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Advanced searching for
hypertrophic cardiomyopathy
heritability in real practice
tomorrow
Olga S. Chumakova* and Natalia M. Baulina

Laboratory of Functional Genomics of Cardiovascular Diseases, National Medical Research Centre of
Cardiology Named After E.I. Chazov, Moscow, Russia

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease
associated with morbidity and mortality at any age. As studies in recent decades
have shown, the genetic architecture of HCM is quite complex both in the entire
population and in each patient. In the rapidly advancing era of gene therapy, we
have to provide a detailed molecular diagnosis to our patients to give them the
chance for better and more personalized treatment. In addition to emphasizing
the importance of genetic testing in routine practice, this review aims to discuss the
possibility to go a step further and create an expanded genetic panel that contains
not only variants in core genes but also new candidate genes, including those
located in deep intron regions, as well as structural variations. It also highlights the
benefits of calculating polygenic risk scores based on a combination of rare and
common genetic variants for each patient and of using non-genetic HCM markers,
such as microRNAs that can enhance stratification of risk for HCM in unselected
populations alongside rare genetic variants and clinical factors. While this review is
focusing on HCM, the discussed issues are relevant to other cardiomyopathies.

KEYWORDS

hypertrophic cardiomyopathy, genetics, diagnosis, missing heritability, NGS,

HCM-associated variants, polygenic risk score, miRNA

1. Introduction

HCM is the most common inherited cardiac disease affecting at least 1:500 of the general

population (1). In adult probands, HCM is defined as the thickening of the left ventricle (LV)

wall ≥ (13) 15 mm in the absence of obvious causes for the observed magnitude of

hypertrophy (2); this definition includes both familial and sporadic forms of the disease.

HCM is characterized by high clinical heterogeneity. Many patients are asymptomatic and

early diagnosis is difficult. The others for still unknown reasons develop symptoms of

heart failure, atrial fibrillation, and embolic stroke. Risk stratification of sudden cardiac

death (SCD), which predominantly affects young people, remains a challenge. The source

of such individual clinical differences in HCM is traditionally considered to be its genetic

heterogeneity (3).

In the 90s of the last century, the first molecular investigations formed the idea of HCM

as a monogenic (Mendelian) “disease of the sarcomere” with autosomal dominant

inheritance and age-dependent penetrance (probability that a person with a mutation will

develop a disease) with more than 95% affected at 50–60 years of age (4–6). In these

cases, the HCM phenotype of the patient is driven by a single rare pathogenic variant of

large effect size. Over the next 30 years, new techniques, especially next-generation

sequencing (NGS), capable of analyzing large numbers of genes significantly changed our
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understanding of the genetic architecture of HCM. Importantly,

fewer than half of HCM patients who undergo conventional

genetic testing show rare pathogenic variants in sarcomeric genes

(7). In the sarcomere-negative setting, familial cases are quite

common which justifies searching for new causative genes or

thinking about a more complex inheritance model based on 2 or

more variants of different effect sizes clustering in some families

and the impact of shared environment (8). To increase the yield

of genetic testing new strategies and techniques (such as whole

exome and whole genome sequencing) have been applied,

including sequencing a broader range of new candidate genes,

screening for copy number variations (CNVs) in known disease-

causing genes, and investigation of non-coding regions of DNA.

Early disease onset and severe clinical courses often prompt the

search for more complex genetic defects such as biallelic or de

novo mutations (9). Moreover, it is now believed that some

HCM patients have non-Mendelian polygenic inheritance

patterns triggered by comorbidities (10).

It is also important to consider the common genetic etiology of

HCM with other inherited cardiomyopathies. Indeed, the

sarcomeric genes play a major role not only in HCM but also in

dilated cardiomyopathy (DCM) and restrictive cardiomyopathy

(11). Different variants located in different hotspots of the same

gene lead to different, sometimes opposite, phenotypes, like

HCM and DCM (12). But even the same genetic variant can

cause variable clinical phenotypes within the same family that

might be related to the disease stage or the impact of other

modifiers, so cardiac screening of family members should be

aimed at identifying all types of cardiomyopathies.

Over the past decade, other modifiers, which may contribute

significantly to the penetrance of mutations associated with

HCM, have been explored with some interesting insights from
FIGURE 1

Advanced searching for HCM heritability.
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miRNA studies uncovering miRNA potential as prognostic

indicators and therapeutic agents along with gene editing.

Conducting large-scale studies investigating the miRNA profile to

identify crucial HCM-associated miRNAs could increase the

accuracy of HCM diagnosis and improve the understanding of

the mechanisms of realization of HCM genetic background in

the formation of such a variety of clinical phenotypes.

This review summarizes all genetic aspects of current

knowledge about HCM and suggests a new advanced genetic

panel for patients with HCM phenotype that might be applied if

not today, then tomorrow (Figure 1). It also discusses the

further directions to supplement this panel with miRNAs that

could definitely improve existing imaging-based surveillance

protocols to identify and monitor different variant carriers, assess

response to treatment, and improve our ability to identify those

who may soon progress to clinically overt disease.
2. Sarcomeric genes

The sarcomere is the contractile unit of cardiomyocytes in

which thick filaments (myosin and associated proteins) slide

along thin filaments (actin and associated proteins) (Figure 2).

Two transverse structures, the Z-disc, and the M-band, anchor

thin and thick filaments to the elastic filament system composed

of titin. As it has recently been discovered, sarcomere

dysfunction manifested as hypercontractility of the heart is a

cornerstone of HCM pathogenesis (13). Increased LV

contractility is associated with HCM beyond rare sarcomeric

variants (14). The effectiveness of a new class of drugs called

myosin inhibitors in modulation of LV contractility in HCM

patients regardless of their genotype status testifies in favor of the
frontiersin.org
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FIGURE 2

Cellular locations and functions of proteins, encoded by sarcomeric and minor HCM-associated genes. Sarcomeric proteins encoded by HCM-associated
genes are indicated with an orange background: ACTC1 (alpha-actin encoded by ACTC1), TNNI3 (troponin I encoded by TNNI3), TNNT2 (troponin T
encoded by TNNT2), TNNC1 (troponin C encoded by TNNC1), TPM1 (alpha-tropomyosin encoded by TPM1), MYH7 (myosin heavy chain 7 encoded
by MYH7), MYBPC3 (myosin binding protein C encoded by MYBPC3), MYL2 and MYL3 (regulatory and essential light chains encoded by MYL2 and
MYL3, respectively); minor genes—with a gray background: ACTN2 (alpha actinin 2 encoded by ACTN2), ALPK3 (alpha-protein kinase 3 encoded by
ALPK3), CSRP3 (cysteine and glycine-rich protein 3 encoded by CSRP3), FHOD3 (formin homology 2 domain containing 3 protein encoded by
FHOD3), FLNC (filamin C protein encoded by FLNC), JPH2 (junctophilin 2 encoded by JPH2), KLHL24 (Kelch-like protein 24 encoded by KLHL24),
PLN (phospholamban encoded by PLN), SVIL (supervillin encoded by SVIL) and TRIM63 (muscle-specific RING finger protein 1 encoded by TRIM63).
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universality of sarcomere dysfunction in HCM development (15)

although the difference in the statistical significance of the results

between genotype-positive and genotype-negative HCM groups

requires further evidence to prove this statement.

