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A new perspective on HIV: effects
of HIV on brain-heart axis
Honghua Shao and Sijun Li*

Department of Internal Medicine, The Fourth People’s Hospital of Nanning, Nanning, China

The human immunodeficiency virus (HIV) infection can cause damage to multiple
systems within the body, and the interaction among these various organ systems
means that pathological changes in one system can have repercussions on the
functions of other systems. However, the current focus of treatment and
research on HIV predominantly centers around individual systems without
considering the comprehensive relationship among them. The central nervous
system (CNS) and cardiovascular system play crucial roles in supporting human
life, and their functions are closely intertwined. In this review, we examine the
effects of HIV on the CNS, the resulting impact on the cardiovascular system,
and the direct damage caused by HIV to the cardiovascular system to provide
new perspectives on HIV treatment.
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1. Introduction

Acquired immune deficiency syndrome (AIDS) is a condition characterized by systemic

immune deficiency caused by infection with the human immunodeficiency virus (HIV). HIV

could evade the innate immune detection in the eclipse phase that follows virus inoculation

and establish a foothold in host cells, which lead to massive virus propagation in T cells and

significant T cell death (1). HIV primarily targets cells that possess CD4 receptors,

particularly CD4+ T cells, leading to immune system dysfunction, damage to multiple

systems within the body, and severe consequences (2–6). Each year, an estimated 2.5

million individuals become infected with HIV, and HIV-related illnesses contribute to

around 2.1 million deaths (7). Towards the end of the previous century, highly active

antiretroviral therapy (ART) was introduced in clinical practice due to its effectiveness in

suppressing the viral load of HIV throughout the body, reducing mortality rates, and

lowering the incidence of opportunistic infections in individuals with AIDS (8).

Consequently, AIDS transformed from a fatal disease to a chronic condition, with the life

expectancy of people living with HIV becoming comparable to that of the general
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population, primarily due to the widespread use of ART (9).

However, it’s important to note that HIV can impact multiple

systems, in addition to the immune system (10–15), such as the

central nervous system (CNS), cardiovascular system (CS),

respiratory system, digestive system, urinary system, and

endocrine system. Compared to individuals without HIV, those

infected with HIV have a higher risk of developing neurological

and cardiovascular diseases, which tend to occur at an earlier

stage, significantly impacting their quality of life (9). The

interconnectedness of various organ systems implies that

pathological changes in one system can affect the functioning of

other systems (16). As a result, even if HIV primarily affects a

specific system, its interaction with other systems can disrupt

their normal physiological functions, exacerbating the disease in

patients. Despite this complexity, most HIV treatment and

research remain focused on individual systems, often overlooking

the comprehensive interplay among different systems.

The regulatory mechanism of the CNS plays a significant role

in the functioning of CS (11). A complex interaction exists

between the CNS and CS, where the brain acts as the higher

regulatory center, and the autonomic nervous system (ANS) is

the final effector in regulating cardiovascular activities. Various

brain regions, including the prefrontal cortex (PFC), insular

cortex, amygdaloid nucleus, cingulate cortex, hypothalamus and

brainstem, form intricate networks within the nervous system to

regulate the ANS. Ultimately, the ANS controls CS, establishing

the brain-heart axis (17, 18). In this review, our primary focus is

to discuss the effects of HIV on the CNS and its subsequent

impact on the CS. We also discuss the direct damage caused by

HIV to the CS itself, and it is important to note that our

discussion specifically centers on the damage caused by HIV and

does not cover opportunistic infections resulting from HIV. The

references were obtained from PubMed (https://pubmed.ncbi.

nlm.nih.gov/). The main search keywords were “HIV”, “AIDS”,

“brain”, “central nervous system”, “heart”, “cardiovascular”,

“microglia”, “astrocyte”, “neuron”, “prefrontal cortex”, “insular

cortex”, “amygdaloid nucleus”, “cingulate” “cortex”, “hypothalamus”,

“brainstem”, “heart muscle”, “endocardium”, “pericardium”, “artery”

and “Arrhythmia” and so on. The years of search was from

1949 to 2023.
2. Effects of HIV on CNS

The entry of HIV into a target host cell involves the interaction

between the viral envelope glycoprotein gp160 and the host

receptor. The gp160 is transported through the cellular secretory

pathway to the plasma membrane (19). During this process, it

undergoes extensive glycosylation, oligomerization into trimers,

and proteolytic maturation mediated by a cellular furintype

protease that cleaves it into the mature gp120 and gp41 Env

subunits, which interact with the CD4 receptor, CC chemokine

receptor 5 (CCR5), or C-X-C chemokine receptor 4 (CXCR4) on

the surface of the host cell (19, 20). Consequently, HIV has a

propensity to invade cells that express CD4 receptors on their

cell membranes, including microglia, T lymphocytes,
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mononuclear/macrophages, and dendritic cells (2–5). Although

ART can effectively reduce viral load and the occurrence of

opportunistic infections, it is unable to completely eradicate the

dormant virus within the host. HIV is known as a neurotropic

virus that can cause damage to the nervous system (21).

Therefore, to properly diagnose and treat HIV-related

neurological damage, it is crucial to understand the relationship

between HIV and various cells within the CNS, identify the

susceptible sites of the CNS, and comprehend the mechanisms

by which HIV induces damage to the CNS.
2.1. Cells in CNS Infected by HIV

In peripheral system, the human leukocyte antigen (HLA) and

cytotoxic T lymphocyte (CTL) play the key roles in cell-mediated

adaptive immune response (22, 23). The primary function of

HLA is to present endogenous and exogenous antigens to T

lymphocytes for recognition and response (24). The HLA

molecules are cell surface glycoproteins, including two main

classes: HLA class I and HLA class II molecules. HLA class I

molecules are predominantly involved in the immune defense of

intracellular pathogens, and HLA class II play an essential role in

displaying peptides from extracellular pathogens (25). Lazaryan

et.al suggested that a higher frequency of HLA genotypic

supertypes correlated with a higher mean viral load and lower

mean CD4 count (26).The CTL delivers a cocktail of cytotoxic

substances from secretory lysosomes (cytolytic granules) to

destroy the target (23). Madrid-Elena et.al considered that CTLs

are suppressed after HIV infection, which may be related to

miRNA((hsa-miR-10a-5p) (27). However, the effects of HIV on

CNS various cells are more complex.

