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Myocardial infarction (MI) is a prevalent cardiovascular disease characterized
by myocardial necrosis resulting from coronary artery ischemia and hypoxia,
which can lead to severe complications such as arrhythmia, cardiac rupture, heart
failure, and sudden death. Despite being a research hotspot, the etiological
mechanism of MI remains unclear. The emergence and widespread use of omics
technologies, including genomics, transcriptomics, proteomics, metabolomics,
and other omics, have provided new opportunities for exploring the molecular
mechanism of MI and identifying a large number of disease biomarkers. However,
a single-omics approach has limitations in understanding the complex biological
pathways of diseases. The multi-omics approach can reveal the interaction
network among molecules at various levels and overcome the limitations of the
single-omics approaches. This review focuses on the omics studies of MI,
including genomics, epigenomics, transcriptomics, proteomics, metabolomics,
and other omics. The exploration extended into the domain of multi-omics
integrative analysis, accompanied by a compilation of diverse online resources,
databases, and tools conducive to these investigations. Additionally, we discussed
the role and prospects of multi-omics approaches in personalized medicine,
highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
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1. Introduction

Cardiovascular disease (CVD) is a leading cause of mortality globally, responsible for

nearly half of all deaths. Among various types of CVD, myocardial infarction (MI), is the

main cause of cardiovascular death and one of the most common types of coronary

artery disease (CAD) (1). In recent years, MI have been occurring in increasingly younger

individuals due to changes in lifestyle, unclear circadian rhythms, and increased social

pressure (2, 3). MI is characterized by irreversible myocardial necrosis caused by coronary

artery ischemia and hypoxia. After MI occurs, a large number of fibroblasts replace

necrotic cardiomyocytes, leading to ventricular remodeling such as myocardial fibrosis

and cardiac hypertrophy (4). These changes can ultimately lead to adverse events such as

cardiac rupture, heart failure (HF), and sudden death due to insufficient cardiac motility

(5–7). Although methods such as bypass grafting, percutaneous coronary intervention
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(PCI), and antithrombotic drugs are available for MI treatment,

they can only reduce the severity of CAD to a certain extent.

Due to the complexity and diversity of the disease, these

treatments cannot reverse myocardial necrosis and ventricular

remodeling caused by ischemia and hypoxia (4). Therefore, it

remains the focus of research to elucidate the diverse molecular

mechanism of MI and to find efficient markers, which is of great

significance to improve the diagnosis, treatment effect and

prognosis of MI.

Since the turn of the century, the completion and deepening of

the Human Genome Project (HGP) (8) and the Encyclopedia of

DNA Elements (ENCODE) (9) have established a robust

foundation for personalized medicine research and the

investigation of the pathogenesis of complex diseases. In recent

years, the wide application of high-throughput technology and

high-resolution mass spectrometry (HRMS) has not only

increased the amount of biological data on the molecular

mechanisms of diseases but also expanded the dimension of such

data. This has encouraged researchers to explore the molecular

mechanisms of diseases using multi-omics technologies and

methods. Diseases, including MI, are now understood more

comprehensively at various molecular levels, including genomics,

epigenetics, transcriptomics, proteomics, metabolomics, etc.
FIGURE 1

From multi-omics approaches to personalized medicine in myocardial infarct
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MI is a complex disease caused by environmental and genetic

factors, and its various subtypes exhibit different pathogenesis

and prognoses (10). While some progress has been made in

single-omics studies of MI over the past few decades, the

pathogenesis of MI remains unclear. The development of multi-

omics methods is expected to shed light on the molecular

pathogenesis and differences among various MI subtypes,

identify biomarkers with diagnostic, therapeutic, and prognostic

values, and ultimately enable the prediction, prevention, and

personalized treatment of MI. Therefore, this study summarized

the research progress made in MI research across various omics

fields, including genomics, epigenomics, transcriptomics,

proteomics, metabolomics, and others. In particular, we

emphasized the significance and potential of multi-omics

approaches in realizing personalized medicine for MI (Figure 1).
2. Single-omics approaches

2.1. Genomics

Genomics is a field of study that encompasses the systematic

analysis of all genes in an organism. The development of genome
ion. Genomics, epigenomics, transcriptomics, proteomics, metabolomics,
dy fluid (such as blood, urine, and saliva) samples from MI patients. Omics
ng precision medicine, encompassing biomarker discovery, drug target
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sequencing technologies, including Sanger sequencing (11), DNA

microarray (12), and next-generation sequencing (NGS) (13). Of

these technologies, DNA microarrays and NGS are widely used

for studying gene mutations, which can help identify candidate

genes associated with diseases and analyze genotype sensitivity to

drugs. Gene mutations can be broadly categorized into three

types: single nucleotide variations (SNVs), insertions/deletions

(In/Dels), and copy number variations (CNVs). These types of

mutations can contribute to the development of various diseases,

including MI. Therefore, genomics plays an important role in

elucidating the genetic basis of diseases and developing

personalized medicine.

Researchers have identified numerous gene associated with an

increased risk of MI, offering crucial insights into a deeper

understanding of the genetic basis of this heart disease. Among

these, genes in the 9p21.3 region have been identified as

important genetic risk factors for MI. Variants in this genetic

region, including CDKN2B/CDKN2B-AS1 rs1333049 (14, 15),

MTAP rs7027989 (16), and ANRIL rs9632884 (17), were

significantly associated with an elevated risk of MI. The C risk

allele and CC genotype of rs1333049 were both linked to a

higher risk of not only MI but also other CVDs (14, 15, 18, 19).