Historically, inherited disorders were diagnosed by the

phenotype, the segregation of the variant with the disease, or

personal and family history. Gene sequencing and the expansion

of variants highlighted the necessity of a correct genetic variant

classification for managing genetic information. In 2015 the

American College of Medical Genetics and Genomics (ACMG)

and the Association for Molecular Pathology (AMP) released a

universal landmark guidance document for variant classification

framework (16). Five-tier classification levels of clinical significance

(pathogenicity) of genetic variants have been introduced:

pathogenic (P), likely pathogenic (LP), variant of uncertain

significance (VUS), likely benign (LB), and benign (B), depending

on the applied criteria. According to ACMG guidelines, there are

28 criteria that can be classified by the weight of evidence (strong,

moderate, etc.) and type of evidence, i.e., (i) type and location of

the variant in the gene; (ii) previously established pathogenicity or,

vice versa, the novelty or confirmed de novo status of variant; (iii)

population frequency data; (iv) segregation with patient’s

phenotype data; (v) evidence of a deleterious effect on the gene or

gene product functions based on functional studies or
Frontiers in Cardiovascular Medicine 03
computational (in silico) analysis. If there is insufficient evidence

to determine disease causality (P/LP) or contrary bystander status

(LB/B), the variant is classified as VUS.

Firstly, the genetic basis for HCM has been discovered in 1990

by Seidman’s group in collaboration with Prof. William McKenna,

who was the most expert in the diverse clinical and

echocardiographic manifestations of HCM at that time (17). A

point mutation in exon 13 of MYH7 gene, encoding myosin

heavy chain 7, that converts a highly conserved arginine residue

(Arg-403) to glutamine in all affected but not in unaffected

members of a large kindred riddled by SCD was identified.

Clinical examination of over a hundred family members provided

clear evidence for the dominant inheritance of this

cardiomyopathy and age-related disease expression (5). The

compelling evidence of the causative role of MYH7 in HCM has

been received in subsequent studies of unrelated HCM families

by identification of other rare non-synonymous variants in

MYH7 gene segregated with HCM (17, 18). However,

approximately 50% of families did not reveal mutations in

MYH7 gene; this fact has boosted new genetic linkage studies,

which in combination with applying candidate gene approaches

resulted in identifying additional disease-causing genes (19).

Because the next two recognized HCM-associated genes after

MYH7 were TPM1 and TNNT2 encoding contractile proteins
frontiersin.org
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alpha-tropomyosin and troponin T, respectively, HCM became a

“disease of the sarcomere” (6). The thin filament is composed of

alpha-actin, encoded by ACTC1, and the calcium-sensitive

troponin-tropomyosin apparatus, which includes troponin T,

troponin I (TNNI3), troponin C (TNNC1) and alpha-tropomyosin.

Thick filament contains the main molecular motor—cardiac

myosin heavy chain 7, regulatory and essential light chains,

encoded by MYL2 and MYL3 genes, respectively, and myosin

binding protein C encoded by MYBPC3. Eight aforementioned

sarcomeric genes MYH7 (MIM #192600), TPM1 (MIM #115196),

TNNT2 (MIM #115195), ACTC1 (MIM #612098), TNNI3

(MIM #613690), MYL2 (MIM #608758), MYL3 (MIM #608751)

and MYBPC3 (MIM #115197) except TNNC1 are classified as

HCM contributors because they contain some variants with

strong evidence of segregation and an aggregate excess of variants

in HCM cases compared with controls (20, 21). The TNNC1

gene has a moderate level of evidence of segregation with HCM

because of the relative rarity of its pathogenic variants

(MIM #613243) that might be related to the high degree of

evolutionary conservation of the gene sequence and/or may be

due to severe outcomes at an early age (before reproduction)

resulting in the fact that genetic variants are not passed on to

new generations (22). About 96% of HCM individuals with

positive genetic test results have at least one disease-causative

variant in one of eight core sarcomeric genes and two of these

genes, MYBPC3 and MYH7, are collectively the most commonly

observed (81%) (7).

The age of diagnosis of sarcomeric HCM might be from 0 to

>90 years (23, 24) and significant differences in the morphology

and clinical course of the disease are reported among the

members of one family (25), including monozygous twins (26).

Moreover, an extreme difference in penetrance of known

sarcomeric mutations is observed between the general population

of middle-aged adults (2.6%–6.1%) (27, 28) and the cohort of

relatives of genotype-positive HCM probands (up to 50% during

follow-up) (29). Such incomplete, age-related penetrance and

variable expressivity of P/LP sarcomeric variants may now be

explained by polygenic contribution of common variants at a

dozen loci (10, 30), particularly those recently found to be

associated with a surrogate marker for HCM—cardiac magnetic

resonance-derived maximum wall thickness of LV (31). It seems

clustering of high-risk common variants-modifiers in the

genomes of sarcomeric families would explain the difference in

penetrance of the same P/LP mutations between the general

population and cohort of relatives, as well as a clinical

heterogeneity of HCM within one family (also discussed in

“Polygenic HCM” section). The intermediate effect size low-

frequency variants also exist in HCM (32). They are assumed to

require additional common genetic modifiers for the penetrance

(oligogenic inheritance) that make the interpretation of genetic

testing results beyond the current capabilities. Harboring such

variants in non-sarcomeric genes can offer limited additional

sensitivity and some of the disappointment from the expanded

genetic panels (33), which resulted in a recommendation of

additional screening for only genes associated with HCM mimics,

requiring different patient management (34).
Frontiers in Cardiovascular Medicine 04
A prognostic value of knowledge of whether the patient is

harboring a damaging variant or not in one of 8 definitive

sarcomeric genes has been convincingly shown in several

studies. Compared to sarcomere-negative counterparts,

sarcomere-positive patients have a more severe clinical course.

They are diagnosed significantly earlier in life, have a worse

cardiovascular event-free survival, and higher rate of

cardiovascular events (35, 36). The presence of a sarcomeric

mutation independently from proband status, sex, and race

carried a more than 2-fold increased risk for all HCM-

associated outcomes, highest for ventricular arrhythmia, and

even after adjustment for earlier age at presentation, hazard

remained significantly increased (36). Since a sarcomeric

mutation status is predictive of outcomes, the presence of

sarcomeric pathogenic variant(s) has recently been incorporated

into HCM clinical management guidelines as an additional

criterion for implantable cardioverter-defibrillators implantation

in patients with intermediate 5-year risk of SCD (37). Unlike

sarcomere-positive, sarcomere-negative HCM, after the

exclusion of phenocopies and alternative diseases, is

significantly less investigated, and its pathogenesis is still

unknown. A combination of sarcomere-negative status and

negative family history is classified as nonfamilial HCM. This

subgroup has demonstrated a more benign clinical course with

mortality similar to the age-matched general population, and a

much lower familial recurrence risk that should result,

according to the authors, in less frequent clinical surveillance of

relatives (36, 38). Despite a substantial proportion of sporadic

cases, which may have no strong genetic component at all (39),

22% of sarcomere-negative HCM patients have a positive family

history (38), which can indicate either an unrecognized

Mendelian form of the disease (especially in early-onset or

multiple affected relatives), or more complex inheritance model

based on variants of different effect sizes clustering in such

families (8).

Sarcomeric genes remain the cornerstone of the genetic panel for

HCM screening. In our opinion, most HCM panels comprising

only sarcomeric genes must be enriched with additional HCM-

associated genetic loci that contribute to the emergence of the

individual disease phenotype to improve the efficacy of HCM

diagnosis (discussed further).