The precise mechanism by which HIV enters the nervous

system is not yet fully understood, but several hypotheses have

been put forward. One such hypothesis is the “Trojan horse”

theory, suggesting that the virus gains access to the CNS using

monocytes or infected CD4+ T lymphocytes as a means of

transport (6). Another hypothesis, proposed by Ruifen Xu

et al., suggests that HIV can disrupt the integrity of the blood-

brain barrier (BBB) by affecting the tight connections between

endothelial cells that form the blood vessels, thereby allowing

entry into the brain (28). Banks et al. proposed that HIV

crosses the BBB through cellular transfer facilitated by the

viral envelope protein gp120 (29). Additionally, Kamerman

suggested that HIV may directly infect peripheral nerve fibers

and subsequently travel in a retrograde manner to reach the

CNS (30). Once inside the CNS, HIV invades various cell types,

including astrocytes, microglia, oligodendrocytes and neurons

Table 1 and Figure 1 (31).

2.1.1. Astrocyte
Interestingly, HIV infectious virions and viral proteins have

been detected in astrocytes, despite these cells lacking CD4

receptors and CCR5 (32). Astrocytes can internalize HIV

through endocytosis and maintain viral latency by suppressing

viral replication (33–35). Although HIV cannot replicate, it can
frontiersin.org
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TABLE 1 Cells in CNS infected by HIV.

Cell-type Physiological
function

The way HIV
damages

cells

Pathological
features caused

by HIV
Astrocyte Provide vital

energy support to
neurons (39, 97)

1.Endocytosis
and maintain
viral latency
(33–35)
2.Production and
release of viral
proteins (36)

1.Energy metabolism
disorders (38–40)
2.Formation of glial
scars (41, 42)
3.Influence the BBB
(43)

Microglia Innate immune
(44)

Direct HIV
infection (48)

Release inflammatory
chemokines and
cytokines (49, 50)

Oligodendrocytes Form the myelin
sheath of the axon
(51)

Production and
release of viral
proteins (55)

1.Inhibition of cell
growth,
developmental
retardation,cell
death (56, 57)
2.WM damage
(52, 53)

Neuron Fundamental
functional units
(58)

1.Direct HIV
infection (59–61)
2.Viral proteins
disrupt the Ca2+

homeostasis (62)

1.E/I imbalance (65)
2.Neuronal
dysfunction, injury
and death (62)
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interact with astrocytes, leading to the production and release of

viral proteins such as Tat, Nef and Rev, contributing to

inflammation and nerve damage (36). Inflammation in the

nervous system can disrupt the energy metabolism of

astrocytes (37). Given that astrocytes provide vital energy

support to neurons, any disturbance in their energy

metabolism can lead to neuronal energy metabolism disorders

(38–40). In addition, inflammation can stimulate the

proliferation and differentiation of astrocytes, resulting in the

formation of glial scars, which impede axon regeneration and

cell migration and directly affect neuronal growth (41, 42).

More importantly, as a significant component of BBB,

astrocytes may influence the function and structure of the BBB

when affected by HIV (43).
2.1.2. Microglia
Microglia, a component of the innate immune system, are often

referred to as the “macrophages” of the CNS (44). Excessive

activation of microglia can contribute to the development of

various neurological disorders, including Alzheimer’s disease

(45), Parkinson’s disease (46) and HIV-associated neurocognitive

disorder (HAND) (47). Microglia more susceptible to HIV

infection due to CCR5 is expressed on the cell surface (48).

Prolonged microglia activation can increase inflammatory

chemokines and cytokines, adversely affecting astrocytes and

neurons and increasing neurotoxic substances that induce

neuronal apoptosis, ultimately contributing to the development

of HAND (49, 50).
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2.1.3. Oligodendrocytes
Oligodendrocytes, which form the myelin sheath of the axon of

the brain, do not touch the axon directly but repeatedly wrap the

extension of axons and then gather the myelin sheath of multiple

helical structures (51). The formation of the myelin sheath

increases the speed and energy efficiency of nerve conduction by

facilitating the jump in signal transmission (52), which is

essential for cognitive functions (53). The involvement of HIV

infection in oligodendrocytes, which specifically express the

CXCR4 receptor, remains a topic of debate (54). However,

research conducted by Zou et al. indicates that damage to

oligodendrocytes is caused by the release of the Tat protein by

HIV, resulting in the inhibition of cell growth, developmental

retardation, and even cell death (55). In addition to Tat, the

gp120 protein has been implicated in oligodendrocyte injury, as

it inhibits myelination, induces dysfunction and triggers

apoptosis of oligodendrocytes (56, 57).
2.1.4. Neuron
Neurons are the fundamental functional units of the nervous

system and are considered non-regenerative cells (58). The

ability of HIV to infect neurons is still a matter of debate.

Previous studies have shown that adult neurons express CXCR4,

CCR5 and CCR3 on their surface and that CD4 receptors may

also be present in certain neurons located in the cerebellum,

thalamus, pons and hippocampus (59–61). Nath et al. proposed

that proteins such as Tat and gp120 can disrupt the Ca2+

homeostasis of neurons and normal neuronal functions, leading

to neuronal dysfunction, injury and death (62). Exposure of

neurons to Tat and gp120 has been shown to increase the levels

of glutamate (Glu) and the expression of N-methyl-D-aspartic

acid (NMDA) receptors (63, 64). Furthermore, gp120 can

enhance the inhibitory function of neurons by increasing the

expression of gamma-aminobutyric acid (GABA) type A

receptors (65).
2.2. The areas of CNS vulnerable to HIV

HIV can have wide-ranging effects on the metabolism, neural

network structure, and volume of the brain (66–68). Certain

cortical and subcortical regions of the brain, including the medial

prefrontal cortex (MPFC), basal ganglia, and hippocampus,

which play crucial roles in cognition and emotion, are

susceptible to the impact of HIV and HIV-related proteins,

leading to functional and structural alterations within these

regions (69, 70). Jason J. Paris et al. has shown that the Tat

protein can induce microglia activation in the MPFC, anterior

cingulate cortex (ACC), amygdala, nucleus accumbens, and

dentate gyrus, suggesting that these regions are also vulnerable to

the effects of HIV (71). Furthermore, Sara R. Nass et al.

