests that the ratio of statistical errors of

the pressure and wall shear stresses should scale as a square root of

the ratio of the number of surface points to that of the volume

points, and which is about 1:4.5 for all considered meshes.
8. Discussion

Rheological theories of Atherosclerosis have been shown to

successfully predict plaque location, plaque progression, and plaque

rupture (22). They have not been used to infer clinical decisions.
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FIGURE 10

A visualisation of the flow field solution for pressure (left) and wall shear (right) of two test meshes. Shown is the ground truth CFD simulation data (top),
the reconstructed POD solution using the 10 most dominant coefficients calculated from the CFD solution (middle) and the reconstruction using the RFR
predicted coefficients (bottom).

FIGURE 9

Predictions of POD principal coefficients of pressure for first two modes using the proposed framework, compared to the ground truth for the test data
set. Training and testing of the RFR model for pressure utiised the same algorithm, configuration, and optimization as shear stress.
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TABLE 2 Mean errors and standard deviations of reconstructed pressure
solution (Left), and of the reconstructed shear stress solution (Right). All
values are normalized against corresponding range of values in the full
dataset.

NMAE, % NRMSE, % NMAE, % NRMSE, %
2:96+ 2:84 3:51+ 3:19 11:21+ 11:81 11:23+ 11:81

Morgan et al. 10.3389/fcvm.2023.1221541
Current developments in physics-based artificial intelligence allow us

to accelerate these methods so that clinical interventions in the cath

lab can be evaluated on novel parameters such as shear stress,

pressure drop, and/or velocity field. The main findings of the

current paper are that a) synthetic perturbation is an effective way

to generate additional surrogate data, which can help satisfy the

large volumes required by AI algorithms, b) cPOD, a time-

independent variation of POD, can be used to substantially reduce

the dimensions of pressure and shear stress field data in simulated

blood vessels, c) metrics for quantifying the shape of a blood vessel

mesh, such as t-SNE, are effective schemes to drastically reduce the

degrees of freedom corresponding to variations in vessel geometry,

and d) an interpolative method based on a RFR model was able to

predict new pressure fields within seconds, with mean relative L1
and L2 errors (NMAE and NRMSE) of 2.96% and 3.51%

respectively. The errors of the wall shear stress reconstruction show

an approximately 4 times larger scatter in comparison with the

pressure calculation, in statistical agreement with the smaller

number of mesh surface points in comparison with the volume points.

Synthetic manipulations have recently been introduced to

Machine Learning to overcome the excessive requirement of well

annotated data for AI algorithms (13). We have developed a

hybrid approach which took into account the natural variation

between blood vessels and applied random synthetic perturbations

to produce variants of this original data, with the aim of

populating the t-SNE feature space (Figure 2). It was noted that

full feature space homogenisation would require significantly more

drastic and exotic synthetic manipulation of the OCT data, which

would likely negatively impact the ability of the data to represent

reality. A better balance between number of real data versus

synthetic data is required to bring this technique closer to real-

world application. In future, a systematic procedure can be adapted

to generate the synthetic meshes in an optimal way by exploiting

sensitivity of the coronary flow response to perturbations of the

baseline vessel geometry, similar to the deformation matrix method

recently developed for aortic flow simulations (23).

Dimensionality reduction helps retain defining features whilst

drastically reducing the volume of data required to represent them.

This makes machine learning algorithms more likely to identify

such features, along with being more computationally efficient.

Additionally, it aids in removing noise and extraneous features

which can confound important signals (24). In many bio-

mechanical applications, autoencoders in combination with DNNs

have been a very popular technique to reduce the geometrical

complexity to a small set of scalars, which be learnt from the

training data. Depending on the DNN calibration, such approaches

can be tuned to reproduce the ground truth CFD solution within a

few percent relative error (20). However, it can be argued that

performance of such methods is strongly dependent on the choice
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of DNN parameters, while the optimal choice of the latter is

application dependent. Differently to the mainstream approach, our

method is based on the generalisation of proper orthogonal

decomposition (cPOD). This allows for treatment of multiple

vectors of the solution matrix of interest simultaneously, which is

largely analogous with multiple unsteady flow experiments in fluid

mechanics. An important advantage of the POD framework is that

it sorts the individual modes in terms of correlative significance. In

the current coronary flow simulations, we have considered mesh

shape variability as an evolutionary factor for each steady solution

component of interest. This is similar to the recent application of

Principle Component Analysis (PCA) to data-driven modelling of

aortic flows (23), where separate DNN models were used for

pressure and absolute velocity. However, in comparison to the

standard PCA and DNN techniques, the suggested cPOD approach

allows for extension of the solution matrix from single scalars to

3D velocity vectors and pressure components simultaneously on

different meshes in space and time.

In unsteady fluid mechanics problems on a fixed mesh, a 1D time

coordinate is typically used as an evolutionary variable to characterise

the snapshots of the POD method. Here, this approach is generalised

to a set of 2D t-SNE coordinates, which are cognate with time for the

purpose of POD snapshots and were found sufficient to reconstruct

the pressure and wall shear stress fields in any specified blood vessel

shape. The t-SNE technique was applied to reduce the complexity of

each mesh whilst preserving their characteristic features. In doing so,

their relative similarity necessarily remains intact (25) due to the fact

that, prior to the embedding step, t-SNE computes the difference

between the input meshes based on Euclidean distance between the

node coordinates. Therefore, the clustering of the variable phantom

meshes around their respective reference shapes arises naturally.