3. Non-sarcomeric genes

Despite the vast majority (>90%) of pathogenic variants

are located in sarcomeric genes, some HCM-causing variants

were found in genes encoding non-sarcomeric proteins.

Non-sarcomeric HCM-associated genes can be divided into

two groups: “minor” genes harboring mutations that lead to

sarcomere dysfunction in a similar manner as mutations

located in sarcomeric genes do and genes of phenocopies, or

systemic diseases’ genes, with pathogenic variants that may

mimic HCM phenotype.
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3.1. Minor HCM-associated genes

Several comprehensive reviews of less common or “minor”

HCM-associated genes with its convincing disease-causing

evidence has been recently published (3, 40). Therefore, in this

review we accumulate the key data of “minor” HCM genes

specifying the location and function of their encoding proteins

(Table 1, see Figure 2) as well as their role in HCM development;

only the latest data on these genes are discussed below.
3.1.1. ACTN2
ACTN2 encodes alpha actinin 2 protein that localizes in Z-disc

and is known to stabilize sarcomeres by anchors and crosslinks

actin filaments from neighboring ones as well as to regulate ion

channels. Variants in this gene has been associated with

cardiomyopathies (more often with HCM (MIM #612158) and left

ventricular non-compaction cardiomyopathy (MIM #612158)) and

skeletal muscle diseases. In 2018 ACTN2 gene reached a moderate

classification of evidence for HCM with a few mutations reported

to be segregated in HCM families (41, 42). The list of all known

ACTN2 variants with updated clinical significance, segregation,

and/or functional data to support their pathogenicity has been

recently published (43). Later, the detailed investigations of the

ACTN2 p.Met228Thr variant in the mouse model identified alpha-

actinin 2 protein destabilization as a key disease mechanism. It

leads to aberrant activity of the ubiquitin-proteasomal system

(UPS) and interferes with cardiomyocyte maturation ensuing

mitochondrial dysfunction (44).
TABLE 1 Minor HCM-associated genes.

Gene Protein Location of protein Function of

ACTN2 Alpha actinin 2 Z-disc Stabilizes sarcom
filaments from

ALPK3 Alpha-protein kinase 3 Between M-band of the
sarcomere and nucleus
membrane

Maintains sarco

CSRP3 Cysteine and glycine-rich
protein 3 (muscle LIM
protein)

Z-disc Maintains the m
functions, actin

FHOD3 Formin Homology 2
Domain Containing 3

Thin filament of sarcomere Regulates sarco
actin

FLNC Filamin C Z-disc Maintains the in
actin filaments

JPH2 Junctophilin 2 Sarcoplasmic reticulum
within junctional membrane
complexes

Serves to bridge
interacts with L
to regulate Ca2+

KLHL24 Kelch-like protein 24 Intermediate filament
network

Ubiquitinates d

PLN Phospholamban Calcium signalling Inhibits cardiac
ATPase, thereby

SVIL Supervillin Z-disc Binds actin and
assembly

TRIM63 Muscle-specific RING-finger
protein 1

Z-disc and M-band of
sarcomere

Targets cellular
for degradation

AD, autosomal dominant pattern of inheritance; AR, autosomal recessive pattern of in
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3.1.2. ALPK3
ALPK3 encodes alpha-protein kinase 3 that localizes between

M-band of the sarcomere and nucleus membrane and maintains

sarcomere integrity and proteostasis. It is thought to be the most

rapidly investigated non-sarcomeric gene in association with

HCM (MIM #618052). Over 5 years it has been shown that

several biallelic and heterozygous variants creating premature

stop-codons (truncating variants) in ALPK3 might be disease-

causing (45, 46). The involvement of rare missense ALPK3

variants in HCM has been recently shown in the Asian

population (47). Genome-wide association studies (GWAS)

demonstrated the contribution of ALPK3 common variants in

HCM polygenic risk score (PRS) (10, 14). Significant progress in

the understanding of the pathogenesis of ALPK3-associated

cardiomyopathy has been demonstrated in two recent

fundamental works. Both study groups came to the same

conclusion that (1) alpha-protein kinase 3 localizes to the M-

band of the sarcomere and (2) its deficiency dysregulates M-band

proteins involved in sarcomere turnover. Thus, ALPK3 mutations

induce hypertrophy by impairment of sarcomere proteostasis

(48, 49). Moreover, a protective role of miR-384-5p against

cardiac hypertrophy via the alpha-protein kinase 3 signaling

pathway regulation has been shown (50).

3.1.3. CSRP3
CSRP3 encodes cysteine and glycine-rich protein 3 (also known

as muscle LIM protein) that localizes in Z-disc and maintains the

myocyte cytoskeleton, mechanosensory functions, and actin

cytoskeleton assembly. It is a well-established HCM-associated
protein Gene-disease validity classification
according to ClinGen (year of
approvement)

eres by anchors and crosslinks actin
neighboring ones; regulates ion channels

Moderate for AD “intrinsic
cardiomyopathy” (2018)

mere integrity and proteostasis Definitive for AR HCM (2022); Not yet
evaluated for AD HCM

yocyte cytoskeleton, mechanosensory
cytoskeleton assembly

Moderate for AD HCM (2017)

mere organization by polymerization of Not yet evaluated

tegrity of the sarcomere by crosslinking
at the sarcomeric Z-disc

Not in HCM panel

plasma membrane and sarcolemma,
-type Ca2+ channels, caveolin and RyR2
induced Ca2+ release

Moderate for AD HCM (2017)

ifferent keratins and desmin Not yet evaluated

muscle sarcoplasmic reticulum Ca(2+)-
mediating contraction and relaxation

Definitive for AD “intrinsic
cardiomyopathy” (2021)

myosin, plays a role in myofibril Not yet evaluated

proteins, including sarcomeric proteins,
via ubiquitin-proteasome system

Disputed for AD HCM (2022)

heritance; HCM, hypertrophic cardiomyopathy.
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gene despite a small number of reported rare disease-causative

variants (MIM #612124). The latest study discovered that CSRP3

mutations activated UPS-mediated depletion of functional

protein, driving the development of non-sarcomeric HCM (51).

Moreover, a novel computational screening method for quick

identification of key mutation sites for specific protein structures

has been recently provided; it was established that the most

common CSRP3 substitution L44P affects the LIM domain

structure by altering the secondary structure of the protein (52).

3.1.4. FHOD3
FHOD3 encodes formin homology 2 domain containing 3

protein that localizes in thin filament of sarcomere. The longest

isoform of FHOD3 is expressed exclusively in the heart and

required for sarcomere formation via both thin (actin) (53) and

thick (myosin binding protein C) filaments (54). Pathogenic rare

FHOD3 variants associated with HCM are mostly non-truncating

and affect the diaphanous inhibitory domain of the protein

(HCM, MIM #619402) (55, 56). Role of FHOD3 variants in

DCM is still unclear.

