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Automatic image-based tracking
of gadolinium-filled balloon wedge
catheters for MRI-guided cardiac
catheterization using deep learning
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King’s College London, London, United Kingdom, 2Department of Paediatric Cardiology, Evelina London
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Introduction: Magnetic Resonance Imaging (MRI) is a promising alternative to
standard x-ray fluoroscopy for the guidance of cardiac catheterization procedures
as it enables soft tissue visualization, avoids ionizing radiation and provides
improved hemodynamic data. MRI-guided cardiac catheterization procedures
currently require frequent manual tracking of the imaging plane during navigation
to follow the tip of a gadolinium-filled balloon wedge catheter, which
unnecessarily prolongs and complicates the procedures. Therefore, real-time
automatic image-based detection of the catheter balloon has the potential to
improve catheter visualization and navigation through automatic slice tracking.
Methods: In this study, an automatic, parameter-free, deep-learning-based post-
processing pipeline was developed for real-time detection of the catheter balloon.
A U-Net architecture with a ResNet-34 encoder was trained on semi-artificial
images for the segmentation of the catheter balloon. Post-processing steps were
implemented to guarantee a unique estimate of the catheter tip coordinates. This
approach was evaluated retrospectively in 7 patients (6M and 1F, age= 7 ± 5 year)
who underwent an MRI-guided right heart catheterization procedure with all
images acquired in an orientation unseen during training.
Results: The overall accuracy, specificity and sensitivity of the proposed catheter
tracking strategy over all 7 patients were 98.4 ± 2.0%, 99.9 ±0.2% and 95.4 ± 5.5%,
respectively. The computation time of the deep-learning-based segmentation
step was ∼10 ms/image, indicating its compatibility with real-time constraints.
Conclusion: Deep-learning-based catheter balloon tracking is feasible, accurate,
parameter-free, and compatible with real-time conditions. Online integration of
the technique and its evaluation in a larger patient cohort are now warranted to
determine its benefit during MRI-guided cardiac catheterization.
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Abbreviations

ADAM, adaptive moment estimation; bSSFP, balanced steady-state free precession; BW, bandwidth; CHD,
congenital heart disease; CNN, convolutional neural network; FN, false negative; FOV, field-of-view; FP,
false positive; GRAPPA, generalized autocalibrating partial parallel acquisition; GT, ground truth; MRI,
magnetic resonance imaging; pSAT, partial saturation; RNN, recurrent neural network; TE, echo time; TN,
true negative; TP, true positive; TR, repetition time.
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1. Introduction

Cardiac catheterization is a common procedure used to

diagnose and treat patients with a variety of conditions such as

congenital heart disease (CHD) (1–3). Catheterization procedures

are traditionally navigated under fluoroscopic guidance (4),

which exposes patients to harmful ionizing radiation and the

unwanted risk of developing cancer, particularly in children and

young adults who undergo long and repeated procedures (5–7).

Fluoroscopic guidance also suffers from poor soft tissue

visualization, making it difficult to position catheters and

balloons, with the potential increased risk of instrumental

perforations in patients (5).

Magnetic Resonance Imaging (MRI)-guidance is an attractive

alternative to fluoroscopic guidance as it involves no radiation

risks to patients involved, has superior soft tissue visualization

and superior hemodynamic data using MR flow imaging (8–18).

MRI-compatible balloon-wedge catheters are used during these

procedures. The catheter tip is visually tracked passively using

dynamic real-time imaging (∼5–10 images/s) from its

corresponding hyper- or hypo-intense signal when using diluted

gadolinium or CO2-filled balloons, respectively (18). Several

techniques exist for improved positive contrast visualization of

the catheter tip when using gadolinium-filled balloons. These

include the application of saturation pre-pulses intermittently

(i.e., switching between balloon or blood/cardiac anatomy

visualization) (18) or using black-blood preparation for

simultaneous balloon and cardiac anatomy visualization (19).