demonstrated that HIV Tat protein not only affects the PFC and

amygdala but also reduces oxytocin levels in the hypothalamus

(72). Theresa K. Smit et al. dissected the brains of HIV-infected

individuals and identified the presence of HIV in the frontal,
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FIGURE 1

Cells in CNS infected by HIV. The cells in CNS, including astrocyte, microglial, oligodendrocyte and neuron, are affected directly or indirectly by HIV,
ultimately leading to dysfunction, injury and death.
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parietal, and occipital lobes (73). Jing Sui et al. utilized head MRI

scans and observed abnormal changes in gray matter volume in

the thalamus, prefrontal lobe, precuneus, posterior parietal lobe,

and occipital lobe of HIV-infected patients (68). Additionally,

Eleni Giatsou et al. demonstrated continuous HIV replication in

multiple brain regions, including the cerebellum, bulbar region,

temporal lobe, substantia nigra, and caudate nucleus (74).
2.3. HIV-induced CNS damage

The acute HIV infection period is brief and peak viremia

predicts a viral set point that occurs 4–5 weeks following

infection (75). Following the detection of HIV RNA, highly

activated CD8+ T cells expand and peak approximately 2 weeks

following peak viral load (76). Early in HIV infection, the count

of CD4+ T cells is greater than 500 cells/ml (77). Days 8 to 30

after infection are characterized by massive viral replication and

the death of large numbers of CD4+ T cells (78). Bolzenius et al.
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indicated that brain volume alterations may occur in acute

infection, with the most prominent differences evident in the

later stages of acute HIV infection (79). Nevertheless, Hellmuth

et.al suggested that no structural neuroimaging abnormalities

were observed in acute HIV infection (80). With the success of

ART, HIV-seropositive patients can now live for many years

despite chronic viral infection. The CD4+ count of chronic HIV-

infected patients receiving ART remain above 250 cells/ml (81).

Chronic HIV infection causes persistent low-grade inflammation

that induces premature aging of the immune system including

senescence of memory and effector CD8+ T cells. CD8+ T cell

dysfunctions associated with chronic HIV infection may lead to

chronic disturbances in the ability of these cells to properly

engage with infected target cells (82). In the chronic phase of

HIV infection, the HIV-related damage to the CNS has shifted

towards chronic lesions, leading to conditions such as cognitive

impairment, behavioral disorders, and motor dysfunction

collectively known as HAND (83). However, the diagnosis and

treatment of HIV-related HAND face significant challenges
frontiersin.org
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because the incidence of HAND does not show a significant

correlation with the concentration of HIV-RNA (viral load) or

the count of CD4 cells, which are commonly used markers to

monitor HIV infection. Instead, the risk of developing HAND

tends to increase as the duration of HIV infection progresses

(84–87). Previous studies have identified two stages of HIV-

induced CNS damage. The first stage involves metabolic

disorders (88–90), while the second involves structural lesions (91).

2.3.1. Metabolic dysfunction of CNS
In the early stages of HAND, patients may experience mild

difficulties with concentration, motor symptoms, and focal

cortical deficits such as apraxia, agnosia, or aphasia (92),

although there is no significant observable loss of neurons or

other substantial pathological changes detected in HIV patients

during this stage (93). In addition, although neuroimaging

studies also do not typically reveal significant lesions or

structural changes, alterations in certain metabolites have been

observed Figure 2 (94). The metabolism of the nervous system is

a complex physiological process involving the production of

sufficient ATP for energy and the synthesis of neurotransmitters

essential for maintaining normal physiological brain functions

(95). Upon entering the nervous system, glucose in the blood

undergoes a series of enzymatic reactions catalyzed by key

enzymes like hexokinase, 1,6-diphosphofructokinase-1 and

pyruvate kinase, which can convert glucose into pyruvic acid

(Pyr), and subsequently, the tricarboxylic acid cycle generates

ATP, providing energy for neuronal functions (96). Neuron-

astrocyte interaction is another important mechanism for energy

supply in the brain (39, 97). Glucose in astrocytes is converted

into glycogen under the influence of glycogen synthase (GYS),

which is then gradually broken down into pyruvate (98). Some of

these pyruvates are converted into lactate by the enzyme lactate

dehydrogenase 5 (LDH5), which is then transported to neurons

and converted back into pyruvate by lactate dehydrogenase 1

(LDH1), entering the tricarboxylic acid cycle pathway (99).

During this cycle, α-ketoglutaric acid in neurons can react with

NH3 to form Glu (100, 101), which can be further converted

into gamma-aminobutyric acid (GABA) through the catalytic

action of glutamic acid decarboxylase (GAD) (102, 103).

Rottenberg D et al. observed glucose hypermetabolism in the

thalamus and basal ganglia, along with hypometabolism in the

cortex and subcortical gray matter during the early stages of

HIV-associated HAND (104). Zeping Wang et al. found that

after receiving ART, glucose metabolism in the frontal cortex of

HIV-infected individuals was enhanced, suggesting that the

damage to the frontal cortex at this stage is potentially reversible

(105). After HIV infection, the level of ATP in the brain is

decreased, and the level of ATP in the peripheral blood is

increased (106, 107). Tat, an HIV protein, has been implicated in

increasing Glu levels and decreasing GABA levels in the brain

(108), which may be related to the inhibition of GAD by HIV

(109). In the early stages of HIV infection, increased levels of

Glu in the brain can contribute to excitatory neurotoxicity,

leading to clinical symptoms such as reduced attention

(110, 111). As the disease progresses, individuals with HIV and
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cognitive deficits tend to have lower Glu levels in the parietal

gray matter, indicating that decreased Glu levels may contribute

to cognitive impairment (112). In addition to HAND, HIV-

associated epilepsy is also a significant challenge, with reported

incidence rates ranging from 6.1% to 83.75% (113, 114).

Although the underlying mechanisms of HIV-related epilepsy are

not yet fully understood, it is believed to involve an imbalance of

Glu and GABA (108, 115).