3.1.5. FLNC
FLNC encodes filamin C protein that localizes in Z-disc and

maintains the integrity of the sarcomere by crosslinking actin

filaments at the sarcomeric Z-disc. It has been recently recognized

as a gene associated with isolated cardiomyopathies. Truncating

variants in FLNC are strongly enriched in an overlapping

phenotype of DCM and left-dominant arrhythmogenic

cardiomyopathy (57), as FLNC is highly intolerant of loss-of-

function variants. Missense variants in FLNC have been associated

with autosomal-dominant restrictive cardiomyopathy (MIM

#617047) (58). HCM also seems to be mainly associated with

missense variants, which cause changes in the secondary protein

structure (MIM #617047). Only 13 missense variants have been

supported to be pathogenic by functional and/or segregational

studies (59). Over the past year, the first familial HCM caused by

a splicing mutation in FLNC was reported (60). Later, strong

evidence for the involvement of FLNC in HCM was confirmed: a

novel missense variant Ile1937Asn with complete penetrance and

poor outcomes has been identified in a large 3-generation French-

Canadian family with excellent segregation data (61). Interestingly,

most missense variants and the aforementioned splice variant are

located in the ROD2 domain of FLNC gene, which is also

participating in cell signaling, and can be considered as a

mutational hotspot region for HCM-related FLNC variants.

3.1.6. JPH2
Junctophilin 2, encoded by JPH2, is a major isoform of its

family in the heart that localizes in sarcoplasmic reticulum

within junctional membrane complexes. It serves to bridge

plasma membrane and sarcolemma, interacts with L-type Ca2+

channels, caveolin and RyR2 to regulate Ca2+ induced Ca2+

release. In 2023 a comprehensive systematic review of the cardiac

manifestation of all JPH2 pathogenic variants was published

(HCM, MIM #613873 and DCM, MIM #619492) (62). Patients

with autosomal dominant heterozygous variants developed HCM
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(76%) and arrhythmia/SCD (24%). Patients with homozygous/

compound heterozygous loss-of-function variants developed

DCM and early-onset heart failure. Among a total of 61 variant-

positive individuals, 47% had HCM. However, additional studies

are still needed to provide conclusive evidence for this association.

3.1.7. KLHL24
KLHL24 encodes the Kelch-like protein 24 that is commonly

expressed in the skin and heart and involved in intercellular

compliance networks. Kelch-like protein 24 regulates ubiquitination

and subsequent proteasome degradation of keratins in keratinocytes

and desmin in cardiomyocytes; the dysregulation of this process can

result in both an excessive degradation and, on the contrary, an

accumulation of intermediate filament proteins (63). Pathogenic

variants in KLHL24 gene may cause solitary skin (MIM #617294) or

heart disorders (HCM, MIM #620236) (64), as well as combined so-

called cardiocutaneous syndromes (MIM #617294). Causal variants

in KLHL24 are rare in the general population, and establishing their

pathogenicity is challenging. A summary of the functional impact of

eight KLHL24 variants on protein function has recently been

published (63). Generally, patients with heterozygous gain-of-

function variants can develop DCM phenotype with desmin

deficiency, meanwhile, HCM with desmin-overload has been

determined in patients with homozygous loss-of-function variants.

Parents of HCM patients carrying the heterozygous loss-of-function

variants did not display signs of cardiac disease (65).

3.1.8. PLN
The PLN gene comprises only one exon and encodes a short

protein phospholamban consisting of 52 amino acids, which is a key

regulator of cardiac contractility: it inhibits cardiac muscle

sarcoplasmic reticulum Ca(2+)-ATPase, thereby mediating

contraction and relaxation. Due to its size, the number of possible

causal variants is limited. However, mutations in PLN are associated

with different cardiomyopathies (HCM, MIM #613874; DCM, MIM

#609909, and arrhythmogenic cardiomyopathy). Thereby, PLN was

classified as a definitively associated gene with an “intrinsic

cardiomyopathy”. Among all PLN variants, only p.Leu39Ter has

been shown to be significantly enriched in HCM (66, 67).

3.1.9. SVIL
SVIL encodes supervillin, which is a large multi-domain actin

and myosin-binding protein, localized in Z-disc. Its muscle

isoform plays a role in myofibril assembly. In 2020 the

homozygous loss-of-function variants in SVIL were described in

individuals with skeletal myopathy and slightly hypertrophic LV

walls (MIM #619040) (68). SVIL gene has been just recently

associated with HCM; a 10.5-fold excess burden of rare truncating

SVIL variants in HCM cases has been demonstrated in the largest

GWAS (30). In one family, SVIL variant p.Gln255* was carried by

two affected cousins. However, more co-segregation evidence is

still required for supporting variants’ pathogenicity.

3.1.10. TRIM63
To maintain normal cardiac function, sarcomeric proteins

undergo constant turnover by UPS. Ubiquitin ligases direct the
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addition of ubiquitin to target proteins, marking them for

degradation (69). One of the ubiquitin ligases is muscle-specific

RING-finger protein 1, encoded by the TRIM63 gene. The protein

localizes to the Z-disc and M-band of the sarcomere, where it

interacts with myosin heavy chain, troponins, tropomyosin, and

titin. Salazar-Mendiguchía et al. demonstrated an association

between homozygous and compound heterozygous rare variants in

TRIM63 and the development of HCM. The family evaluation

confirmed a recessive pattern of disease inheritance, as

heterozygous carriers were healthy (70). This gene is responsible

for approximately 0.4% of HCM cases, but an increasing number

of TRIM63-associated HCM cases is expected (71).
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, congenital heart disease; LQTS, long QT syndrome; AF, atrial fibrillation; SSS, s

iac conduction defects; PSVT, paroxysmal supraventricular tachycardia.
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genes in HCM. Since more and more non-sarcomeric genes are

recognized to be disease-causing, the list of candidate genes must

be reassessed regularly.

3.2. Genes of HCM phenocopies

Phenocopies of HCM are named the diseases that have heart

changes similar to HCM. The vast majority of these rare diseases

are systemic and inherited. Some patients have very subtle

extracardiac features of a syndromic disorder and the real origin

of HCM phenotype may be overlooked by medical professionals.

The patients are followed for years with presumed sarcomeric

HCM until genetic testing is done. The main genes that are

classified as having a definitive association with their respective

syndromes and may cause isolated, or seemingly isolated, LV

hypertrophy (20), are presented in Table 2.

Aside from P/LP variants, there are a growing number of

reported VUS in these genes. In some cases, they can play a
c (HCM) phenotype.

by Variants
(Reference)

c.1552C>T (p.Arg518Cys)
c.1552C>T (p.Arg518His) (72, 73)

er c.1216C>T (p.Arg406Trp) (74, 75)

c.673T>C (p.Cys225Arg) (76)
c.134delA (p.Lys45Serfs), c.827G>C (p.Cys276Ser) (77)
c.599_600insT (p.Phe200fs32X) (78)

c.640–801G>A (IVS4+919G>A) (79)
c.644A>G (p.Asn215Ser), c.888G>A (p.Met296Ile), c.902G>A (Arg301Gln),
c.982G>C (p.Gly328Arg) (80);
c.427G>C (p.Ala143Pro)
c.758T>C (p.Ile253Thr)
c.613C>A (p.Pro205Thr)
c.386T>C (p.Leu129Pro)
c.1072G>A (p.Glu358Lys) (81)
c.337T>C (p.Phe113Leu) (82)

Any in females (83)

All (84)

c.922A>G (p.Asn308Asp) (81)
c.1528C>G (p.Gln510Glu) (85)
c.1403C>T (p.Thr468Met) (86)

c.769T>C(p.Ser257Pro) (86)
c.779C>T (p.Thr260Ile) (87)

c.170C>G (p.Ala57Gly) (88)

c.424G>A (p.Val142Ile) c.391C>A (p.Leu131Met) c.238A>G (p.Thr80Ala)
c.262A>T (p.Ile88Leu)
c.323A>G (p.His108Arg)
c.118G>A (p.Val40Ile) (89)

ick sinus syndrome; MD, muscular dystrophy; WPW, Wolff Parkinson White; CCD,
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cumulative role in phenotype formation along with major

sarcomeric mutations (90). Regarding the genes of storage

diseases, there is still a big question about which variants lead to

significantly reduced enzyme activity that may result in disease

(82). It is especially important to be sure in diagnosis based on

genetic tests in late-onset cases when symptoms of inherited and

common diseases (LV hypertrophy, stroke, renal failure) are

overlapping. For example, the determination of the pathogenicity

of GLA variants (Fabry disease, MIM #301500) is crucial to start

the specific enzyme replacement therapy (ERT) and must be

accompanied by measurement of sphingolipid concentrations (82).

