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Background: Atrial fibrillation (AF) leads to intracardiac thrombus and an
associated risk of stroke. Phase-contrast cardiovascular magnetic resonance
(CMR) with flow-encoding in all three spatial directions (4D-flow) provides a
time-resolved 3D volume image with 3D blood velocity, which brings individual
hemodynamic information affecting thrombus formation. As the resolution and
contrast of 4D-flow are limited, we proposed a semi-automated 4D-flow
segmentation method for the left atrium (LA) using a standard-of-care contrast-
enhanced magnetic resonance angiography (CE-MRA) and registration technique.
Methods: LA of 54 patients with AF were segmented from 4D-flow taken in sinus
rhythm using two segmentation methods. (1) Phase-contrast magnetic resonance
angiography (PC-MRA) was calculated from 4D-flow, and LA was segmented
slice-by-slice manually. (2) LA and other structures were segmented from CE-
MRA and transformed into 4D-flow coordinates by registration with the mutual
information method. Overlap of volume was tested by the Dice similarity
coefficient (DSC) and the average symmetric surface distance (ASSD). Mean
velocity and stasis were calculated to compare the functional property of LA
from two segmentation methods.
Results: LA volumes from segmentation on CE-MRA were strongly correlated with
PC-MRA volume, although mean CE-MRA volumes were about 10% larger. The
proposed registration scheme resulted in visually successful registration in 76%
of cases after two rounds of registration. The mean of DSC of the registered
cases was 0.770 ± 0.045, and the mean of ASSD was 2.704 mm±0.668 mm.
Mean velocity had no significant difference between the two segmentation
methods, and mean stasis had a 3.3% difference.
Conclusion: The proposed CE-MRA segmentation and registration method can
generate segmentation for 4D-flow images. This method will facilitate 4D-flow
analysis for AF patients by making segmentation easier and overcoming the limit
of resolution.
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1. Introduction

Atrial fibrillation (AF) is a growing epidemic affecting over 37 million individuals

worldwide in 2017, and the number of individuals with AF will increase at least 60% by

2050 (1). AF is a heart condition that causes an irregular and often very rapid heart

rhythm, leading to blood clots in the heart and increasing the risk of stroke, heart failure
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FIGURE 1

Decision tree for subject inclusion and exclusion. Patients with 4D-flow
MRI scan from CIROC database were included. After excluding apparent
quality issue data, volume segmentation of the two methods was
assessed. Cases were evaluated after registration. Apparently failed
cases were excluded from the final analysis.
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and mortality (2, 3). Currently, the CHA2DS2-VASc risk score

based on clinical risk factors is widely used for assessing the risk

of stroke and choosing appropriate antithrombic therapy in

patients with AF (4–6). However, its prediction accuracy is

limited as it does not count individual hemodynamic patterns

affecting thrombus formation. Cross-sectional transesophageal

echocardiography studies have indicated the association of flow

velocity in the left atrium (LA) and left atrial appendage (LAA)

with thromboembolic risk in patients with AF (7, 8).

Furthermore, phase-contrast cardiovascular magnetic resonance

(CMR) with flow-encoding in all three spatial directions (4D-flow)

provides 3D blood velocity information in 3D volume throughout

the cardiac cycle (9–11). With its power of visualization and

quantification, this technique opened new horizons in

understanding cardiovascular flow and has been used to assess flow

patterns and parameters, including velocity, stasis, and vorticity in

LA and LAA in patients with AF (12–22). However, the

segmentation of heart chambers is challenging because of the

limited resolution and contrast of the 4D-flow. Many 4D-flow scan

parameters have a trade-off with scan time. The conventional scan

takes about 10 min for a 3 mm resolution, which provides

insufficient detail for the segmentation of LAA in many cases. In

addition, during 4D-flow acquisition after routine measurements,

wash-out of the contrast agent further reduces the contrast of 4D-

flow. Thus, most previous 4D-flow studies in AF patients relied

upon manual segmentation on magnitude image (13, 20) or phase-

contrast magnetic resonance angiography (PC-MRA) (12, 13, 15,

16, 18, 21, 22), which is time-consuming, depends on the

operator’s knowledge and experience, and has limited

reproducibility (20). An interesting approach was 4D-flow co-

registration with the cine images (19). However, it requires a non-

standard extra cine sequence covering the complete volume of the LA.

