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Background: The causal link between Type 2 diabetes (T2D) and
coronary atherosclerosis has been established through wet lab experiments;
however, its analysis with Genome-wide association studies (GWAS) data
remains unexplored. This study aims to validate this relationship using Mendelian
randomization analysis and explore the potential mediation of VLDL in this
mechanism.
Methods: Employing Mendelian randomization analysis, we investigated the
causal connection between T2D and coronary atherosclerosis. We utilized
GWAS summary statistics from European ancestry cohorts, comprising
23,363 coronary atherosclerosis patients and 195,429 controls, along with
32,469 T2D patients and 183,185 controls. VLDL levels, linked to SNPs,
were considered as a potential mediating causal factor that might
contribute to coronary atherosclerosis in the presence of T2D. We
employed the inverse variance weighted (IVW), Egger regression (MR-
Egger), weighted median, and weighted model methods for causal effect
estimation. A leave-one-out sensitivity analysis was conducted to ensure
robustness.
Results: Our Mendelian randomization analysis demonstrated a genetic
association between T2D and an increased coronary atherosclerosis risk,
with the IVW estimate at 1.13 [95% confidence interval (CI): 1.07–1.20].
Additionally, we observed a suggestive causal link between T2D and VLDL
levels, as evidenced by the IVW estimate of 1.02 (95% CI: 0.98–1.07).
Further supporting lipid involvement in coronary atherosclerosis
pathogenesis, the IVW-Egger estimate was 1.30 (95% CI: 1.06–1.58).
Conclusion: In conclusion, this study highlights the autonomous
contributions of T2D and VLDL levels to coronary atherosclerosis
development. T2D is linked to a 13.35% elevated risk of coronary
atherosclerosis, and within T2D patients, VLDL concentration rises by
2.49%. Notably, each standard deviation increase in VLDL raises the
likelihood of heart disease by 29.6%. This underscores the significant role
of lipid regulation, particularly VLDL, as a mediating pathway in coronary
atherosclerosis progression.
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1. Introduction

1.1. Unraveling the pathogenesis of type 2
diabetes and coronary atherosclerosis

Type 2 diabetes (T2D) stands as a pervasive metabolic disorder

affecting a substantial global population (1). Its intricate etiology,

devoid of a definitive cure, compels a focus on symptom

alleviation and complication prevention (2). Unfortunately, the

prevalent chronic complications of T2D, primarily impacting

cardiovascular and nerves, pose significant morbidity and

mortality risks (3). Among these complications, coronary

atherosclerosis emerges as a formidable adversary—characterized

by plaque accumulation in the coronary arteries nourishing the

heart. Given the pronounced atherogenic tendencies of T2D

patients, exploring the mechanisms behind the T2D-coronary

atherosclerosis nexus becomes pivotal (4). Thus, deciphering the

pathophysiological intricacies driving coronary atherosclerosis in

T2D patients is imperative, enabling the formulation of

efficacious prevention and management strategies.

In essence, the pervasive prevalence of T2D and its

consequential coronary atherosclerosis mandate an in-depth

inquiry into the underlying mechanisms. Enhancing our

comprehension of T2D’s pathophysiology and its cascading

complications promises more potent approaches to prevent,

manage, and enhance patient well-being.
1.2. Mendelian randomization

Traditional statistical methods for exploring cause-and-effect

relationships are flawed due to bias and confounding (5).

Mendelian randomization (MR) mitigates confounding and

reverse causality issues. Instrumental variables (IVs), linked to

exposures but not outcomes or confounding, underpin MR (6–

8). Three assumptions—relevance, exchangeability, and exclusion

restriction—support MR validity (Figure 1) (9). Despite benefits,
FIGURE 1

Three assumptions about instrumental variables (IV).
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strict IV requirements limit MR’s use. Genome-wide association

studies introduce single-nucleotide polymorphisms (SNPs) as

robust IVs (10). SNPs serve as popular IVs (11) and uncover

novel genetic determinants.