As the extracardiac features of rare diseases can be overlooked by

clinicians, defining a precise cause of LV hypertrophy may

facilitate clinical re-assessment and correct diagnosis. Keeping

in mind that some HCM phenocopies are treated with

targeted therapies (for example, ERT in Fabry disease or TTR

stabilizers in transthyretin amyloid cardiomyopathy)

sequencing of syndromic genes within HCM panel has a high

clinical benefit.

4. Searching for missing HCM
heritability

Since over half genotyped patients have negative genetic test

results the deciphering etiology of HCM is ongoing. There are

two approaches to explain genotype/sarcomere negative HCM:

(1) new undiscovered genes contributing to the Mendelian form

of the disease, and (2) the oligogenic/polygenic nature of HCM.
4.1. How to find new candidate genes?

GWAS using NGS-based genotyping technologies in large

cohorts of patients with cardiovascular diseases and controls

made it possible to find new genome loci associated with a

disease or with disease LV traits (91). Follow-up bioinformatic

analyses of these loci identified candidate genes that are enriched

in cardiac functions including myocardial growth and sarcomere

organization (10, 14, 31). Another way of searching for novel

disease-associated genes is to investigate the underrepresented

populations, such as those of the Middle East, where a

proportion of consanguineous families and recessive type of

transmission is high. In these populations, the prevalence of

variants in “minor” genes is increased due to recessive

inheritance patterns and the presence of founder variants. Bi-

allelic variants are often associated with an earlier and more

severe clinical presentation of HCM that gives the opportunity of

uncovering novel disease-causative genes if use whole exome

sequencing (WES) or whole genome sequencing (WGS) as a

first-line test (92, 93). Finally, using the extended panels

comprising multiple candidate genes in genotype-negative

patients with other affected family members available for

segregation analysis can help to discover novel genes (46, 55, 70).
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Important to note, that a significant proportion of findings in

candidate genes cannot be used for predictive family screening

because of the lack of evidence for the involvement of these

genes in the pathogenesis of the disease. Nevertheless, the genetic

finding may indicate the direction of movement in searching for

the molecular cause of the disease in each patient, and the

accumulation of even clinically unsuitable information from

thousands of patients can accelerate the deciphering of

sarcomere-negative HCM pathogenesis.
4.2. WES and WGS in routine practice

WGS is known to analyze 90% of the genome and all exons,

offering the potential to identify disease-causing CNVs and

structural variations (deletions, insertions, duplications,

inversions, and translocations), repeat expansions, and splicing

and regulatory variants (94). On the contrary, WES examines

exons only (1%–2% of the genome), which disables the detection

of non-coding and structural variants. Nevertheless, currently,

the diagnostic rate of WGS did not differ significantly from that

of WES possibly due to the much broader use of WES over

WGS and/or to the substantial cost difference between the two

(95). However, it has become evident that WGS is capable of

achieving molecular diagnoses for cases undiagnosed by WES

and especially in genotype-negative HCM patients who have not

been diagnosed using standard panels (95–98). In a recent

meta-analysis, the power of WES and WGS in influencing

clinical management ranged between 2% and 100%, and a much

higher pooled clinical utility of both WES and WGS (increasing

2.6% each year as illustrated by the meta-regression) compared

with previous evidence was illustrated (95). The creation of

sufficiently large genome-wide datasets will allow us to identify

genes/variants with moderate size effects and validate PRS (99).

Currently, all familial HCM cases considered genotype-

negative or sporadic genotype-negative cases with overt severe

phenotype are the target group for this type of genetic study.

The yield of WGS as a second-line test in appropriate HCM

patients is up to 20% and about half of the findings belong to

protein non-coding regions of the genome (100). However, the

use of WES/WGS in HCM clinical practice might be cost-

effective. There must be a certainty that all definitive and

moderate validity HCM-associated genes have been analyzed

using cheaper methods, the quality of sequencing (coverage) was

satisfactory, and the results were interpreted by a trained

multidisciplinary team. The price of WES/WGS is decreasing as

a consequence of cheapening of NGS (101), and in the near-term

these methods may become first-line tests in a diverse range of

patient groups enable laboratories to benefit from increased

standardization, re-analyzing of genotype-negative cases over

time, and implement gene-discovery approach (99). Accelerating

WGS/WES data will generate meaningful cost-effectiveness

estimates, providing empirical evidence to inform clinical

management and allocate healthcare resources at a national level.

The limitation of WES, working through capturing and

sequencing all protein-coding regions of the genome, lies in the
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suboptimal coverage of some genes, owing to difficulties in the

design of probes. Among the limitations of routine usage of

WGS, there is the need for computational infrastructures suited

to store and analyze terabytes of data (99). It should be noted

that there is still a great lack of diversity in genomic research

that manifests in the underrepresentation of populations other

than White individuals; it limits the usefulness of WES and

WGS, complicating the interpretation of genetic testing results.

But the most challenging in a WES/WGS utility is a potential

wrong false positive interpretation of a large number of variants,

thus certain expertise in variant interpretation is crucial.
4.3. Non-coding regions of genome

Non-coding regions account for about 97%of the human genome.

A vast majority of disease-associated variants (90%) that have been

identified by GWAS reside within protein non-coding regions (102)

and may be involved in regulating the expression of protein-coding

genes and thereby contribute to the clinical manifestation of the

diseases. By today, there is sufficient evidence that variants within

promoter, enhancer, untranslated, splice, and intronic regions

support a strong association with cardiomyopathies, including HCM

[reviewed in (103)]. Furthermore, according to ClinVar, a significant

percentage of non-coding variants in splice sites (−60%) and UTRs

(−5%), are classified as P or LP (www.ncbi.nlm.nih.gov/clinvar).

Advanced sequencing- and imaging-based technologies together

with powerful computational methods enable us to improve the

understanding of three-dimensional (3D) genome architecture and

uncover the mechanism of non-coding variants affecting coding

genes. There are plenty of examples where using chromosome

conformation capture (3C)-based technologies successfully links

non-coding variants to their target genes and prioritizes relevant

tissues or cell types (104). The other methodology of searching for

non-coding rare variants in association with diseases is under

development (105).

4.3.1. Deep intronic variants
Most data about the association between non-coding variants

and HCM are related to deep intronic variants. These variants

are located sometimes more than 100 base pairs away from

canonical exon-intron sites and are not covered by conventional

NGS or WES restricted to exons and exon-intron boundaries.

Deep intronic variants most commonly lead to intron sequence

(pseudo-exon) inclusion in the mature messenger RNA due to

the activation of non-canonical splice sites or changes in splicing

regulatory elements. Additionally, these mutations can disrupt

transcription regulatory motifs and inactivate non-coding RNA

genes (106), which are often hidden within introns of protein-

coding genes and involved in the regulation of gene expression.