Contrast-enhanced magnetic resonance angiography (CE-

MRA) is part of the standard-of-care imaging protocol for

patients referred for cardiovascular disease. With an injection of

gadolinium contrast agent, which shortens the T1 relaxation

time, the image of the vascular system is acquired in 3D with

enhanced resolution (−1 mm). Moreover, CE-MRA can benefit

from the optimal timing of contrast agent injection. Therefore,

fine structure in the heart can be readily recognized with CE-

MRA without the need for additional CMR sequences.

This study proposes a semi-automated segmentation method

for LA by using enhanced contrast and resolution of the CE-

MRA image. We hypothesized that the registration of CE-MRA

and PC-MRA would transform segmentations from CE-MRA to

4D-flow coordinates, and this transformed segmentation can

yield compatible analysis results from the conventional PC-MRA

segmentation method.
FIGURE 2

PC-MRA image example of excluded cases due to 4D-flow image
quality issue. (A) Stripe. (B) Partly void due to low intensity. (C) Low
contrast noisy image.
2. Methods

2.1. Subject population

In this retrospective study, a total of 108 patients with

paroxysmal AF with normal systolic function, scanned
Frontiers in Cardiovascular Medicine 02
between June 2017 and January 2020 with a 4D-flow scan,

were retrospectively included from the Cardiovascular Imaging

Registry of Calgary (CIROC) database (Figure 1). There were

54 cases excluded due to poor data quality in MR acquisition

(Figure 2). In detail, there were data errors in 2 cases and

stripes in magnitude and velocity images in 41 cases, and 11

cases were excluded due to low contrast. Fifty-four cases were

accepted for LA volume segmentation (age = 56.4 ± 11.1,

female = 16).

A commercial software (intakeDITM, Cohesic Inc., Calgary,

Canada) was used to coordinate routine capture of patient

informed consent and health questionnaires and for standardized

collection of MRI-related variables. Patients with significant

mitral or aortic valve disease and inappropriate/incomplete image

reconstruction cases were not included. The study was approved

by the University of Calgary’s Conjoint Health Research Ethics

Board, and all subjects gave written informed consent.
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All performed research activities were in accordance with the

Declaration of Helsinki.
2.2. MRI data acquisition

All subjects were required to be in sinus rhythm at the time of

CMR imaging. Patients and healthy subjects underwent an

identical standardized MRI protocol using 3 T MR scanners

Skyra/Prisma (Siemens, Erlangen, Germany) inclusive of

standard multi-planar steady-state free-precession (SSFP) cine

imaging in 4-chamber, 3-chamber, 2-chamber, short-axis of the

LV at end-expiration. A three-dimensional magnetic resonance

angiography (MRA) of LA was performed using the

administration of 0.2 mmol/kg gadolinium contrast (Gadovist®,

Bayer Inc., Mississauga, Ontario, Canada) at 2–3 ml/s. Three

volumetric acquisitions were performed: one pre-contrast

(for subtraction), one during the first pass, one after contrast

administration. Subtraction volume was used for LA

segmentation. Acquisition parameters were: Acquisition

matrix = 384 × 286; repetition time = 3.39 ms; echo time = 1.16;

flip angle = 20–25 degrees; and spatial resolution = 1.17 × 1.17 ×

1.19–1.39 mm.

Approximately 5–10 min following contrast injection, 4D-flow

MRI using an ECG retrospectively triggered sequence with

respiratory navigator-based gating (WIP 785A) was taken with

imaging parameters previously described (14, 18, 22): gating =

prospective, flip angle = 15 degrees, FOV = 200–420 mm × 248–

368 mm, spatial resolution = 2.0–3.5 × 2.0–3.5 × 2.5–3.5 mm;

temporal resolution = 25–35 ms, 25–30 phases, and velocity

sensitivity = 150–200 cm/s. Total acquisition time varies between

8 and 12 min, depending on heart rate and respiratory navigator

efficiency.
2.3. Standard cardiac analysis and 4D-flow
MRI pre-processing

A commercial software (cvi42 v5.11, Circle Cardiovascular

Imaging Inc., Calgary, Canada) was used to determine the heart

function from standard ECG-gated cine images. The short axis

cine images were used to obtain LV end-diastolic volume (EDV),

LV end-systolic volume (ESV), LV stroke volume (SV), LV mass,

LV cardiac output (CO), LVEDV indexed to BSA, LVESV

indexed to BSA, LV mass indexed to BSA and LV ejection

fraction (LVEF).