2.3.2. Structural damage of CNS
As the disease advances, HIV patients often experience

worsening motor dysfunction and cognitive impairments, which

become increasingly noticeable and drastically hinder their daily

activities. Completing complex tasks often takes them longer, and

they may sometimes become unable to accomplish them

adequately. Specific motor dysfunctions may include slower, less

precise movements, clumsiness, an unstable gait, and a loss of

balance (86). Simioni et al. discovered that these patients

exhibited significant signs of frontal lobe release, cramps and

hyper-reflexes, particularly in the legs (86). At this stage,

neuroimaging studies have identified white matter signal

abnormalities as the most prevalent (116, 117). White matter

(WM) consists of the aggregation of nerve fibers in the central

nervous system, predominantly composed of axons and

oligodendrocytes of neurons, making it a vital component of the

neural network (118). The release of Tat protein and gp120 by

HIV can result in the injury and apoptosis of oligodendrocytes

(55–57). Consequently, the damage and apoptosis of

oligodendrocytes impair the formation of effective myelin

sheaths, leading to reduced nerve conduction efficiency and

cognitive dysfunction in the brain (52, 53). HIV can also have an

impact on the axons of neurons, leading to abnormal neural

network connections (119). In advanced cases of HAND with

severe cognitive dysfunction and motor symptoms, there may be

a connection to white matter injury, whereby white matter injury

can disrupt the limbic circuit and damage cortico-cortical

connections, thereby affecting intelligence and cognitive function

(120). The integrity of nerve fiber connections in various regions

such as the corpus callosum, cingulate gyrus, anterior limb of the

internal capsule, cerebral foot, anterior crown, and frontal-

occipital lobe tract is closely related to balance and gait function

(121). HIV-induced damage to the brain’s white matter can

interfere with nerve fiber connections, leading to abnormal gait

in patients with HAND (121). Falls have been associated with

injuries to the total white matter, periventricular white matter,

and deep white matter (122). Blahak et al. suggested that white

matter injury can disrupt the prefrontal subcortical motor circuit,

resulting in impaired balance and an increased risk of falls (123).

In addition to white matter injury, advanced HAND patients

may exhibit decreased subcortical volume, caudate nucleus

volume, cerebral malacia foci, and brain atrophy (66, 124, 125).

HIV can also contribute to other acute central nervous system

diseases, such as stroke. Bertrand et al. revealed a higher

incidence of stroke in HIV patients compared to the same age

group (126). While men generally have a higher risk of

cerebrovascular disease, HIV-infected women aged 25–29 years
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FIGURE 2

The metabolism of the nervous system. Gluc, glucose; G6P, glucose 6 phosphate; G1P, glucose 1 phosphate; GP, glycogen; Pyr, pyruvate; Lac, lactate;
Ac-COA, acetyl coenzyme A; α-KA, α-ketoglutaric acid; Suc-CoA, succinic acid coenzyme A; Suc, succinic acid; Suc-sem, succinic acid semialdehyde;
GYS, glycogen synthase; GP, glycogen phosphorylase; PK, pyruvate kinase; LDH, lactate dehydrogenase; GDH, glutamate dehydrogenase; GDA, glutamic
acid decarboxylase; GS, glutamine synthetase; Gls, glutaminase; GABA-T, GABA transaminase; SSADH, succinic semialdehyde; Glut, glucose transporter;
MCT, monocarboxylic acid transporter; EAAT, excitatory amino acid transporter.
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TABLE 2 Indirect cardiovascular effects of HIV.

Brain area Neurocardiovascular
function

Change of
cardiovascular

function caused by
HIV

Medial
prefrontal
cortex

Regulate MAP and HR (164) Longer QT interval (165)

Insular 1.Left insula:activating
sympathetic (171)
2.Right insula: activating
parasympathetic (172)

Uncertainties

Amygdaloid
nucleus

Influence BP and HR (175–178) Changes in BP and HR
(182, 183)

Cingulate cortex Hypertension and hypotensive
(165, 189)

Disorder of HR and BP
(186–188)

Hypothalamic Regulate BP and HR (190, 191) Disorder of HR and BP
(72, 205).

Brainstem Regulate cardiovascular
function (206)

Bradycardia (208, 209)
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have a relatively higher risk of ischemic stroke (127), possibly due

to HIV-related changes in the production of female endogenous

sex hormones, including estrogen deficiency (127, 128). In

addition, epigenetics may be involved in brain structural damage.

Epigenetic mechanisms play an important role during the

infection with retroviruses, including HIV which mediate the

integration of the virus into the host genom (129). The change

of epigenetic may be related to regional alterations of brain

volumes, cortical thickness, cortical surface areas and neuronal

microstructure (130). Persistence of latent HIV infection in the

CNS was associated with increased levels of chromatin modifiers,

which might result in abnormal transcriptomes, leading to

inflammation, neurodegeneration, and neurocognitive impairment

(131). Paula Desplats et.al detected changes in the expression of

DNMT1, at mRNA and protein levels, that resulted in the increase

of global DNA methylation. Moreover, Genome-wide profiling of

DNA methylation showed differential methylation on genes

related to neurodegeneration; dopamine metabolism and transport;

and oxidative phosphorylation (132). Long-term HIV-Tat

expression led to poorer short-and long-term memory, lower

locomotor activity and impaired coordination and balance ability,

increased astrocyte activation and compromised neuronal integrity,

and decreased global genomic DNA methylation (133). N-terminal

acetylation changes induced by viral infection might play a critical

role in virus-host interactions in HIV infection (134). The

epigenetic targets that might aid in understanding the aggravated

neurodegenerative, cognitive, motor and behavioral symptoms

observed in persons living with HIV and addictions Figure 3.
FIGURE 3

The epigenetic mechanisms modified by HIV on the brain and heart. HIV dam

Frontiers in Cardiovascular Medicine 07
3. Indirect cardiovascular effects of
HIV: effects of HIV on brain-heart
regulation

The effects of HIV on the CNS encompass both metabolic

dysfunction and structural damage. However, it is important to

note that these two pathological states have distinct impacts on CS,

both in terms of pathogenesis and clinical characteristics Table 2.
ages the brain and heart primarily by affecting DNA methylation.
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3.1. CS alterations induced by metabolic
dysfunction of CNS