The longer a gene the more likely it is to be affected by deep

intronic variants. It is confirmed by the fact that numerous deep

intronic mutations have been described in particularly long genes

such as those associated with neurofibromatosis (107) and

Duchenne muscular dystrophy accompanied by X-linked DCM

(108–110).
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In cohorts of HCM patients, deep intronic variants have been

detected mainly in MYBPC3 gene. Deep intronicMYBPC3 variants

are presented in 1% of all genotyped HCM cases and in 2.2%–9%

of genotype-negative patients who do not carry pathogenic

coding or canonical splice variants in HCM-associated genes

(100, 111, 112). The patients with deep intronic causative

variants have the classic signs of HCM as the other patients

carrying mutations in canonical regions (112). Moreover,

MYBPC3 c.1224-52G>A is one of the most common variants

among all known HCM variants currently associated with HCM

(detected in about 1% of HCM probands) (113), and second

only to the MYBPC3 c.1504C>T (p.Arg502Trp) variant, the most

common P variant in the general HCM population (detected in

1.7% of HCM cases) (113). MYBPC3 c.1224-52G>A results in

the inclusion of 50 intronic nucleotides in the transcript which is

predicted to lead to a frameshift in the amino acid sequence and

the insertion of a premature stop codon. It is noteworthy that

the role of MYBPC3 c.1224-52G>A in HCM was discovered by

another intronic variant MYBPC3Δ25 (a 25 base pair deletion

within intron 32), which is too common to be a P [although it

was associated with South Asian HCM for a decade (114)], but

proved to be a marker of the haplotype bearing both the

common MYBPC3Δ25 variant and a rare apparently important

HCM variant MYBPC3 c.1224-52G>A (113). Another example of

a common deep intronic variant associated with HCM

phenotype is c.639 + 919 G>A located in a GLA gene. This

variant causes cryptic splicing, markedly reducing the amount of

wild-type GLA mRNA and the development of late-onset cardiac

Fabry disease—a phenocopy of HCM (79, 115). It was found to

be the most prevalent GLA mutation in the Taiwanese newborn

population (82% of all findings in GLA gene) (79) with a

frequency 1 in 875 males (116). Further investigations of this

particular variant demonstrated the therapeutic feasibility of

splicing correction with specific splice-switching oligonucleotides

(117) that may become an alternative treatment for Fabry disease

which is currently treated with ERT. The deep intronic variants

associated with HCM have been reported in some other genes—

VCL, PRKAG2, and TTN (32). Analysis of one family suggested

that VCL c.499 + 367T>C variant is not sufficient to cause

disease development alone but could have a modifier effect on

coexisting sarcomeric MYBPC3 splice site variant c.1227-13G>A.

The carriers of MYBPC3 c.1227-13G>A alone do not manifest

the disease, while family members that were MYBPC3-VCL

double heterozygous were clinically affected (32). Besides WGS,

the whole sequencing of a certain gene can be used to search

deep intronic variants (32). Target NGS sequencing of intronic

regions of MYBPC3 gene led to molecular diagnosis in a

significant proportion (6.5%) of the cohort of initially genotype-

negative HCM patients (111).

Assessing the pathogenicity of deep intronic variants is very

challenging. Analysis of mRNAs in affected tissues of patients is

crucial for confirming the pathogenicity of deep intronic variants

especially because such variants may be amenable to correction

with antisense oligonucleotide therapies (106). However, biopsy

samples are not available in most HCM patients, functional

studies are beyond the scope of most clinical laboratories, and
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in silico splicing prediction tools are imperfect. These factors

create barriers to the addition of deep intronic variants onto

genetic panels.

Thus, sequencing of at least deep MYBPC3 intronic regions

should be done routinely. The deep intronic sequences of other

reported genes can be analyzed secondarily. The validation

functional analysis should be done in cases where heart biopsy

is available.

4.4. CNVs

The overwhelming majority of genetic variants (>95%)

associated with cardiomyopathies are single substitutions of one

nucleotide for another or small insertions/deletions of less than 20

nucleotides. However, some genes and even whole genome regions

are prone to have large deletions or duplications that are called

CNVs and may also cause inherited diseases. Detection of this

type of variants requires applying specific technical and/or

computational methods (118–122). Small series of studies have

evaluated CNVs in HCM. CNVs were reported predominantly for

sarcomeric genes: MYBPC3 (119–121, 123–127), MYH7 (121, 124,

125), TNNT2, TNNI3, and ACTC1 (119). Among them, there were

only two recurrent CNVs. The partial tandem of duplication of

MYH7 and MYH6 which is predicted to create a hybrid gene

causing HCM by incorporation of a “poison peptide” in the

sarcomere has been reported twice; in one family it was shown to

segregate with HCM in seven relatives (121, 124). Another

recurrent CNV is a 3505-bp deletion that encompasses the exons

28–35 of MYBPC3 gene (126, 127). CNVs in non-sarcomeric

genes such as PDLIM3, LMNA (119), MYOZ2 (85), and PLN

(120) were also suspected to be a cause of HCM but additional

evidence is still required. The possible causal role of duplications is

more difficult to judge than deletions. Although the proportion of

HCM cases caused by CNVs is small (<1%) (85, 119, 121), for the

subset of patients with clearly interpretable CNVs these findings

have direct clinical implications. It should be noted that even in

the presence of P/LP single nucleotide variant, the CNV might be

found and be clinically relevant, especially in early disease onset

and severe clinical course cases.

Therefore, the techniques that allow CNVs to be found should be

applied systematically in gene panels for HCM. Sarcomeric

genes, especially MYBPC3, are the front-line candidates for

searching CNVs in HCM patients.

4.5. VUS

A large number of genetic variants are represented by VUSs. In

general, VUSs are absent or have a low frequency in the general

population (minor allele frequency, MAF < 0.1), have not been

previously described in affected individuals, or there is no data to

prove cosegregation in families, or the affected genes have little

evidence of involving in pathogenesis (often related to minor and
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candidate genes), or their functional mechanism differs from that

expected and is likely not to translate into protein alteration (16).

Furthermore, VUSs are differently evaluated by clinicians and

researchers, and different laboratories do not necessarily adopt

the same standardized reporting format (128). Such a severe

heterogeneity in VUS analysis creates a knowledge gap that

makes VUSs problematic to use, overlooking potentially disease-

relevant information; it also requires consensus from laboratories,

clinicians, genetic counselors, patients, and policymakers to avoid

ethical issues for better practices. At the same time, reporting

VUS may cause confusion and lead to unnecessary medical

action or even serious clinical consequences in terms of

overdiagnosed inherited conditions with a high risk of SCD

requiring implantable cardioverter-defibrillators, lifelong follow-

up and psychological burden towards offspring (129, 130) as well

as incorrect genetic cascade screening of the family. Thus,

determining the causative role of VUS in a patient’s phenotype is

the most challenging part of genetic testing.

VUSs in sarcomeric genes are identified in about 10% of HCM

patients and this subgroup demonstrates intermediate outcome risk

between sarcomere-positive and sarcomere-negative ones (36). It

means that a significant proportion of sarcomeric VUSs are

involved in disease development. However, most of VUSs (85%)

are detected in uncommon genes (131) which information is

extremely scarce and the risk of overestimating the association

between the proposed variant and the disease with harmful

consequences for the family is high.