4D-flow MRI pre-processing was performed using an in-house

program developed in Matlab. Preprocessing steps included noise

masking, velocity anti-aliasing, and corrections for Maxwell

terms and eddy currents (22–24).
2.4. Conventional segmentation method

All data underwent preprocessing to correct for Maxwell terms,

eddy current-induced phase offset, and velocity aliasing, if
Frontiers in Cardiovascular Medicine 03
necessary. PC-MRA was generated from 4D-flow MRI by

multiplying the magnitude image and the magnitude of velocity

from the phase image for each voxel (23).

PCMRA(~r) ¼ 1
N

XN
i¼1

IMag
i (~r)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x,i(~r)þ v2y,i(~r)þ v2z,i(~r)

q

Where~r is the spatial location within the volume, i is the measured

time frame within the cardiac cycle out of a total number of N

frames. Magntide and velocity images are noted by IMag
i and v,

velocity encoding direction is given by x, y, z. LA was segmented

slice-by-slice manually using in-house software written in Matlab

[9.12.0.1956245 (R2022a) The MathWorks Inc., Natick,

Massachusetts, USA].
2.5. CE-MRA registration method

Figure 3 summarize the CE-MRA registration process. CE-

MRA DICOM images and PC-MRA were imported into 3D

Slicer 5.0.2 (25). Major vascular and chambers were segmented

from CE-MRA images using the seed-and-grow method

(Figure 3B). Seed points were given to LA as well as other major

structures such as pulmonary vein (PV), pulmonary artery, aorta,

and left ventricle for reference. Segments were refined

interactively after initial growth. LAA was separated from LA by

cutting at the orifice. A median filter and closing volume filter

with a kernel size of 3 mm were applied for each segment. PC-

MRA image generated from 4D flow from the previous section

was also imported and underwent bias correction filter

(Figure 3C).

General Registration (BRAINS) module (26) was used for

finding the transformation of registering CE-MRA (moved) into

PC-MRA image (fixed) (Figure 3E Top). As a cost metric,

mutual information was chosen for its immunity in multi-modal

registration. Rigid transformation was applied assuming there is

no deformation between two measurements other than patient

moving. Percentage of samples was set to 0.2 considering trade-

off with registration quality and time consumption. Maximum

iteration was set to 1,500 but not reached in any case. The same

transformation was applied to CE-MRA segmentation to be

overlaid on PC-MRA (Figure 3E Bottom). If the transformed LA

and PV segments did not match well with the PC-MRA image

by visual inspection, the second round of registration was

executed with the region-of-interest (ROI), including the upper

chambers but excluding the aortic arch (Figure 3D), and the

percentage of samples was 1.0. ROI is set as a simple cube shape

to keep the process simple and quick.

Finally, inspection-passed segmentations were transformed

and resampled to be conformed with 4D-flow coordinates

using in-house software written in Matlab. Nearest-neighbor

interpolation method is used in resampling to generate binary

mask.
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FIGURE 3

A sample case of the CE-MRA registration method. Segmentation was done on the high-resolution CE-MRA image (A,B). PC-MRA (C) was overlayed on
CE-MRA, and registration was processed (E, top). CE-MRA segmentation was transformed following the same transform (E, bottom). The first round of
registration may match the aortic arch rather than the heart chambers due to the difference in distance between them in the two images (E, middle
column). For these cases, ROI was set around the heart chamber (D), and registration was processed once more (E, right column).

Kim et al. 10.3389/fcvm.2023.1225922
2.6. Evaluation

The volume of the LA was measured from segmentations from

PC-MRA and CE-MRA, respectively. The LA volume from

CE-MRA is measured after transformation and resampling

to PC-MRA coordinate space in accordance with the resolution

of PC-MRA.

Registration of CE-MRA segmentation to 4D-flow was assessed

by Dice similarity coefficient (DSC) (27) and average symmetric

surface distance (ASSD) (28) with PC-MRA segmentation. DSC

measures the spatial overlap between two regions.

DSC (A, B) ¼ 2 jA> Bj
jAj þ jBj

ASSD is the average distance from all surface voxels from both

volumes.

ASSD (A, B) ¼ 1
jS(A)j þ jS(B)j

X
a[S(A)

min
b[S(B)

ka� bk þ
X
b[S(B)

min
a[S(A)

ka� bk
 !

where S(A) is the set of surface voxels of A and k k denotes

Euclidean distance.