In the early stages of HIV infection, structural lesions in the

brain may not be apparent. However, various metabolic disorders

can occur, affecting neurotransmitters such as Noradrenaline

(NA), Acetylcholine (Ach), catecholamines (CA), Glu, GABA

and neuropeptides, whose abnormal levels may disrupt the

regulatory network involving the brain, autonomic nervous

system and CS, leading to cardiovascular abnormalities Figure 4

(17, 18, 88–90). While the concentration of NA in the peripheral

blood of HIV patients may not show significant changes, there

are notable alterations in the concentration of NA in the brain,

which can contribute to abnormalities in cardiovascular activity

(135, 136). The gp41 and gp120 proteins of HIV can stimulate

the release of NA by regulating NMDA receptors in the brain,

which activates the sympathetic nervous system, leading to

tachycardia and elevated blood pressure (136–139). HIV-Tat

protein can induce Ca2+-dependent Ach release through discrete

amino acid sequences binding to different acceptance sites in the

cortical cholinergic terminals, resulting in decreased heart rate

and blood pressure (140, 141).

HIV infection can induce seizures by disrupting the balance

between excitation and inhibition in the brain, known as an

imbalance of excitation and inhibition (E-I imbalance),

characterized by an increase in Glu levels and a decrease in

GABA levels (109, 110, 142). The E-I imbalance in the brain can

affect the normal regulatory mechanisms of the CS, leading to

alterations in heart rate variability (HRV), changes in heart rate

and blood pressure, and potentially causing transient myocardial

ischemia (195). The E-I imbalance can also affect catecholamine

secretion, leading to repetitive myocardial injury, chronic damage

to the heart and coronary arteries, myocardial fibrosis,

atherosclerosis, cardiac systolic and diastolic dysfunction, and
FIGURE 4

Cardiovascular diseases are caused by metabolic disorders of the CNS. HIV
cardiovascular system.
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arrhythmias within the CS (143, 144). In addition to its potential

to induce epilepsy, the E-I imbalance in the brain can also

impact the sleep patterns of HIV patients, contributing to

abnormal functional and structural changes in the heart, leading

to an increased risk of myocardial infarction (114, 145, 146).

HIV patients frequently experience mental and emotional

abnormalities due to the psychological stress associated with the

disease itself and the effects of the virus on neurotransmitters in

the brain (108, 147). Patients infected with HIV may experience

Takotsubo syndrome (TTS) when subjected to both psychological

and physical stress (148, 149). TTS is a notable condition

highlighting the connection between mental stress, cortical

activation, and cardiac disease. It is characterized by clinical

symptoms resembling a myocardial infarction, accompanied by

acute systolic apical left ventricular dysfunction triggered by

physical or emotional stress (150, 151). TTS typically manifests

with sudden onset chest pain, dyspnea and electrocardiogram

changes similar to acute coronary syndrome, slightly elevated

levels of myocardial enzymes, and transient abnormalities in

ventricular wall movement unrelated to specific coronary

perfusion area (152). Previous studies have demonstrated that

HIV can cause dysfunction of the hypothalamic-pituitary-adrenal

(HPA) axis and ANS, leading to abnormal levels of peripheral

adrenaline and impaired regulation of the CS (135, 153, 154).

Additionally, the levels of neuropeptides, which can directly

impact the CS by increasing blood pressure and inhibiting

sympathetic activity through their actions on the hypothalamus,

have been found elevated in the brain (155–157). HIV could

cause oxidative stress in the CNS and eventually result in

abnormal baroreceptor and chemoreceptor signals transmitted by

cardiac afferent fibers to the solitary tract nucleus,

paraventricular nucleus and rostral ventrolateral medulla

(RVLM), leading to sympathetic dysfunction, fatal arrhythmia,

heart failure and myocardial ischemia (158–161).
causes CNS metabolic disorders, leading to a series of changes in the
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3.2. CS injury in brain structural damage

Structural damage to the brain resulting from HIV infection

can have more severe consequences, and the specific regions

affected can influence the extent of cardiovascular damage. In

particular, injury to the prefrontal cortical-insula-amygdala-

cingulate cortical-hypothalamic-brain stem network is more

likely to cause CS impairments Figure 5.

3.2.1. Prefrontal cortex
The prefrontal cortex (PFC) can be divided into two regions

based on functional, morphological, and evolutionary differences:

the lateral PFC (LPFC) and the medial PFC (MPFC) (162). The

ventral portion of medial prefrontal cortex (vMPFC), a portion

of the MPFC, plays a crucial role in regulating the CS (163).

Upon stimulation, the vMPFC activates the sympathetic nerve,

increasing mean arterial pressure (MAP) (164). Notably, it has

been reported that lower CD4 levels in HIV patients are

associated with greater connectivity between the right vMPFC

and right posterior insula and longer QT interval (165).

3.2.2. Insular
The insula is involved in various physiological functions,

including visceral sensation and visceral movement (166–168).

The posterior insula receives and integrates signals related to

visceral sensations, which are then projected to the anterior

insula (169). After receiving visceral sensory signals from the

posterior insular lobe, the anterior insular lobe sends out visceral
FIGURE 5

Cardiovascular lesions are caused by structural CNS damage and those direct
brain regions, resulting in changes in the cardiovascular system. HIV directly inv
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movement signals, regulating visceral movement, including the