The use of partial saturation (pSAT) pre-pulses (i.e., a non-

selective saturation pulse with a reduced flip angle, typically 30–

70°) (16) has the advantage over the other two methods of

providing simultaneous high-contrast visualization of the catheter

tip, soft tissue and blood (17). Despite the benefits of MRI-

guidance, several major technical challenges remain to be

addressed to ensure clinical acceptance of this method. Current

imaging techniques require frequent manual updating of the

imaging plane location to track the catheter tip during navigation

to deal with the catheter tip frequently falling out-of-plane. This

typically arises when navigating the catheter within cardiac

chambers, large vessels, or complex anatomical vessels which

cannot be fully sampled using a 2D imaging plane. One study

reported an average balloon visibility of <70% of the scanning

time (17). This limitation leads to the unnecessary complication

and slowdown of catheterization procedures when relocating the

catheter tip. It has been shown that by acquiring a heavily T1-

weighted image of the catheter using a large slice thickness and

overlaying this onto a high-resolution image of the anatomy of

interest improves catheter visibility to ∼90% of the scanning time

(20). However, the larger slice thickness may also reduce the

value of MRI-guidance in narrow anatomical structures.

Automatic tracking of the catheter and imaging plane during

navigation may potentially facilitate and shorten the procedure.

In a recent proof-of-concept study, automatic slice tracking based

on real-time image processing and estimation of the catheter tip

location was proposed to enable continuous visualization of the
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catheter tip during navigation (21). This approach relies on the

dynamic acquisition of three contiguous slices, typically using a

bSSFP readout for improved signal-to-noise ratio and reduced

flow artefacts. When the catheter is detected in one of the outer

slices, the image plane is prospectively adjusted automatically to

maintain the catheter in the central slice. Despite the potential of

this framework to achieve near 100% visibility of the catheter

during navigation, it depends on several user-definable

parameters, such as a bounding box definition to contain

expected catheter trajectories, image segmentation threshold

values, pattern matching and catheter movement speed. These

parameters not only rely on user experience but may reduce the

framework’s robustness in patients.

In this study, an automatic, parameter-free, deep-learning-

based post-processing pipeline was developed for robust real-time

image-based detection of the catheter tip coordinates. This

method was evaluated retrospectively in seven patients who

underwent MRI-guided right heart catheterization using the

aforementioned prototype catheter tracking sequence.
2. Methods

All imaging was performed on a 1.5 T MRI scanner

(MAGNETOM Aera, Siemens Healthineers, Erlangen, Germany).
2.1. Proposed model architecture

For semantic segmentation (i.e., pixel-wise classification) of the

catheter balloon, the commonly used U-Net architecture (22) was

employed for both its high-resolution localization of objects and

global context understanding, owing to its encoder-decoder

structure. Here a modified U-Net model using a ResNet-34 (23)

encoder (i.e., a 34 layered Residual Neural Network) was

employed as it was shown to provide higher recall when

compared to the standard U-Net architecture with imbalanced

datasets (24), as is the case in this study (i.e., the balloon

represents <1% of the image). The U-Net consisted of pre-trained

weights using the ImageNet dataset (25). The input to the

network is a magnitude image and the output is a binary mask

containing the segmented catheter balloon signal. The sigmoid

activation function in the final layer was implemented to predict

the class of an underlying pixel, with an activation value greater

than or equal to 0.5 being classed as balloon signal and less than

0.5 being classed as otherwise (i.e., background).
2.2. Training data

The proposed network was trained using semi-artificial data

consisting of images with retrospectively placed artificial catheter

balloon signal, as follows. Twelve patients (8 male and 4 female,

age = 40 ± 15 year) undergoing a routine clinical cardiac magnetic

resonance examination (i.e., no cardiac catheterization procedure
frontiersin.org
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performed) were recruited to generate training (8 patients) and