Notably, the entire process of meshing the OCT contour domain,

embedding this geometry in 2D t-SNE space, predicting the

coefficients and constructing the pressure and wall shear stress

fields cumulatively takes no more than 2min, which underpins the

success of this method. Furthermore, the applicability of 2D t-SNE

coordinates to describe �100,000 degrees of freedom

corresponding to the number of CFD mesh elements implies a

factor of 105 dimensionality reduction. In the future, to model

multiple solution components in space and time, use of a higher

dimensional t-SNE space instead of 2D t-SNE may be

reconsidered, and the relationship between clustering accuracy and

data sparsity will be investigated.

The standard RFR algorithm was found to be a suitable option

for non-linear regression to reconstruct the POD signals from the

t-SNE space. Despite the simplicity of the RFR model, the accuracy

of predictions was encouraging. Essentially, the model uses the

calculated t-SNE co-ordinates and their associated principal

coefficients to interpolate the coefficient values over the whole

embedding space. The RFR segregates feature data into groups

before interpolating within each group, which is particularly

suitable for the clustered t-SNE features. Notably, the distribution

of mode coefficients in the t-SNE space (Figures 6 and 7)

demonstrates smooth variations due to the inherent correlation

between the shape of a mesh and the major flow patterns

captured by the dominant POD modes.
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9. Limitations of the method and
conclusion

To translate the current method to clinical applications, several

limitations must be addressed. First, the current implementation

assumes that shape variations are the most important factor

affecting velocity fields and their derived parameters. This is

corroborated by theoretical arguments, as well as observations

that velocity, shear stress and pressure drop strongly scale with

diameter. However, the artery flow field also scales with the

inflow velocity, which changes throughout the cardiac cycle. To

systematically account for the unsteady velocity variation, future

developments include extending the scope of the AI model by

re-adding the time evolution input. In the meantime, the current

simplified steady model may already be sufficient if the flow

features of interest are slow compared to the viscous effects, i.e.

the flow in the coronary vessel is quasi-steady. In this case, the

time history of inflow velocity variation can be decoupled into a

series of time frames, where each frame may be represented by a

steady process at a different inlet velocity scale. In turn, the shear

stress and pressure fields at each frame can be rapidly

reconstructed from the inflow velocity and the shear stress and

pressure fields of a baseline dataset using the scaling law

introduced by Taylor et al. (26).

A more serious limitation of the current study is the neglect of

the natural flexibility and heterogeneity of vessel walls in the flow

modelling process. Whilst the rigid wall assumption significantly

accelerates the solution of the governing Navier-Stokes equations,

modelling of the Fluid Structure Interaction (FSI) is essential to

correctly capture the coronary artery flow behaviour (27). Hence,

future developments will incorporate the FSI model into the

simulation driven dataset of the suggested cPOD-tSNE framework.

Despite the overall salutary results of the RFR method, to

further refine accuracy of the machine learning model predictions

in future, the RFR algorithm may be replaced by more advanced

methods such as those based on Gaussian processes; one

advantage of which being uncertainty quantification to provide

an overall error estimate for the user. Such estimations would be

an invaluable addition to a model that is intended for use as a

diagnostic tool for clinicians.

Finally, in line with many recent works devoted to the proof-

of-concept data-driven modelling of cardio-vascular flows (20),

we simplified the model by considering the vessel without side

branches. However, it is known that bifurcations occur in the

main stem of the left coronary artery, which might affect the

inflow conditions. Hence, to reduce the effect of the bifurcation

in the current study, the starting site of the 7 catheterised

segments was deliberately located 5 vessel diameters downstream

of the main stem. Nevertheless, to account for general topology

of coronary vessels, which may be of practical interest, the

suggested reduced order modelling approach will be extended to

side branches in future work.

Despite the above-mentioned limitations of the current work, it

can be concluded, using t-SNE and cPOD to perform interpolation

by Machine Learning was very successful for the proof-of-concept
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modelling of coronary artery flows. The speed and accuracy

obtained were highly motivating and were able to calculate the

pressure and shear stress fields of an unknown vessel within

seconds. Rheological theories of Atherosclerosis have been shown

to successfully predict plaque location, plaque progression, and

plaque rupture (22), but they have not been used to infer clinical

decisions. Current developments in physics-based AI allow us to

accelerate these methods such that clinical interventions in the

cath lab can be evaluated on novel parameters such as shear

stress, pressure drop and 3D velocity field.

To conclude, we developed a method to produce a very fast

solution to the Navier-Stokes equations, as we aimed to focus on

applying this method in a clinical environment with high

demand for rapid solutions. We are currently working towards

newer methods enabling time dependent flows that incorporate

solid state interactions, as well as higher accuracy AI modelling

functions with corresponding error estimates.
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