CS (170). In HIV-infected individuals, damage to the gray matter

of the right insular lobe can result in parasympathetic inhibition

and sympathetic excitation, leading to increased heart rate and

blood pressure (125, 171, 172). Overstimulation of the posterior

insula can contribute to the development of conditions such as

atrioventricular block, premature ventricular contractions,

prolonged QT interval, and even asystole (173). The insula

consists of two different types of neurons simultaneously: 27

percent responsible for sympathetic excitation and 9 percent

responsible for sympathetic inhibition (174). Furthermore, the

left and right insula have distinct roles in regulating the CS, with

the left insula influencing sympathetic activity by regulating

peripheral blood and cardiac adrenaline levels, while the right

insula exerts the opposite effect by activating the parasympathetic

nervous system (171, 172). Due to the insula’s complex and

multifaceted physiological functions, CS abnormalities resulting

from insula damage can be subject to various uncertainties.
3.2.3. Amygdaloid nucleus
The cortical nuclei, including the basolateral nucleus, cortical-

like nuclei and central-medial nuclei, are situated in the medial

temporal lobe (175). The amygdaloid nucleus, particularly the

basolateral nucleus, receives and integrates signals from the

cortex, brainstem and thalamus to regulate cardiovascular

activity. These signals are then transmitted to the basal ganglia

and subsequently reach the central part of the central medial

nucleus (CeA). The CeA sends signals to the brainstem,
ly caused by HIV. HIV invasion of the CNS causes changes in the different
ades the cardiovascular system leading to various cardiovascular diseases.
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hypothalamus, and other areas to influence blood pressure and

heart rate (175–178). Glu secreted by the CeA increases heart

rate and blood pressure by activating the sympathetic nervous

system, while GABA secreted by the CeA reduces heart rate and

blood pressure by activating the parasympathetic nervous system

(179–181). In HIV-infected individuals, degeneration or volume

loss in the amygdala may impair the transmission of

cardiovascular regulatory signals to areas such as the brainstem

and hypothalamus, leading to changes in blood pressure and

heart rate (182, 183).

3.2.4. Cingulate cortex
The cingulate cortex plays a role in receiving and integrating

visceral sensory information, including changes in blood

pressure, and it outputs signals that regulate autonomic,

neuroendocrine, and cardiovascular responses (184). The

posterior cingulate cortex can be further divided into the anterior

cingulate cortex (ACC) and posterior cingulate cortex (PCC)

(185). Activation of the ACC has been shown to reduce vagal

tone and increase heart rate (186, 187), while inactivation of the

ACC enhances the vagal tone and increases heart rate variability

(188). HIV may cause impairment of ACC, which could change

the heart rate and blood pressure. However, cardiovascular

lesions caused by HIV injury to the cingulate gyrus are very

complicated due to the presence of both the hypertension and

hypotensive regions in the cingulate gyrus (165, 189).

3.2.5. Hypothalamic
The hypothalamus, acting as a central hub for autonomic

nerve outflow and the hypothalamic-pituitary-adrenal (HPA)

axis, plays a vital role in regulating cardiovascular functions

(190, 191). The hypothalamic paraventricular nucleus (PVN)

releases corticotropin-releasing hormone (CRH), which then

activates the HPA axis, leading to the release of

adrenocorticotropic hormone (ACTH) from the pituitary gland.

ACTH, in turn, stimulates the release of glucocorticoids from

the adrenal gland, resulting in an increase in blood pressure

(192). The activity level of CRH neurons located in the

hypothalamic PVN can influence changes in blood pressure

(193). Increased activity and/or number of CRH neurons can

enhance CRH synthesis, transport and release, ultimately

leading to elevated blood pressure (194). CRH neurons in the

PVN receive catecholamine signals from brain regions such as

the locus coeruleus (LC), nucleus of the solitary tract (NTS)

and parabrachial nucleus (195–198), following which CRH

neurons are activated, leading to an increased concentration of

NA in the PVN, causing hypertension and an elevated heart

rate (199, 200). Blood pressure regulation is also influenced by

oxytocin (OXY) and arginine vasopressin (AVP), which are

released from the supraoptic nucleus (SON), paraventricular

nucleus (PVN) and suprachiasmatic nucleus (SCN) of the

hypothalamus (201). Pro-oxytocin and pro-vasopressin,

synthesized in the SON, PVN, and SCN, are transported, stored

in the posterior pituitary, and released into the peripheral

circulation to regulate the CS (202). In addition, OXY and AVP

signals can project to various brain regions, including the
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olfactory bulb, orbitofrontal cortex, cingulate gyrus, amygdala,

striatum, hippocampus, bed nucleus terminalis, suprachiasmatic

nucleus, and autonomic ganglia (203). HIV-gp120 can invade

the hypothalamus and directly stimulate the hypothalamic axis

to induce cortisol secretion (204). HIV-Vpr and HIV-Tat

can enhance glucocorticoid action by increasing the sensitivity

of target tissues to glucocorticoids and stimulate the

inflammatory cytokine HPA activity, resulting in cortisol

secretion (205). In addition, Furthermore, HIV infection may

reduce levels of oxytocin, which can disrupt the regulation of

blood pressure (72).

3.2.6. Brainstem
The brainstem consists of the midbrain, pons, and medulla

oblongata, with the medulla oblongata particularly involved in

cardiovascular regulation (206). When blood pressure increases,

the nucleus tractus solitarius receives and integrates signals from

baroreceptors, and then transmits these signals to neurons in the

lateral caudal ventrolateral medulla (CVLM) (207), providing

inhibitory signals to neurons in the rostral ventrolateral medulla

(RVLM) (207). Subsequently, the inhibitory neural signals from

RVLM neurons reduce the output of sympathetic signals

from neurons located in the intermediolateral columns of cells

in the spinal cord to peripheral organs, ultimately inhibiting

cardiovascular activity (207). Furthermore, cardiac parasympathetic

fibers originating from the dorsal vagus and hypochondriac nuclei

of the medulla oblongata play a role in inhibiting cardiovascular

activity. Brailoiu et al. suggested that HIV-Tat can stimulate the

vagus nucleus, increasing parasympathetic activity in the heart and

resulting in persistent bradycardia (208). Nagamitsu et al. also

noted that structural changes in the medulla oblongata might

occur in the later stages of HIV infection, which could potentially

impact cardiovascular activity (209).
4. Direct effects of HIV on the CS

In AIDS patients, HIV infection is a significant contributor to

the development of acquired heart disease, particularly

symptomatic heart failure (210). Cardiovascular complications

associated with HIV infection, such as subclinical

electrocardiogram (ECG) changes, cardiomyopathy, and sudden

cardiac death, are often observed in the later stages of AIDS

(211). A model based on the AIDS Treatment Evaluation Cohort

in the Netherlands revealed that 78% of HIV-infected individuals

receiving ART were still diagnosed with cardiovascular disease,

despite living longer (212). HIV infection increases the risk of

various cardiac abnormalities, including those affecting the heart

muscle, pericardium, heart valves, arterial vessels, and conduction

system Table 3 (213).
4.1. Damage of HIV on the heart muscle

HIV-positive individuals are prone to myocarditis, with specific

myocarditis accounting for approximately 50% of cases (214). The
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TABLE 3 Cardiovascular diseases caused by HIV.