Mean velocity and stasis were calculated to compare the

functional properties of LA from the two segmentation methods.
Frontiers in Cardiovascular Medicine 04
For stasis, the velocity threshold was set to 0.1 m/s based on

previous studies (15).
2.7. Statistics

Statistics were analyzed using IBM SPSS Statistics for

Windows, version 29.0 (IBM Corp., Armonk, N.Y., USA).

Shapiro-Wilk test of normality was conducted then variables

were reported as mean ± standard deviation (SD) if normally

distributed or median [interquartile range]. For volume

comparisons, a two-tailed paired t-test was used to evaluate

differences. Pearson’s correlation method was used to determine

the correlation between two variables. Bland–Altman analysis

was reported with the mean differences and 95% confidence

intervals for the limits of agreement.
3. Results

3.1. Subject demographics

Demographics of LA volume segmentation subjects are

summarized in Table 1. The mean age was 56.4 years, and 30%

were female. The median of the CHA2DS2-VASc score was 1.0.

Detailed risk factors are described in Table 2. Among the
frontiersin.org
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TABLE 2 Risk score and factors.

LA segmented (valid n = 52)

CHA2DS2-VASc
0 16 31%

1 22 42%

2 10 19%

3 4 8%

Risk factors
CHF/LV dysfunction 1 2%

Hypertension 18 35%

Aged 75 or over 0 0%

Diabetes 3 6%

Stroke 3 6%

Vascular disease 1 2%

Aged 65–74 13 25%

Sex category female 15 29%

CHF, congestive heart failure; LV, left ventricle.

TABLE 1 Baseline characteristics.

LA segmented (n = 54)

Mean ± SD, Median [range] or count
(percent)

Age (years) 56.4 ± 11.1

Sex (female) 16 (30%)

Height (m) 1.76 ± 0.10

Weight (kg) 84.5 [75.0–106.7]

BSA (m2) 2.09 ± 0.27

HR (bpm) 64 ± 12

Systolic BP (mmHg) 117 ± 15

Diastolic BP
(mmHg)

69 ± 10

CHA2DS2-VASc 1.0 [0.0–2.0]

Kim et al. 10.3389/fcvm.2023.1225922
subjects whose medical history records were available,

hypertension, female, and age were common risk factors, and the

overall risk score was low (=0) or moderate (=1) in 73%.
3.2. Volume comparison

LA volume measured from CE-MRA segmentation was 93.9 ±

24.9 ml, while volume from PC-MRA was 84.1 ± 26.1 ml (p <

0.001). The volume ratio of the two segmentations was 1.24 ±

0.26, and the two volumes have a strong positive association

(r = 0.846, p < 0.001, Figure 4A). Bland-Altman plots revealed no

proportional bias between the two segmentation methods’

volume, and most of the data points lay in 95% limits of

agreement (LoA) (Figure 4B). LAA volume from CE-MRA

segmentation was 3.99 [2.68–6.13] ml.
3.3. Registration and overlap

The sample cases of registration are shown in Figure 5. The

first round of registration of CE-MRA onto PC-MRA was

successful in 22 cases by visual inspection out of 54 cases. The
Frontiers in Cardiovascular Medicine 05
second round of registration was executed with ROI around LA

for the other cases. Visual inspection accepted 19 cases while

rejecting the other 13 cases. In all, 41 out of 54 (76%) cases of

CE-MRA segmentation were successfully registered to the 4D-

flow domain with this two-round scheme.

The mean of DSC of the registered cases was 0.770 ± 0.045, and

the mean of ASSD was 2.704 mm ± 0.668 mm (Figure 6). Shapiro–

Wilk test results indicated that both data are normally distributed

(p = 0.426, 0.093, respectively).
3.4. Functional evaluation in LA

There was no significant difference in the average mean

velocity in LA volume from CE-MRA with mean velocity from

PC-MRA segmentation (9.1 ± 1.6 cm/s vs. 9.2 ± 1.7 cm/s, p =

0.286) in 41 successful registration cases. Individual data points

were strongly correlated (r = 0.947, p < 0.001, Figure 7A). No

proportional bias was observed in the Bland–Altman plot

(Figure 7B).