validation (4 patients) data for this study, which was approved

by the National Research Ethics Service (REC reference: 15/NS/

0030). Written informed consent was obtained from all patients

for the scan and for inclusion in this study. For each patient, a

stack of 20 slices in the transverse and coronal orientations was

acquired (i.e., 40 slices/patient) with a pSAT prepulse (pSAT

angle = 40°) and conventional real-time bSSFP imaging. Note that

none of the training data was acquired in the sagittal orientation

to evaluate the potential of the network to operate on an existing

validation dataset composed of an unseen orientation (i.e., only

the sagittal orientation. See Section 2.4 in-vivo evaluation in

MRI-guided cardiac catheterization patient data). The following

imaging parameters were used: TE/TR = 1.25/2.5 ms, Flip angle =

70°, FOV = 400 × 400 mm2, reconstructed/acquired resolution =

1.6 × 1.6/3.3 × 3.1 mm2, slice thickness = 10 mm, BW= 1002 Hz/

pixel, GRAPPA factor = 2.

Artificial catheter balloon signal was generated in these images,

blinded from the testing data acquired during clinical MRI-guided

cardiac procedures and described in Section 2.4. The catheter

balloon was simulated in locations of the cardiovascular anatomy

commonly navigated during cardiac catheterization procedures.

For each image depicting the cardiovascular system, multiple

realistic catheter positions were manually generated. One

simulated training image was created for each manually defined

catheter location since only one catheter can be present at a time

in these procedures. At each predefined location, the catheter

shape was emulated as a 2D anisotropic Gaussian. To vary the

shape, size and signal amplitude of the artificial catheter signal
FIGURE 1

Example “semi-artificial” images containing retrospectively placed catheter sign
signal modelled as a 2D anisotropic Gaussian with standard deviation (sx and
ranging from 200 to 400% (step size = 100%) of the underlying signal intens
rotations ranging from 0° to 360° (step size = 1°) were used. The respec
generated by setting all pixels within 1.5 standard deviations of the Gaussian p
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typically observed across patients, the 2D Gaussian model at each

point was generated with:

1. A randomly selected standard deviation value of either 1.5 or

2.5 pixels (i.e., sx ¼ {1:5, 2:5} and sy ¼ {1:5, 2:5}).

2. A randomly selected integer rotation of the catheter balloon in

the range of 0°–360° (step size = 1°).

3. A randomly selected Gaussian signal amplitude (range: 200%–

400%, step size = 100%) of the underlying signal intensity (i.e.,

at the pre-selected central point of the Gaussian).

Overall, a total of 4,744 (3,269 training and 1,475 validation)

unique semi-artificial images were generated from the original

480 image dataset (i.e., ∼10-fold increase) for the training of the

proposed network (refer to Figure 1 for representative examples).

Note, 10% of the training data included images with no

simulated catheter balloon to help the network minimize false

positive detection.

Respective ground truth masks were automatically generated

by selecting all pixels located within the mean ± 1.5 × standard

deviation of the Gaussian distribution profile used for each

simulated catheter balloon signal (see Figure 1).
2.3. Model training

There was a severe class imbalance between “balloon” class

pixels relative to “background” pixels in the segmentation masks,

with “background” pixels representing ∼99% of the total pixels.

For this reason the Dice loss function was implemented for its
al and their respective ground truth segmentation masks. Catheter balloon
sy ) ranging from 1.5 to 2.5 pixels (step size = 1 pixel). Various intensities

ity (i.e., at the central pixel of the Gaussian) were used. Random balloon
tive ground truth masks, segmenting the artificial balloon signal were
rofile as 1 and 0 elsewhere.
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robustness in dealing with unbalanced classes (26). The training

and validation dice loss plots are shown in Supplementary

Figure S1.