Despite challenges like sample size demands and pleiotropy,

MR promises to refine our grasp of complex diseases and their

influences. Leveraging MR strengthens causal conclusions,

enhancing intervention and management strategies.
1.3. The link between T2D and coronary
atherosclerosis

T2D is a pervasive metabolic disorder with a significant global

impact. While established links exist between T2D and coronary

atherosclerosis (12) gaps remain in comprehending the intricate

mechanisms that intricately connect the two (13). The

conventional focus on risk factors like hypertension, obesity, and

dyslipidemia partially explains the relationship, but an evolving

body of research suggests the direct involvement of T2D in

atherogenesis, notably impacting coronary atherosclerosis’s

pathogenesis (14). Central to this relationship is chronic

hyperglycemia, a hallmark of T2D, which amplifies cardiovascular

risks (15). It impairs endothelium-dependent vasodilation,

compromising vascular health (16). Intriguingly, the accumulation

of advanced glycation end products (AGEs) amid hyperglycemia

plays a pivotal role in T2D-driven coronary atherosclerosis

development (17). AGEs activate receptors, inciting inflammation,

and cell proliferation, further exacerbating atherosclerosis (18).
1.4. VLDL’s role in T2D-coronary
atherosclerosis

1.4.1. VLDL is linked to T2D
Elevated fatty acid levels due to hyperinsulinemia are well-

documented contributors to metabolic disorders, including T2D

(19). These fatty acids trigger immune responses, inducing
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inflammatory cytokines like TNF-α, IL-1, and IL-6 (20). This

inflammatory milieu drives insulin resistance, disrupts glucose

homeostasis, and fosters T2D. Moreover, inhibiting the liver X

receptor escalates cholesterol accumulation, inducing CRP,

plasminogen inhibitor-1, serum amyloid, fostering fibrinogen

synthesis, and hypercoagulability (21). These cytokines catalyze

VLDL and free fatty acid production, exacerbating lipid

disorders, promoting arterial lipid deposition, and augmenting

atherosclerotic risk (22). The complexity of these interactions

underscores the multifaceted nature of metabolic disorder

pathogenesis, necessitating a comprehensive understanding.
1.4.2. VLDL’s role in causing coronary
atherosclerosis

Notably, dyslipidemia, particularly the presence of very low-

density lipoprotein (VLDL) and elevated triglyceride (TG) levels,

has been linked to coronary atherosclerosis (23). It is revealed

that elevated levels of very-low-density lipoprotein cholesterol

(VLDL-C) are associated with an increased risk of major adverse

limb events (MALE) in patients with cardiovascular disease (24).

However, there is no correlation between VLDL-C levels and

major adverse cardiovascular events (MACE) or all-cause

mortality, even after accounting for established risk factors such

as LDL-C and lipid-lowering medication (24). Postprandial

remnant lipoproteins, especially VLDL remnants, play a

significant role in the initiation and progression of atherosclerosis

(25). The increase of these lipoproteins in plasma, along with

insufficient LPL activity, collectively contribute to the

development of coronary atherosclerosis (25).

The intricate interplay between VLDL and coronary

atherosclerosis underscores the significance of VLDL metabolism

in cardiovascular health, providing valuable insights into

potential mechanisms underlying the relationship between

metabolic disorders like T2D and the development of

atherosclerosis.
FIGURE 2

Research flow chart. Adapted from Smart Medical Art (Available at:
https://smart.servier.com/).
1.5. Research landscape and scope of the
study

The causal relationships between T2D, VLDL, and coronary

atherosclerosis have each been independently established through

2-sample analyses (26–28). However, substantial research gaps

persist in elucidating the intricate pathways that connect T2D to

coronary atherosclerosis, highlighting the imperative for further

investigation. Within this context, investigating the mediating

role of VLDL emerges as a promising avenue of exploration.

MR emerges as a robust strategy to probe causal relationships,

effectively addressing the gaps in our current understanding (29).

This analytical approach, utilizing multiple IVs, holds the

potential to unravel the complexity of these relationships.