The average mean stasis calculated from LA volume from CE-

MRA segmentation was 53.9 ± 12.6%, while the average mean stasis

from PC-MRA was 50.6 ± 13.7%. There was a significant mean

difference of 3.3% (p < 0.001). Nevertheless, the two datasets

were strongly correlated (r = 0.962, p < 0.001), and there was no

proportional bias (Figures 7C,D).
4. Discussion

In this study, we have developed a segmentation and

registration workflow to use CE-MRA imaging data for 4D-flow

analysis. Prior to analysis, a data quality check validated 50% of

the total cases, while others were rejected due to limited 4D-flow

data quality. LA volumes from segmentation on CE-MRA

correlated strongly with PC-MRA volumes, although they were

approximately 10% larger. The proposed registration scheme

resulted in visually successful registration in 76% of cases.

Despite volume differences and registration errors, mean velocity

had no significant difference, while stasis had a significant but

only 3.3% difference.

The measured LA volume was 93.9 ± 24.9 ml from CE-MRA

segmentation and 84.1 ± 26.1 ml from PC-MRA segmentation.

This value was reasonable for this AF cohort compared to AF-

sinus cases in previous studies of 115 ± 42 ml and 64 ± 29 ml,

repectively (15, 16). Volume was relatively largely evaluated in

CE-MRA. This may come from different segmentation methods;

the seed-and-grow method may include more partially-occupied

voxels at the blood pool and tissue border than manual

contouring. We counted the number of voxels on the surface of

the LA segment. The average ratio of surface voxels to total LA

voxels was 14% with 6 connectivity or 23% with 26 connectivity.

This supports the decision of a boundary voxel can produce the

difference between the two methods.

Registration of CE-MRA and PC-MRA was successful in 41%

of cases on the first attempt. Among the registration parameters,
frontiersin.org
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FIGURE 5

Samples of registration. Three successful registration cases with different Dice similarity scores and one rejected case are shown here. The left column
shows LA segmentations with adjacent flows. The middle column shows two segmentations only. The right column shows the pathlines of LA flow.
yellow: PC-MRA LA segmentation; green: CE-MRA LA segmentation.

FIGURE 4

(A) LA segmentation from CE-MRA is strongly correlated with the segmentation from PC-MRA (r = 0.846, p < 0.001). (B) Bland-Altman plot of LA volume
from two segmentation methods with the 95% limits of agreement.

Kim et al. 10.3389/fcvm.2023.1225922
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FIGURE 6

Registration result evaluation. (A) Mean of the Dice similarity coefficient between LA segmentation from PC-MRA and CE-MRA is 0.770. (B) Mean of the
Average Symmetric Surface Distance was 2.704 mm.

FIGURE 7

Comparison of functional evaluation using LA volume segmented from PC-MRA and CE-MRA. (A) Mean velocity from two volumes was strongly
correlated. (B) Bland-Altman plot of mean velocity presents no proportional bias. (C) Mean stasis from two volumes was strongly correlated. (D) Mean
difference was 3.28%, and there was no proportional bias.

Kim et al. 10.3389/fcvm.2023.1225922
the percentage of samples was adjusted to optimize registration

quality and processing time. Varying other parameters did not

affect the result. In many cases, the registration of the entire area

corresponded to the aorta rather than the heart chambers. PC-

MRA was generated by averaging over the whole cardiac cycle,

whereas CE-MRA was taken from the target phase so that it may

result in a relative positional difference between the aorta and

the heart chambers. By excluding the aortic arch from the

registration calculation, the LA was successfully registered in 19

out of 32 cases on the second registration attempt. Precise
Frontiers in Cardiovascular Medicine 07
contouring of the ROI could further improve the success rate,

but was not attempted because the purpose of this procedure is

to keep it simple and easy. The average ASSD of 2.70 mm, which

is less than one voxel length in 4D-flow, indicated that the

registration result was acceptable. This study registered 76% of

cases successfully after two rounds of registration. A previous

study indicated success rate of mutual information was reduced

with increase of noise level and this can be improved with

modified cost function (29). Enhanced registration method

including this approach would be applied in the following study.
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In the functional evaluation, there was a 3.3% increase in mean

stasis with CE-MRA while there was no significant difference in

mean velocity. This increase in stasis may be related to the

oversegmented volume in CE-MRA resulting from the boundary

between the flow and stationary tissue. Due to the partial volume

effect, these voxels should represent the velocity between flow

velocity and tissue motion. With mean velocity, this effect is

diluted in proportion to the total volume. Stasis, however,

compares the velocity to a predefined threshold and converts it

to binary, thus exaggerating partial volume voxels. Nevertheless,

this difference in stasis has no practical impact on 4D-flow

analysis, as the stasis difference between AF patients and healthy

controls was 10% to 18% in previous studies (15, 16, 18, 19).