Training occurred over 200 epochs, with a learning rate of

1e� 5 and batch size of 64 images using the adaptive moment

estimation (ADAM) optimizer. The epoch where the validation

loss function was minimized (i.e., the global minimum) was

chosen and the corresponding set of model weights were used

for the final trained model. Training and testing of the network

were performed using a SCAN workstation (AMD Ryzen 9

5950X 16-Core Processor running at 3.40 GHz, 128 GB of RAM,

NVIDIA RTX A6000 GPU). The PyTorch library for deep

learning was used.
2.4. In-vivo evaluation in MRI-guided
cardiac catheterization patient data

De-identified data from seven patients (6M and 1F, age = 7 ± 5

year) who underwent MRI-guided right heart catheterization were

used for retrospective evaluation of the proposed approach, with

approval from our local institutional review board via waiver of

informed consent (REC reference: 21/LO/0650). A prototype

catheter tracking sequence was run to generate three contiguous

slices, acquired dynamically using a bSSFP readout and the

following parameters: TE/TR = 0.99/2.44 ms, Flip angle = 50°,

FOV = 450 × 450 mm2, reconstructed/acquired resolution = 1.4 ×

1.4/2.8 × 2.8 mm2, slice thickness = 10 mm, number of dynamic

measurements = 8–116, bandwidth = 1,010 Hz/px, GRAPPA

factor = 2, partial Fourier = 5/8, pSAT angle = 30–70°. This

sequence was run for a short period during the catheterization

procedure. The balloon of a 4–6 French wedge catheter was

filled with 1% Gadolinium (Dotarem®, Guerbet, Villepinte,

France) for positive contrast visualization. A total of 858 images

were acquired over the seven patients, all in the sagittal

orientation.

The following steps of the proposed post-processing strategy

were applied independently for each dynamic (i.e., set of three

slices per dynamic):

1. Using the trained neural network, generate a segmentation

mask for each of the three contiguous slices.

2. To remove any ambiguities if multiple catheter balloon signal

were identified across and/or within the three slices, the

region with the highest signal intensity was selected as the

final segmentation of the catheter balloon across the three

slices. This can occasionally happen if the catheter is visible

across two contiguous slices. In this case, it is important to

determine the slice containing most of the catheter (i.e.

higher signal intensity) to enable appropriate prospective slice

tracking.

All images (i.e., training, validation and testing) were normalized

by first scaling in the range 0–1, then subtracting by the mean

pixel value and dividing by the standard deviation pixel value of

the ImageNet dataset.
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2.5. Model evaluation

Ground truth segmentation of the catheter balloon was first

manually and independently defined in each slice and dynamic

where the catheter was deemed visible. This was performed by

AN by drawing a circular ROI over the catheter balloon and

generating a ground truth (GT) binary mask in MATLAB

(MathWorks, Natick MA, USA). This enabled the assessment of

accuracy, specificity and sensitivity of the network alone in

detecting the presence/lack of catheter signal on a per-image basis.

The accuracy, specificity and sensitivity of the complete post-

processing strategy (which outputs the best candidate region

across all slices) were then evaluated. To this end, a multi-slice

ground truth was generated by only keeping the manually

segmented ground truth region across the three slices with the

highest signal intensity.

For both analyses, a correct detection [i.e., true positive (TP)]

was considered only for a single segmented region and its center

of mass intersecting the ground truth region of the balloon

signal, else classified as an incorrect detection [i.e., false positive

(FP)]. A correct “no detection” was defined as an absence of

catheter segmentation on both prediction and ground truth,

which was classified as a true negative (TN). If the network

completely failed to output a mask that segments the true

catheter signal this was classified as a false negative (FN). Please

refer to Supplementary Figure S2 for illustrative examples.

Accuracy, sensitivity and specificity were measured independently

for each patient. A mean accuracy, sensitivity and specificity was

then calculated as the average over all patients of the patient-

specific accuracy, sensitivity and specificity, respectively.

Inter- and intra-operator variability on the segmentation of the

catheter balloon was also performed on a sub-set of 70 randomly

selected images (10 per patient). The segmentation of the

catheter balloon was repeated by AN and KP independently in

order to assess intra- and inter-operator variability. Agreement

between two segmentations was defined as the center of mass of

each of the two masks falling inside its corresponding one. The

percentage of agreement between segmentations is reported as a

measure of intra- and inter-operator variability.
3. Results

Supplementary Figure S1 shows the training and validation

dice loss plot over 200 epochs. The global minimum of the

validation loss was determined at epoch 169.