Cardiovascular diseases
caused by HIV

Pathogenesis

Myocarditis 1.Direct invasion of myocardial (215, 216)
2.Directly induce myocardial inflammation
(217)

Endocarditis Staphylococcus aureus (229).

Pericarditis Opportunistic infections (232)

Coronary heart disease 1.Infiltration of inflammatory cells and the
obstruction of blood vessels (235)
2.Epigenetic changes (238)

Arrhythmia Electrophysiological recombination of the
heart (244)
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invasion of cardiomyocytes by HIV is a critical factor in developing

specific myocarditis (215). Shaboodien et al. identified histological

evidence of myocarditis in 44% of HIV patients using myocardial

biopsy, suggesting that HIV can directly induce changes in

myocardial inflammation (216). In addition, HIV can indirectly

damage heart muscle cells, contributing to cardiac complications.

Monsuez et al. demonstrated that HIV induces abnormal

inflammation by infecting cardiac dendritic cells and endothelial

cells, which mediate chronic inflammation by stimulating the

production of tumor necrosis factor-α, interleukin-1 and omega-

6, as well as other pro-inflammatory cytokines, leading to

myocardial damage and dysfunction (217). HIV-induced

cardiomyopathy occurs through mechanisms involving the

invasion of cardiomyocytes by the virus and the apoptotic

signaling triggered by HIV proteins like gp120, Tat and cytokines

(218). Cheryl et al. showed that cardiomyocytes undergo

apoptosis through both mitochondrion- and death receptor-

controlled apoptotic pathways in HIV patients, which may be

associated with gp120-induced apoptosis (219). Additionally,

autoimmune mechanisms can play a significant role in

myocarditis. HIV-associated B cells are stimulated to produce

autoantibodies targeting the heart muscle, resulting in myocardial

damage and systolic dysfunction (220).

The pathological features of HIV-associated cardiomyopathy are

similar to those seen in patients without HIV infection, which

primarily include ventricular dilation, a rounded apex, altered heart

shape, and increased heart weight due to fibrosis and hypertrophy

of cardiomyocytes (221, 222). Histologically, increased collagen in

interstitial and endocardial fibers is a prominent characteristic of

HIV-associated cardiomyopathy, along with myocardial cell

hypertrophy, cardiomyocyte degeneration, myofibrillar loss, and

intramuscular hydropic degeneration (221, 222). Before the

widespread use of ART, symptomatic dilated cardiomyopathy with

decreased ejection fraction was commonly observed in HIV-related

cardiomyopathy. However, with the advent of ART, asymptomatic

cardiomyopathy with or without abnormal ejection fraction has

become more predominant (223, 224). Among asymptomatic

HIV-infected patients, approximately 43.4% have diastolic

dysfunction, while 8.3% have systolic dysfunction (225). The

phenotype of HIV-associated dilated cardiomyopathy corresponds

to the severity of immunosuppression, with a worse prognosis
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observed in patients with more severe immunosuppression (226).

Patients with HIV-associated dilated cardiomyopathy may exhibit

acute left heart failure symptoms (227).
4.2. Damage of HIV on the endocardium

In HIV-infected patients, the incidence of endocardial

damage, often characterized by valve regurgitation, can be

as high as 77% (228). Individuals with HIV infection who

have a CD4 count of less than 50 cells/mm3 and a high viral

load (greater than 100,000 copies/ml) are at a four-fold

increased risk of developing infective endocarditis (IE), with

staphylococcus aureus being a common pathogenic organism

associated with this condition (229).
4.3. Damage of HIV on the pericardium

Before the widespread use of ART, the prevalence of pericardial

effusion in HIV patients was reported to be as high as 25% (230)

but has decreased since the widespread use of ART (231).

HIV-associated pericardial effusion is often associated with

opportunistic infections due to the patient’s compromised

immune function (232). In addition to opportunistic infections,

pericardial effusion can also be caused by capillary leakage

resulting from cytokine activation late in HIV infection

(232, 233). Moreover, direct invasion of the pericarditis by HIV

is also a direct cause of pericarditis (234).
4.4. Damage of HIV on artery

HIV-related arterial vessel injury is a distinct condition

characterized by the infiltration of inflammatory cells and the

obstruction of blood vessels, which can weaken the walls of the

vessels and lead to the formation of aneurysms (235). Following

HIV infection, viral replication, immune system disruption, and

intestinal microbial translocation can trigger chronic systemic

inflammation, leading to pathological manifestations such as

dyslipidemia, thrombosis, chronic inflammation of vascular

endothelial cells, and ultimately the development of conditions

such as coronary heart disease(CHD) (236).

CHD is also considered to be an age-related heart disease (237).

Compared to the individuals without HIV, HIV-infected patients

have a higher risk of developing CHD, which tend to occur at an

earlier stage (9). With regard to CHD that occurs at an earlier

stage, Huang et al. believe that it is related to epigenetic changes

caused by HIV (238). Epigenetic age acceleration is verified in

HIV-infected patients, which may be related to HIV causing

DNA methylation (238). DNA methylation is one of the most

studied epigenetic markers, which involves changes in the DNA

that are influenced by environmental factors (239). DNA

methylation is the common HIV-induced epigenetic changes

(240). Therefore, HIV interferes with the genome of the cells by
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affecting the methylation of the DNA, which could promote the

aging process and increase the risk of CHD Figure 3 (241, 242).
4.5. Arrhythmia caused by HIV