Over the past decade, great efforts have beenmade by international

collaborators to improve and facilitate the primary variant

interpretation process (132). Important resources have been

developed. Genome Aggregation Database (gnomAD) is the largest

public open-access human population genome dataset to date which

helps to identify variants that are too common to be causing a

patient’s disease (gnomAD v3.1.2 https://gnomad.broadinstitute.org).

Being enormously big, this database provides additional tools for

correct variant interpretation: careful annotation and curation of loss-

of-function variants (not all of them actually result in a loss of protein

function and are pathogenic) and the degree of intolerance of genes

to this type of variants (for example, MYH7 gene is tolerant to loss-

of-function variants, thus, only missense MYH7 variants are

pathogenic); the difference in exons expression on tissue-level can

help to check whether the exon containing a variant of interest is

expressed in the damaged organ; updated information on the

involvement of non-coding region variants in human diseases; etc.

ClinVar is another open database aggregating interpretations of the

clinical significance of variants from different sources (http://www.

ncbi.nlm.nih.gov/clinvar/). Since a rarity of a variant in the

population is recognized as the most important criterion for

pathogenicity (but is insufficient alone), improved analytical

approaches including statistical models based on population

frequency thresholds are being developed to determine which genes

and variant classes are interpretable for the Mendelian form of the

disease (21, 34, 133, 134). In 2018 the ClinGen Inherited

Cardiomyopathy Expert Panel (CMP-EP), founded to regularly assess

the veracity of all gene-disease claimed associations, developed the

adapted version of ACMG/AMP framework for MYH7-associated
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cardiomyopathies with the expectation that most rules would apply

to the other cardiomyopathies-associated genes. The CMP-EP

adaptation affected MAF thresholds, the use of segregation data, and

a semi-quantitative approach to counting multiple independent

variant occurrences where fully controlled case-control studies are

lacking (135).

To resolve the status of a proposed VUS, in an ideal scenario, it is

necessary to prove its segregationwith the disease in a large family (≥7
meioses) (135) as a cosegregation analysis within the family provides

the most robust evidence of causality. In case the family is not

available or the number of affected members is not statistically

enough to follow for segregational analysis (majority of cases), we

can periodically revise VUSs to assess if the variant should be moved

to a pathogenic classification based on new evidence from the other

families. From this point of view, publishing cases with even

insufficient evidence is encouraged because the same or neighboring

variants in larger families may be found by other researchers

interested in exploring confirmatory functional data in

collaboration. This can potentially contribute to clarifying the role of

candidate genes (136). Large gene-centric case-control studies are

another effective strategy to gather statistical evidence in support of

association with disease for candidate genes when segregational data

are not available. This approach has recently allowed proving the

causative role of non-sarcomeric FHOD3 (55) and ALPK3 (46)

genes in HCM development which now facilitates the interpretation

of variants in these genes if they are found in patients with HCM

phenotype. Another method to clarify the pathogenicity of VUSs is

functional studies, such as RNA analysis for splice-site variants

(137), which can detect their deleterious effect on the protein. This

approach might be faster for a given family and should be applied

more widely in appropriate cases. Of course, all of the above

approaches to clarify VUS status are time-consuming and impose an

additional financial burden on laboratories, insurance companies, or

families, depending on the healthcare system.

In an ideal scenario, presenting VUS in the genome of patients

with clear phenotype in the absence of other definitive variants

should be followed by recommendations to perform segregation

analysis within the family if the pedigree is large and/or by a

functional study to elucidate the pathogenicity of such

variants. In case this is unfeasible, these data must be re-

evaluation over time. If VUS(s) accompanies the definitive

disease-causative variant the modifier effect or inheritance of

multiple variants cannot be ruled out and must be verified

within the family. Today this scheme can be applied in

isolated cases first of all due to cost consumption.

4.6. Autosomal-recessive and X-linked HCM

Despite HCM being predominantly an autosomal dominant

disease, some HCM cases with recessive and X-linked patterns of

inheritance have also been described. As previously mentioned,

exclusively an autosomal-recessive inheritance of HCM has been

demonstrated for TRIM63 (70, 71) and KLHL24 (64) genes. A
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variant-specific inheritance of HCM has been also described:

some mutations in MYL2 and MYL3 genes cause an autosomal

dominant, while the others—an autosomal recessive pattern of

inheritance of the disease (138, 139). Three genes associated with

HCM phenocopies (FHL1, GLA, and LAMP2) are X-linked: male

carriers of mutations develop overt disease phenotype earlier

while heterozygous females are mild / not affected or have a late-

onset presentation (77–83).

Thus, the interpretation of variants in these particular genes, as

well as new candidate genes and novel variants, must be

analyzed in accordance with alternative patterns of inheritance.

4.7. Polygenic HCM

It is now believed that some HCM patients have a non-

Mendelian form of the disease. Some common variants with

MAF > 0.01 can exhibit disease-causing effects if they are present

together in the genome (10, 140, 141). Large-scale GWAS

demonstrated that common genetic variants, located in many

loci, contribute substantially to HCM risk, and highlighted the

complex genetic architecture of HCM (10, 14, 30, 142). The

more variants in the genome the higher PRS for HCM

development. It is assumed that a high PRS also influences

variability in penetrance and expressivity of Mendelian rare

pathogenic variants clarifying previously unexplained clinical

heterogeneity of monogenic HCM (10, 14, 30). But a strong

polygenic inheritance was noted particularly for sarcomere-

negative patients (10). There is also a group of low-frequency

variants of small or intermediate effect size that cannot result in

the disease themself but together with other rare variants or PRS

can express the phenotype (91). Thus, in some cases we can talk

about oligogenic inheritance of HCM.

To date, there are several lists of polymorphic variants located

in the coding genome that can predict HCM development and

adverse outcomes in both carriers of sarcomeric variants and

sarcomere-negative HCM patients (10, 14, 143). Amongst

sarcomere-positive carriers in the general population, HCM

penetrance differs 10-fold between those in the highest and

lowest PRS quintiles (143). Notably, some risk variants are

located in genes already established for Mendelian HCM, such as

ALPK3, FLNC, PLN, and others (10, 14), which should be taken

into account when interpreting findings. Using GWAS-derived

PRSs seems promising in risk stratification and makes clinical

interventions such as implantable cardioverter-defibrillator more

targeted and family screening more productive.

After validation of the utility of PRS in clinical trials and

establishing the thresholds for different cohorts (ethnicity,

general population vs. family members) and purposes

(diagnostic, prognosis, selection for specific treatment, and

therapeutic response), the PRS could be calculated in each

HCM patient regardless of the presence or absence of

pathogenic rare variants.
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5. MiRNAs

MicroRNAs (miRNAs) are small non-coding RNAs that form a

coordinated regulatory system and control the regulation of a

variety of genes involved in fundamental biological processes,

such as tissue differentiation, proliferation, apoptosis, stress

response, etc. (144). The sequence-specific regulation of target

gene expression by miRNAs is one of the important mechanisms

of the realization of genetic information, which can make a

significant contribution to the penetrance of genetic variants

associated with HCM and thus in the general heterogeneity of

disease phenotype. Moreover, genetic variants in the miRNA

binding sites located in 3′-untranslated regions of HCM-

associated genes can change the binding ability of miRNAs,

which leads to miRNA reorienting to other targets and therefore

causing changes in cellular processes. Thus, changes in miRNA

levels in the cell and potentially in circulating fluids may indicate

the carriage of a P/LP variant in a HCM patient. It is also

known that there are several miRNA genes located in the introns

of sarcomeric HCM-associated genes (145); variants in splice

sites of the host gene for intronic miRNAs or of the clustered

miRNAs could result in aberrant expression patterns as well.