Representative example predictions of the network alone, for

each of the seven patients who underwent MRI-guided cardiac

catheterization, are shown in Figure 2. A large variation of

catheter-to-blood contrast, catheter balloon size/shape, and

overall anatomy can be observed within this patient cohort.

Despite these variations, accurate prediction of the catheter

balloon was achieved in all subjects using the proposed network.

One representative example of true negative detection is also

shown (see the bottom right case in Figure 2). No catheter was
frontiersin.org
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FIGURE 2

Representative example predictions of the network for all patients who underwent MRI-guided cardiac catheterization. Image (input to the network),
ground truth (GT) segmentation masks overlaid onto the input image (i.e., Image +GT) and network prediction masks (Pred) overlaid onto the input
images (i.e., Image + Pred) are shown for each subject. Accurate catheter segmentation was achieved for each of the seven patients. An additional
true negative example (patient #6) is provided (bottom right).

Neofytou et al. 10.3389/fcvm.2023.1233093
present in any part of this image. Interestingly, despite the presence

of hyper-intense signal, specifically from fatty tissue, the network

was able to predict the absence of the catheter balloon. On an

image basis, the mean accuracy, sensitivity and specificity of the

network alone over all patients were 87.5 ± 10.9%, 93.4 ± 13.8%

and 85.3 ± 13.8%, respectively.
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Figure 3 depicts the complete reconstruction pipeline in two

patient examples (patients #6 and #7) where the tracking of the

catheter is depicted in the three dynamically acquired contiguous

images. Significant bright fat tissue is also visible in these images

but did not affect the output of the network. Furthermore, the

catheter was initially detected in two adjacent slices for both
frontiersin.org
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FIGURE 3

The complete reconstruction pipeline shown for patients #6 and #7. Here the tracking of the catheter is depicted in the three dynamically acquired
contiguous images. The white arrows point to the location of the balloon within a given slice. Please refer to Supplementary Video S1 for the
corresponding dynamic video for patient #6. Accurate catheter tracking was achieved in most dynamics across the three contiguous slices.

Neofytou et al. 10.3389/fcvm.2023.1233093
patients using the network alone. The proposed post-processing

strategy resolves this ambiguity and identifies the slice containing

most of the catheter. Supplementary Video S1 shows the

corresponding dynamic video for patient #6. Accurate catheter

detection was achieved in the majority of dynamics.

The detailed accuracy, specificity and sensitivity measured for

each patient are shown in Table 1. While the worst accuracy was

95.2% in patient #4, an accuracy of 100% was achieved in 4/7

patients. Over all patients, the mean accuracy, specificity and

sensitivity of the complete catheter tracking pipeline were 98.4 ±

2.0%, 99.9 ± 0.2% and 95.4 ± 5.5%, respectively.
TABLE 1 Accuracy, specificity and sensitivity (%) values for each patient
for the complete catheter tracking pipeline.

Patient Accuracy (%) Specificity (%) Sensitivity (%)
1 100.0 100.0 100.0

2 100.0 100.0 100.0

3 100.0 100.0 100.0

4 95.2 100.0 86.4

5 100.0 100.0 100.0

6 97.3 99.3 92.6

7 96.3 100.0 89.0

The mean (measured across all patients) accuracy, specificity and sensitivity are

98.4 ± 2.0%, 99.9 ± 0.2% and 95.4 ± 5.5%, respectively.
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High repeatability and reproducibility of the manual

segmentation of the catheter was observed, as denoted by an

intra- and inter-operator percentage of agreement of 100% and

100%, respectively.

The computational time of this automatic tracking pipeline was

∼30 ms, with the network prediction accounting for ∼10 ms/

image.
4. Discussion

In this work, an automated, parameter-free, post-processing

strategy was developed using deep-learning for image-based

detection of gadolinium-filled balloon wedge catheters during

cardiac catheterization procedures. The proposed method

provides excellent accuracy, sensitivity and specificity, with

computation times compatible with real-time constraints.