Approximately, PC-MRA manual segmentation took 20–

30 min per case. All cases were performed by a 4-year 4D-flow

MRI reader specialized in AF. In comparison, CE-MRA seed-

and-grow segmentation took around 10–15 min, and automatic

registration computation time was about 15–20 s for the first

round and 35–50 s for the second round using an Intel Core i7-

9750H (2.60 GHz) CPU with 32 GB of RAM. Although the

segmentation time was largely dependent on data quality and

user experience, the semi-automated segmentation method with

CE-MRA reduced user interaction compared to manual

segmentation from scratch. This method currently requires

additional time to convert file formats and switch operating

platforms. However, this would eventually be reduced or

eliminated by software integration. This study focused on LA

segmentation, so the roughly outlined LAA was separated from

the LA only to obtain a consistent LA segmentation. However,

the measured size of the LAA was in agreement with previous

studies. Moreover, we were able to clearly observe the shape

and border of the LAA with CE-MRA, thanks to the

approximately 2.5–3 times higher spatial resolution than with

4D-flow. If we make sufficient efforts to precisely define the

LAA, this method will be advantageous for the 4D-flow study

of the LAA.
5. Limitations

This method required manual input in several steps, so the

result may still depend on the operator. The seed-and-grow

method required not only seed input but also manual refinement

afterwards, and the registration success or failure was determined

by visual inspection. An automatic method to judge the

registration results based on the flow pattern within the

segmentation could be investigated in the future.

All cases were acquired from the database of patients with

paroxysmal AF patients prior to ablation. While their 4D-flow

was acquired in sinus rhythm, AF induces structural alteration,

so they should have had some degree of dilation. Application of

this method to healthy controls and persistent AF patients will

assess the generalizability of this method.

For the excluded cases prior to volume segmentation, we do

not know all the reasons for the low quality, but in most cases it
Frontiers in Cardiovascular Medicine 08
may be an arrhythmia. Although patients were supposed to be in

sinus rhythm, it is not uncommon for them to have AF episodes

during the 4D-flow scan. Since 4D-flow requires in-line image

reconstruction following a long acquisition, it is difficult to detect

acquisition and reconstruction errors and rescan the patient

during busy clinical routine examinations. Several of the excluded

cases presented stripes generated during the reconstruction

process. These stripes cannot be corrected during pre-processing.

A possible solution is to repeat the in-line reconstruction in the

scanner using the acquired raw data. However, this task may be

difficult to perform in high-demand clinical routine examinations

given the limited time during the scan sessions and the

qualifications required to perform this advanced task in the

scanner.

In about a quarter of cases, registration failed even after the

second attempt. Precise setting of ROI in both CE-MRA and

PC-MRA segmentation, for example, contouring along the

entire heart, may improve registration. However, it will add

another operator manipulation and processing time; therefore,

it was not considered. In this study, we only used time-

averaged PC-MRA for signal-to-noise ratio, but this method

smooths the moving structure to make a difference with the

CE-MRA image. Registration with PC-MRA of the individual

time phase or the average of a short period may be applied in

the future.

Our methodology showed a DSC of 0.77 and a ASSD of

2.7 mm which indicates noticeable differences between the

manual LA segmentation from the PC-MRA and the LA

segmentation from the CE-MRA. The resampling process into a

lower resolution may increase the matching error between

volumes. This is an important limitation that needs to be

addressed in future work of the study.

Flow was evaluated using mean velocity and stasis. Several other

metrics, such as peak velocity, kinetic energy and vortex, have been

used in previous studies (30). Based on the assumption that most

of the error is in the low-velocity boundary region, we expect that

the segmentation difference would not affect peak velocity and

vortex at the centre. As kinetic energy is basically a second-order

calculation of velocity, the effect of the low-velocity region will be

even less. However, investigations on these analyses will prove

whether this segmentation method can be used mixed with the

traditional method.

Furthermore, this study did not included inter- and intra-

variability analysis and scan-rescan assessment. Unveiling the

variability and repeatability of the proposed approach must be

considered in the continuity of this study.
6. Conclusion

The proposed CE-MRA segmentation and registration

method can generate segmentation for 4D-flow MRI images.

The transformed LA segmentation moderately matches the 4D-

flow image and produces analysis results compatible with the

conventional segmentation method. The use of this method will
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facilitate 4D-flow analysis for AF patients by making

segmentation easier and overcoming the limitation of resolution

and contrast.
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