Many studies have already been conducted on the role of

miRNAs in HCM, and there is a great deal of evidence that

miRNA levels in different biological materials are correlated

with the disease phenotype and prognosis [reviewed in (146)].

Future miRNA studies may focus on pinpointing the individual

miRNAs that are foremost associated with a particular HCM

trait, or to compile miRNA panels that can be used depending

on the clinical task, such as individual assessment of the

phenotype prediction, complications development, and its type.

Currently, the use of a genotype-based approach to identify

biomarkers of HCM and its progression seems extremely

relevant. Recently, by using such an approach we demonstrated

that circulating miR-499a-5p identifies with high sensitivity and

specificity HCM patients with P/LP variants in the MYH7 gene

(147). Extending this approach for detecting patients with P/LP

variants in the MYBPC3 or other HCM-associated genes could

improve the diagnostic accuracy and efficacy of genetic tests,

pinpointed patients tested negative for P/LP variants, and cut the

cost of subsequent genetic analysis in some patients by reducing

the number of genes to be sequenced.

Another study showed the possibility of using miRNAs to

identify pathology in apparently healthy subclinical sarcomeric

variant carriers (148). Despite normal electrocardiogram and

echocardiogram in P/LP sarcomeric variant carriers miR-26b-5p,

miR-301a-p, and miR-31-5p strongly discriminated subclinical

HCM and healthy controls, suggesting that sarcomeric variants

are resulting in subtle changes that cannot be detected by

standard imaging-based methods. More importantly, miR-181a-

5p, miR-181c-5p, miR-328-3p, miR-301a-3p, miR-193b-3p, miR-

142-3p were found to be differentially circulated in subclinical

HCM patients with early phenotypic manifestations and those

without early phenotypic manifestations, suggesting that although

LV hypertrophy is not yet evident, a biological effect from the
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sarcomeric variant is present based on electrocardiogram

changes, impaired LV relaxation, and alterations in circulating

miRNA patterns. Interestingly, although miRNAs could

discriminate clinically over HCM from subclinical HCM without

early phenotypic manifestations with high sensitivity and

specificity (top three miRNA: miRNA-193b-3p, miRNA301a-3p,

and miRNA-181a-5p), circulating miRNAs failed to discriminate

clinical HCM and subclinical HCM with early phenotypic

manifestations, suggesting biologic commonality between these

two states. The authors conclude that the presence of early

phenotypic manifestations and a shifting of the miRNA profile

may portend a rapid transition to clinically overt HCM.

Combining miRNA and genetic analyses will provide more

personalized clinical treatment, targeting people who may

benefit most from more aggressive treatment, rather than

those who may have delayed or absent penetrance. MiRNAs

seem to act both as markers for risk stratification and targets

for personalized treatment in HCM patients.

6. Discussion

The current knowledge about HCM dictates steps forward in

genetic investigations of this disease. The genetic test for one

patient may/should include the analysis of (1) sarcomeric genes;

(2) genes of HCM phenocopies; (3) validated HCM non-

sarcomeric genes; (4) non-coding variants and CNVs in at least

sarcomeric genes; (5) common risk variants with PRS calculation;

(6) VUS pathogenicity by functional and co-segregational studies

in families; (7) miRNAs with risk score assessment. The list of

candidate genes must be updated regularly; there should be

particular attention to the pattern of disease inheritance and the

presence of multiple rare variants in some clinical cases.

Applying the above approach to further studies on HCM leads

to the rapid accumulation of a huge amount of complex data

requiring the usage of artificial intelligence to analyze.

Deciphering of genotype-phenotype correlations for new regions

will contribute to a better understanding of the molecular

mechanisms of the disease in each patient which is required for

early diagnosis, prognosis, and personalized treatment including

preventing the development of the disease by rapidly developing

genetic technologies. This looks especially appealing in the

context of recent breakthrough studies that shed more light on

the therapeutic potential of genome editing strategies in HCM

treatment.

Currently, there are several fastest-growing tools for the

manipulation of DNA to correct cardiac disorders: CRISPR-Cas9

editing, base editing (BE), and prime editing (PE). CRISPR is a

two-component system consisting of guide RNA and a Cas9

nuclease. The Cas9 nuclease cuts the DNA within the region

defined by the guide RNA. BE is the newest method of gene

editing derived from CRISPR-Cas9. This technology uses a

“catalytically dead” Cas9 that cannot cleave DNA and a DNA
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deaminase domain catalyzing the deamination of either adenosine

or cytidine resulting in base conversions to guanine or thymine,

respectively (149). Compared to BEs, PE enables all 12 possible

base-to-base conversions, as well as insertions and deletions,

without requiring double-stranded breaks or donor DNA (150).

PE system consists of a nickase Cas9 conjugated with an

engineered reverse transcriptase paired with a prime-editing

guide RNA that both specifies the target site and encodes the

desired edit. Therefore, state-of-the art genome editing

technologies, with their simplicity and precision, hold great

promise for the correction of point mutations in human genetic

diseases, including HCM. Two independent studies focusing on

the in vivo editing of the pathogenic HCM-associated variant

c.1208G>A (p.R403Q) located in MYH7 gene were recently

published (151, 152). One study identified an adenine BE and

single-guide RNA system that efficiently corrected human

c.1208G>A pathogenic variant with minimal bystander editing

and off-target editing at selected sites (151). The delivery of BE

components attenuates pathological manifestations of HCM in

patient-derived induced pluripotent stem cell cardiomyocytes and

a humanized HCM mouse model. In another study, two different

genetic therapies—an adenine BE and a potent Cas9 nuclease

delivered by AAV9—were evaluated to prevent HCM in mice

carrying the heterozygous c.1208G>A pathogenic variant (152).

Applying RNA-guided adenine BE corrected the pathogenic

variant in ≥70% of ventricular cardiomyocytes and maintained

durable, normal cardiac structure and function. An additional

dose provided more editing in the atria but also increased

bystander editing. RNA-guided Cas9 nuclease effectively

inactivated the pathogenic allele; however, due to the observed

dose-dependent toxicity, a narrow therapeutic window is required

to maintain health. These findings demonstrate considerable

potential for single-dose genetic therapies to correct or silence

pathogenic variants and prevent the development of HCM. Other

gene editing innovations and their applications in the treatment

of cardiomyopathies are summarized in a recently published

review (153).

It should be noted that there is no consensus on the use of an

advanced genetic panel for HCM in clinical practice (33, 34, 100).

Although promising, a range of barriers impedes the above-

mentioned techniques from being implemented in cardiology

practice. These barriers include economic concerns (e.g.,

perceived increased cost of broadened genetic testing precluding

insurance coverage), concerns related to knowledge, attitudes,

and practices on clinicians’ part, and psychological distress and
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potential negative impact on self-perception on patients’ part, as

well as ethical concerns related to increased stigma and

discrimination. Ongoing reductions in the costs of DNA

sequencing, and improvements in variant analysis will support

the cost-effectiveness of such an approach. A variety of

recommendations can be also followed to overcome such barriers

to a successful implementation of broadened genetic testing in

real practice tomorrow.
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