Through the estimation of genetic variant effects on intermediate

phenotypes (such as blood glucose) and their subsequent

influence on outcomes (such as coronary atherosclerosis), MR
Frontiers in Cardiovascular Medicine 03
offers a pathway to uncover the underlying mechanisms linking

T2D to coronary atherosclerosis.

In summary, this study’s focus on elucidating the intermediate

role of VLDL aims to bridge existing gaps in comprehending the

intricate association between T2D and coronary atherosclerosis.

Leveraging the capabilities of MR, we aspire to contribute

valuable insights into the intricate mechanisms that underscore

this relationship, thus advancing our understanding and

presenting potential avenues for intervention and management.
2. Materials and methods

2.1. Study selection and data collection

In order to explore how T2D may contribute to the

development of coronary atherosclerosis through VLDL

regulation, we conducted two-sample MR analyses using data

from the IEU openGWAS database (https://gwas.mrcieu.ac.uk/).

The aim of these analyses was to verify the consistency of our

results. We performed three MR analyses in total. The first two

were conducted to investigate the causal relationship between

T2D and VLDL, as well as between T2D and coronary

atherosclerosis, respectively. The third analysis examined the

effect of VLDL levels on coronary atherosclerosis (Figure 2). We

used GWAS datasets to perform these MR analyses, and there

was minimal overlap between them. Table 1 summarizes the

details of the datasets used.

We used a significance threshold of P < 5e-8 to identify SNPs

associated with T2D and VLDL, as this is the widely recognized

standard for genome-wide association studies (GWAS) (29). To

address issues related to linkage disequilibrium (LD) between

the two samples, we conducted LD clumping using the

TwoSampleMR package in the R language. We applied the

following criteria: R2 = 0.01 and kb = 10,000 (30). This procedure

enabled the elimination of SNPs exhibiting strong LD with one

another, resulting in a subset of independent SNPs for further

analysis.
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TABLE 1 Summarizes the details of the datasets used.

Trait Sample size N SNPs Sex Population Year ID
T2D 32,469/183,185 16,380,440 Males and females Europa 2021 finn-b-E4_DM2

VLDL 115,078 12,321,875 2020 met-d-VLDL_L

Coronary atherosclerosis 23,363/195,429 16,380,466 2021 finn-b-I9_CORATHER_EXNONE
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2.2. Data analysis methods

2.2.1. Weak instrumental variable test
To ensure the validity of the Mendelian Randomization

analysis, we implemented stringent criteria for SNP inclusion,

focusing only on SNPs exhibiting strong associations with the

respective exposures, namely Type 2 Diabetes or VLDL levels (9).

The robustness of individual SNPs or sets of SNPs was assessed

through the calculation of the F-statistic, providing a measure of

the instrument strength. Additionally, we examined the

proportion of variance in the exposure explained by the

instrumental variable, as indicated by the R2 statistic (31). These

rigorous metrics were employed to ascertain the reliability and

potency of the instrumental variables utilized in our MR analysis.

The F-statistic, calculated as F ¼ N�K�1
K � R2

1� R2, was

employed for the assessment, where “N” represents the sample

size of the exposure, and “K” denotes the number of SNPs

associated with both the exposure and the depth of the Genome-

Wide Association Study. Furthermore, the determination of R2

relied on the formula 2 � (1�MAF ) � MAF � b2, with

“MAF” representing the Minor Allele Frequency and b2

signifying the effect size of the SNP on the exposure. This

thorough evaluation process served to enhance the confidence in

the instrumental variables used for the MR analysis.
2.2.2. Causal effect estimation
In this study, we utilized multiple SNPs as instrumental

variables for Mendelian Randomization (MR) analysis. To assess

the association of each individual SNP, we employed the Wald

statistic with the following formula (31):

bui ¼
cb
y
i

bbx
i

bui represents the estimated effect size for SNP i
cb
y
i denotes the effect size of the SNP on the outcome variable.

bbx
i represents the effect size of the SNP on the exposure variable.