ECG abnormalities commonly observed in HIV patients

include ventricular conduction defects, such as isolated ST-T

abnormalities and prolonged QT interval (243). Apart from the

effects of medications, electrolyte imbalances and ANS

dysregulation, arrhythmias in HIV-infected patients are also

associated with the impact of HIV on the cardiac conduction

system (244). Nef, the constituent gene of HIV, is also a major

determinant of HIV pathogenicity, leading to the entire

electrophysiological recombination of the heart (244). Judith

Brouillette et al. suggested that Nef could lead to a 50%

reduction in the outward potassium current of repolarization in

ventricular myocytes, thereby prolonging the duration of

ventricular action potential (245). The Nef genome can also

result in a 30% reduction in depolarization of sodium current

(246). HIV-Tat prolongs the QTc interval by increasing ROS

production and decreasing hERG current in cardiomyocytes

(247). In addition, the atrial fibrillation risk (AF) of HIV

patients, which is related to the lower CD4 count or (and) and

the higher viral load, is higher than that of the non-HIV

population (248).
5. Overcome the effects of HIV on the
brain-heart axis

The dysfunction of the CS is considered as a fatal disease in

HIV-infected patients. Diagnosis and therapeutics for the damage

of brain and heart are important methods and approaches to

overcome the effects of HIV on the brain-heart axis. Through

pharmacological and non-pharmacological interventions, as well

as emerging technologies, researchers are making significant

strides in improving outcomes for individuals affected by brain

and heart-related conditions.
5.1. Diagnosis for brain damage

5.1.1. Clinical manifestations
In the early stages of brain damage,the clinical manifestations

are characterized by mild difficulties with concentration, motor

symptoms and focal cortical deficits (92). As the disease

advances, the clinical manifestations are characterized by

significant motor dysfunctions, signs of frontal lobe release,

cramps and hyper-reflexes, cognitive dysfunction, neuropathic

pain, paresthesia, and abnormal gait (86, 120, 121, 249).

5.1.2. Cerebrospinal fluid
Detection of viral load in cerebrospinal fluid (CSF) is an

important means to assess whether HIV has invaded the CNS

(250). However, viral load levels of HIV in CSF and the count
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of CD4+ T cells in blood are not necessarily positively

correlated with the severity of brain damage (84–87, 251).

Some biochemical substances(including glucose, ATP,

lactate, Glu, GABA, NA, and catecholamine, et al.) and

biomarkers(t-tau, p-tau, β-amiloid42, neopterin, and S100β,

et al.) of CSF are utilized to assess metabolic dysfunction and

Structural damage of CNS (104, 106–108, 136, 137, 143, 144,

252–255). In addition, integrated brain on a chip and

automated organ-on-chips systems,as well as extracellular

vesicles, may be employed to evaluate various neurological

damage caused by HIV (256–258).
5.1.3. Electroencephalograph
Electroencephalograph (EEG) is commonly utilized for

assessing electrophysiological function in the brain. Tinuper

et al. found that abnormal EEGs are correlated with CNS

involvement and borderline EEGs may be correlated with

asymptomatic patients (259). Barco et al.observed a statistically

significant correlation between working memory test Trail

Making B and delta waves in patients infected with HIV (255).

For functional connectivity, connectivity in alpha, beta, theta,

and delta band was decreased in the HIV/AIDS patients (255).

Compared to the healthy people, the smaller late positive

potential and larger P200 amplitudes were observed in HIV/

AIDS patients (260).
5.1.4. Magnetic resonance
Magnetic resonance (MRI), a widely used neuroimaging test,

is considered to play an important role in the diagnosis of

HAND (261). MRI can be employed to observe structural

changes in the brain. In addition, some functional MRI

(fMRI) tests, including susceptibility weighted imaging (SWI),

diffusion tensor imaging (DTI), magnetic resonance

spectroscopy (MRS), are utilized to verify the metabolic

dysfunction and Structural damage of CNS caused by HIV, as

well as CNS metabolic disorders (262–264).
5.2. Therapeutics for brain damage

ART has reduced the prevalence of HIV-associated dementia,

but the persistent brain damage caused by HIV is an unmet

challenge. Improving ART effectiveness in suppressing HIV

replication in the CNS by either increasing penetration into the

CNS is a strategy for protecting CNS. Reducing HIV replication

in the central nervous system can inhibit the release of

neurotoxins from activated microglia and astrocytes (265). As

ART regimens are developed, the adjunctive neuroprotective

therapies must accelerate. Anti-excitotoxicity, calcium channel

blockers, antioxidants, and anti-inflammatory drugs are

considered as adjunctive neuroprotective therapies for HIV-

infected patients (265, 266). The neurotrophic factors are also

applied to protect CNS (267).
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5.3. Diagnosis and therapeutics for heart
diseases

Diagnosis for HIV-associated heart diseases is similar to those

observed in HIV-uninfected patients (223, 226, 230). EEG,

ultrasonic cardiogram, coronal artery angiography, left

ventriculography, myocardial enzyme, and markers of heart

failure are often used to identify HIV-associated heart diseases

(211, 268–270). Except for the need for ART, the therapeutics for

HIV-associated heart diseases is similar to HIV-uninfected

patients (225, 230, 236). Moreover, the nanomedicines which

have been used in the treatment of cancer, may be applied to

treat HIV associated heart diseases (271–273).
6. Limitations and future directions

Diseases of the cardiovascular system caused by the CNS are

more complex and deadly (268). The clinicians and researchers

get a new theoretical basis from the concept of the brain-heart

axis (274, 275). They think about the role of the brain-heart axis

in the face of diseases of the CNS and(or) cardiovascular system,

such as stroke (276), seizures (277) and TTS (278). However, the

limitations of this review should be acknowledged. No sufficient

evidences about the effects of HIV on brain-heart axis were

found. We only infer from the current study that HIV may have

an impact on the brain-heart axis. There are two main future

directions regarding the effects of HIV on the brain axis. On the

one hand, a large amount of clinical data, especially CNS data in

HIV-infected patients with cardiovascular disease, should be

collected. Through these data, we could further understand CNS

function in HIV-infected patients with cardiovascular disease. On

the other hand, in vitro and in vivo models of HIV-infected CNS

should be established to research the changes in the

cardiovascular system.
7. Conclusion

In summary, the nervous system is crucial in regulating the CS

through a complex neural network. However, HIV infection can
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cause functional and structural damage to the nervous system,

thereby affecting the neural network’s regulation of the CS and

ultimately leading to abnormalities in the CS of patients,

significantly impacting their quality of life. Thus, it is important

to closely monitor changes in their nervous system and take a

comprehensive approach to address the alterations in their CS

when diagnosing and treating HIV patients.
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