Semi-artificial data were used for the training process due to

the limited availability of real data. The fact that semi-artificial

data can be successfully used for the training of such a network

is an important finding, especially when the scarcity of very large

training datasets for artificial intelligence applications has been

identified as a major obstacle, particularly in the field of cardiac

magnetic resonance imaging (27). This also greatly reduces the
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time-consuming and laborious nature of manually annotating large

volumes of data required for training. A potential limitation to

placing artificial catheter signal on underlying images is that

signal may not fully represent the variability (i.e., shape and

intensity) observed in real-world data. Similarly, the choice made

by a single operator of placing the artificial signal at specific

regions in the cardiovascular anatomy could lead to bias in the

training data. However, the high performance of the proposed

approach observed in this study indicates these effects may be

limited.

Furthermore, all semi-artificial data were based on images

acquired in adults and two orientations only (transverse and

coronal). The test patient cohort consisted predominately of

paediatric patients with all images acquired in an unseen

orientation during the training (i.e., sagittal). Imaging protocols

used for the acquisition of the training and testing datasets also

had slightly different imaging parameters. Finally, images from

this test cohort had high variability in terms of anatomy as well

as catheter balloon contrast/shape. Therefore, the high accuracy

of the proposed tracking strategy in the test dataset suggests that

the network was able to adapt to different scenarios unseen

during the training process. The network adaptability is

particularly important since large anatomical variations are

expected in the patient population referred for MRI-guided

cardiac catheterization and different slice orientations are also

expected to be used during catheter navigation (17).

The simplicity and success of the U-net model and its variants

have resulted in its extensive adoption as the primary tool for

segmentation tasks within the medical imaging community

(22, 28–31) and thus was the choice of network used in this

study. As discussed in Section 2.1., the U-Net model was used

incorporating a ResNet-34 encoder. This model proved to be

highly effective in achieving high accuracy, specificity, and

sensitivity in the detection of the presence or absence of balloon

signal. It is important to note that ResNet-34 is one of several

potential choices for the encoder in the U-Net architecture.

Other popular encoder architectures include, for example, VGG-

19 (32), Inception (33) and SE-Net (34) which have shown to

provide good performance for semantic segmentation in medical

imaging (29, 35–37). Such models could be explored in future

work to further improve the performance of the network. Future

work using segmentation models that leverage the temporal

dimension of data to improve segmentation accuracy could also

be investigated, such as the use of convolutional LSTMs (12).

Gadolinium-filled balloon catheters were used in this study.

Gas-filled balloon catheters can also be used and are visualized

through the signal voids they generate. Although gas-filled

balloons were shown to be less conspicuous than Gadolinium-

filled balloons, they offer improved buoyancy which may be

beneficial for catheter navigation (13). Retraining of the network

using images with negative contrast is expected to be required

and could be facilitated using the existing simulated dataset

which enables easy generation of varying catheter contrasts. The

potential of the proposed tracking strategy for negative contrast

catheter will be the focus of future work.
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Although the proposed tracking strategy was applied for the

detection of gadolinium-filled balloon wedge catheters during

MRI-guide cardiac catheterization procedures, it may also benefit

the tracking of other interventional devices. For example, the

network could be retrained to learn specific signal signatures

produced by an MR-compatible guidewire or needle.

This study has some limitations. First, the catheter tracking

sequence used in this study relies on the dynamic acquisition of

three contiguous slices, which results in a 3-fold reduction of the

temporal resolution. Future work will include the integration of

advanced acceleration techniques to improve the temporal

resolution of the framework. Second, this is a retrospective study

in a small patient cohort demonstrating the potential of

automatic parameter-free image-based tracking of the catheter

balloon. A further prospective study, including the online

integration of the proposed approach in a larger patient cohort

during an entire cardiac catheterization procedure, is now

needed to assess its clinical impact, both in terms of catheter

tip visualization, and prospective tracking during catheter

navigation.

In conclusion, deep-learning-based catheter balloon tracking is

feasible, accurate, parameter-free and compatible with real-time

conditions. Online integration of the technique and its evaluation

in a larger patient cohort are now warranted to determine its

benefit during MRI-guided cardiac catheterization.
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