To evaluate the relationship between T2D and coronary

atherosclerosis, we combined Wald ratios using the inverse

variance weighted (IVW) method (32). In this context, bui

represents the estimated causal effect, cby
i denotes the effect size

of the SNP on the outcome variable, and bbx
i represents the effect

size of the SNP on the exposure variable. Additionally, we

employed the MR-Egger regression method (33) and the

weighted median estimator (WME) (34) to complement and

validate the MR results.
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It is important to note that the validity assumptions for the

three calculation methods used for instrumental variables differ,

which helps ensure the robustness of the test results. The IVW

method calculates the effect estimate as the slope of a linear

regression weighted on the exposure factor for the instrumental

variable in the outcome, with the intercepted item constrained to

be zero. If all selected SNPs are valid instrumental variables, the

IVW rule can provide unbiased effect estimates. In contrast, the

MR-Egger method considers the existence of pleiotropy in the

instrumental variables by using an intercept term in the weighted

regression. The intercept term is used to evaluate the pleiotropy

between the instrumental variables, and the slope is estimated

accordingly. Finally, the WME method can still estimate the

causal effect even when the proportion of invalid instrumental

variables is as high as 50% and the estimated precision of the

instrumental variables is quite different.

To evaluate the presence of heterogeneity among the

instrumental variables, we used Cochran’s Q test with both the

IVW and MR-Egger methods (35, 36). If there is heterogeneity

among the instrumental variables, we used the IVW of the

random-effects model for the analysis of the results. In contrast,

if there is no heterogeneity, the IVW of the fixed-effects model is

used as the main approach (36).

2.2.3. Reliability evaluation
One must bear in mind that when it comes to instrumental

variables, they are typically assumed to impact outcomes solely

through the exposure factors being investigated. In other words,

there is no direct association between these variables and the

outcomes themselves. Nonetheless, this assumption becomes

increasingly challenging to verify because genetic variation can

exhibit pleiotropic effects—meaning that one gene may influence

multiple traits or phenotypes simultaneously. Consequently, fully

testing the exclusion hypothesis poses difficulties. At present,

researchers widely rely on the intercept term of MR-Egger

regression as a tool for detecting potential instances of

pleiotropy. Essentially, if the Egger intercept (i.e., linear

regression intercept) in an MR-Egger model approximates zero

closely enough, it indicates a lack of evidence supporting genetic

pleiotropy; thus, reinforcing the validity of the exclusionary

hypothesis. Moreover, a significantly different result suggests

otherwise (32, 37).

To assess the sensitivity of the results, a leave-one-out analysis

was performed. This method is widely used to identify potential

outliers by removing each SNP one by one and observing whether

the results differ significantly before and after the removal.

Specifically, if the obtained P-value is greater than 0.05 after

excluding a particular SNP, it suggests that the SNP does not have

a non-specific effect on the estimation of the causal effect (30).
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3. Results

3.1. Relevance

The F-statistic value is all >10 in every filtering step, indicating

strong instrumental variables. The threshold of r-squared is 0.01.

The low likelihood of weak instrumental variable bias, as

suggested by the R2 and F values, further supports the

assumption of relevance in MR research.
3.2. Two-step Mendelian randomization
results

The study findings, depicted in Figures 3, 4 and summarized in

Figure 5, reveal the established causal links between the exposures

and outcomes evaluated through MR-Egger regression, weighted

median, and random effects inverse variance weighting methods.

In addition, assessments for heterogeneity and horizontal

pleiotropy were executed, with the respective outcomes presented

in Figure 5. While the heterogeneity test results might not align

optimally, possibly attributable to the intricate pathogenesis of

T2D, they do not undermine the overarching conclusion.

The analysis reveals significant findings across multiple

methods and tests investigating the relationships between various

factors. Notably, for β0, which pertains to the causal impact of

T2D on the development of coronary atherosclerosis, the inverse

variance weighted method indicates a substantial association with

an odds ratio (OR) of 1.13 [95% confidence interval (CI): 1.07–
FIGURE 3

MR analysis.
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1.20], highlighting the elevated risk of coronary atherosclerosis

due to T2D. Likewise, the relationship between Type 2 diabetes

and VLDL levels, denoted as β1, exhibited modest associations

across the various methods employed. These results imply that

while a direct influence of T2D on VLDL levels is observed, it

does not reach statistical significance in most analyses. This

suggests a nuanced connection that might contribute to the

intricate interplay between T2D and VLDL in the context of

cardiovascular risk factors. Regarding β2, which signifies the

relationship between VLDL levels and the occurrence of coronary

atherosclerosis, the weighted median method demonstrated a

significant odds ratio of 1.42, indicating that higher VLDL levels

significantly increase the likelihood of developing coronary

atherosclerosis. The inverse variance weighted method also

presented a meaningful association with an odds ratio of 1.30,

further underlining the role of VLDL in the development of

coronary atherosclerosis.

The outcomes of horizontal pleiotropy assessment (Figure 4)

depicted in these three figures serve as a means of mitigating

horizontal pleiotropy, a factor that must be accounted for in

Mendelian randomization analyses. Horizontal pleiotropy refers

to effects that must be eliminated in Mendelian randomization,

as each individual SNP locus can potentially exhibit horizontal

pleiotropy. The overall pleiotropy fit observed in the images

converges closely to zero, thus statistically implying the absence

of horizontal pleiotropy.

It is important to note that the conclusions drawn from MR

analysis are based on several assumptions, including the validity

of instrumental variables, the absence of horizontal pleiotropy,

and the absence of unmeasured confounding factors. While
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FIGURE 4

Forest plots of MR analysis.
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efforts were made to ensure the validity of instrumental variables, it

is still possible that some SNPs may have pleiotropic effects or be

subject to weak instrument bias. Therefore, the results should be

interpreted with caution, and further studies are needed to

confirm the causal relationship between T2D, VLDL, and

coronary atherosclerosis.
3.3. Reliability evaluation

It is worth highlighting that the “Leave-one-out” sensitivity

analysis should be conducted across all instrumental variables

employed in the analysis, extending beyond the six groups of

data mentioned earlier. Despite the positive outcomes currently

depicted in Figure 6, this analysis should be iteratively repeated

by excluding each individual instrumental variable to assess its

impact on the overall results. This meticulous approach offers
Frontiers in Cardiovascular Medicine 06
additional confirmation that the favorable results are not reliant

on a single SNP or a limited subset of SNPs.
4. Conclusion

Cardiovascular disease (CVD) is a global health concern with

significant morbidity and mortality (38). Within its range,

coronary heart disease (CHD) significantly impacts individuals

with T2D, being a key contributor to morbidity and mortality

(39). T2D is an established risk factor for CHD, with

hyperglycemia directly triggering coronary atherosclerosis (40).

Elevated blood glucose also contributes to VLDL buildup (41).

Particularly important is the link between dyslipidemia—

characterized by VLDL and high TG levels—and CHD (42). This

investigation aims to uncover VLDL’s role, address knowledge
frontiersin.org
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FIGURE 5

The result of 5 methods and 2 tests.
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gaps, and enhance understanding of the complex T2D and

coronary atherosclerosis relationship via Mendelian randomization.

This study utilized large-scale GWAS meta-analysis data and

employed a two-sample Mendelian randomization approach to

investigate the causal relationships between T2D, VLDL, and

coronary atherosclerosis. T2D increases the risk of developing

coronary atherosclerosis, leading to a 13.35% increase in disease

occurrence compared to individuals without T2D. Additionally,

in the context of patients with T2D, VLDL concentration

increases by 2.49%. For every one standard deviation increase in

VLDL, the probability of developing heart disease increases by

29.6%. These findings suggest that VLDL may serve as a

mediator in the link between T2D and coronary atherosclerosis.

According to reports, coronary atherosclerosis is a significant

global health concern, particularly among individuals with T2D

due to their elevated risk of CHD (43). VLDL, intricately linked

with CHD risk, plays a pivotal role in this context. T2D is

known to elevate CHD risk through mechanisms such as chronic

inflammation, insulin resistance, and oxidative stress, all of which

contribute to the development of atherosclerosis—an underlying

factor in CHD progression (44, 45). Moreover, VLDL, a central

risk factor for CHD, assumes a crucial role (46). Elevated VLDL

levels, characteristic of dyslipidaemia, independently elevate CHD

risk by promoting atherosclerosis development (47). This study

focused on understanding the individual influences of T2D and

VLDL levels on coronary atherosclerosis risk and explored the

potential mediating role of VLDL (47). The findings not only

delineated the separate contributions of T2D and VLDL levels to

coronary atherosclerosis risk but also proposed that VLDL might

operate as a mediating pathway. These findings accentuate the

significance of managing VLDL levels to mitigate the onset of

coronary atherosclerosis among T2D individuals, underlining the

need for early intervention to manage CHD risks.
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This study possesses several strengths. Firstly, it leveraged

large-scale GWAS databases and incorporated hundreds of SNPs

in each two-sample Mendelian randomization analysis,

minimizing the potential for random outcomes and enhancing

the proportion of variance explained by the SNPs. Additionally,

the study’s robustness is underscored by conducting GWAS for

all three variables using European databases with a low overlap

probability, effectively addressing the concern of population bias.

Furthermore, unlike similar studies focused solely on specific

populations, this research significantly broadened its scope by

encompassing a diverse European database, contributing to the

generalizability of its findings.

While employing the two-sample Mendelian randomization

method, this study demonstrates notable strengths as well as

certain limitations. Firstly, despite the utilization of GWAS data

spanning European databases, the extent of overlap remains low,

potentially impacting the external applicability of the findings.

Additionally, the assumption of method validity encompasses the

effectiveness of instrumental variables; however, the presence of

weak instruments might introduce inaccuracies in estimations.

On another note, the study might have some shortcomings in

controlling for confounding factors, such as lifestyle, genetics,

and other potential covariates. This could potentially affect the

internal validity of the results, making it challenging to

completely exclude the influence of other factors. Furthermore,

constrained by sample size and effect magnitude, the study’s

statistical power could be limited, leading to a potential

weakening of result stability. Therefore, careful interpretation of

the generalizability of the findings is warranted. These limitations

underscore the need for cautious interpretation and highlight

avenues for future research.

In conclusion, this study employed three two-sample

Mendelian randomization analyses to investigate the relationships
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FIGURE 6

“leave one out” sensitivity analysis.
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between T2D, VLDL, and coronary atherosclerosis. The results

suggest that VLDL may potentially serve as a mediator in the

pathway through which T2D leads to coronary atherosclerosis.

This innovative approach bridges the gap between experimental

and genomic methodologies, providing robust evidence for the

causal link between these conditions. By incorporating VLDL

levels as a potential mediating factor, it unveils a previously

unexplored facet of their interplay, shedding light on the intricate

mechanisms underlying this complex association.

The findings of this research have significant implications for

clinical practice and public health policy formulation. Confirming

the mediating role of VLDL in the T2D-coronary atherosclerosis

association underscores the importance of reducing VLDL levels,

potentially aiding in coronary atherosclerosis risk reduction. Due

to the intricate interplay between T2D and coronary

atherosclerosis, these results can guide the development of

targeted intervention strategies, facilitating early identification

and treatment of abnormal VLDL levels in T2D patients, thereby

mitigating cardiovascular risks. Additionally, these discoveries

offer a roadmap for future investigations, motivating further

exploration into the mechanisms underlying T2D, VLDL, and
Frontiers in Cardiovascular Medicine 08
coronary atherosclerosis, consequently providing more precise

and effective approaches for cardiovascular disease prevention

and management. This study not only enhances our

understanding of the mechanisms underlying relevant diseases

but also provides valuable insights for the realms of clinical

practice and public health.
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