The renin-angiotensin system is crucial regulating blood pressure

and the development of CAD. Studies have found that

polymorphisms in renin-angiotensin system-related genes,

including AGT rs4762 (20), AGTR1 rs5186 (21), AGTR2

rs11091046 (22), KLK1 rs5517 (23), ACE rs1799752 (24), as well

as ACE2 rs4646142 and rs1978124 (25), were associated with the

risk of MI. The ACE gene insert/delete (I/D, rs1799752)

polymorphism is the most extensively studied. This

polymorphism refers to the existence or deletion of an Alu

repeat sequence of 287 base pairs in intron 16 of the ACE gene,

which can alter the activity of the angiotensin-converting enzyme

(ACE) protein and lead to enhanced plaque vulnerability,

ulceration, and thrombosis, ultimately leading to MI (26).

Numerous studies have shown that the DD genotype of the ACE

gene is not only a risk factor for MI (23, 27–29) but also related

to the poor prognosis (30–32). The coagulation and fibrinolytic

systems play pivotal roles in thrombus formation and dissolution.

Abnormal mutations in specific coagulation factors, such as

fibrinogen (FGA, FGB, FGG) (33), F2 (34), F5 (34), F7 (35),

VWF (36), as well as genes in the fibrinolytic system like PLAT

(37), and SERPINE1 (38), can lead to abnormal thrombosis or

the formation of thrombi that are challenging to dissolve,

subsequently increasing the risk of MI. Furthermore, genetic

variants related to lipid metabolism and the inflammatory

response are closely associated with the risk of MI, such as

APOE rs7412 (39), CETP rs429358 (39), LPL rs328 (40), IL-6

rs1800795 (41), and TNF rs1800629 (42). These genetic

variations can influence multiple biological processes, including

cholesterol metabolism, vascular inflammation, plaque formation,

and more, thereby increasing the risk of MI (43–45). The

identification of these genetic risk factors not only helps uncover

the genetic basis of MI but also offers new opportunities for

disease prediction and prevention. Based on known genetic risk

factors, researchers have developed genetic risk scoring systems
Frontiers in Cardiovascular Medicine 03
that can estimate an individual’s risk of MI (46–48). This

personalized risk assessment aids medical professionals in better

identifying high-risk patients and initiating appropriate

interventions, including lifestyle modifications and medications,

to reduce the risk of MI.

Genomics technology can be employed to identify genetic

markers that can predict an individual’s response to drugs.

Clopidogrel is an antiplatelet drug commonly used for

anticoagulant therapy in patients with MI. However, some

individuals respond poorly to clopidogrel, which may be related

to CYP2C19 loss-of-function mutations that slow drug

metabolism and thus reduce the drug’s efficacy (49, 50).

Warfarin is a commonly used anticoagulant drug for treating

patients with heart disease. Individual warfarin dosage

requirements vary based on polymorphisms *1, *2 and *3 for

CYP2C9, −1639G > A for VKORC1 allowing for a more accurate

determination of the drug dosage to prevent issues such as

bleeding or insufficient clotting (51, 52). Angiotensin modulators

refer to a class of drugs that interact with the renin-angiotensin-

aldosterone system in the body to regulate blood pressure and

fluid balance, including ACE inhibitors and angiotensin II

receptor blockers (ARBs). The ACE I/D polymorphism, AGT

rs7079, and AGTR1 haplotypes have been proven to be

associated with variable responses to angiotensin modulators,

impacting both neurological outcomes and blood pressure

variations (53, 54). Orbofiban is a medication that belongs to a

class of drugs known as platelet aggregation inhibitors or

antiplatelet agents. MI patients with the T allele of the GNB3

gene were more likely to experience bleeding when given

orbofiban, indicating that genetics can influence the risk of

bleeding with antiplatelet drugs (55). These genetic markers can

help doctors better select appropriate drugs and dosages to

increase the effectiveness of treatment and reduce the risk of

adverse reactions.
2.2. Epigenomics

Epigenomics is a specialized branch of genomics that focuses

on the comprehensive analysis of epigenetic changes at the

genomic level, including DNA methylation, histone modification,

and chromatin structure, across the entire genome of an

organism or a specific cell type (56). These epigenetic changes

play a critical role in the development and progression of human

diseases, including MI. By identifying the specific epigenetic

changes associated with MI, researchers can identify potential

therapeutic targets and develop personalized treatment strategies

for patients.

DNA methylation is an epigenetic marker that can be

inherited, and it involves the transfer of a methyl group to the

cytosine 5 carbon site through DNA methyltransferase. This

process typically occurs in the promoter region and serves to

inhibit gene transcription. Abnormal hypermethylation, which

can lead to transcriptional silencing, is often associated with

diseases and can be used as a biomarker (57). Recent studies

have found that DNA methylation plays an important role in the
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development of MI. DNA methylation patterns differ between

patients with MI and healthy individuals (58). These aberrant

methylation patterns can result in altered gene expression,

influencing the onset and progression of MI. GPR15 gene may

contribute to MI by influencing inflammation and angiogenesis-

related pathways (59, 60), with DNA hypomethylation in this

gene associated with an increased risk of early-onset MI due to

the upregulation of GPR15 expression levels (61). ABO blood

types are linked to the risk of MI, with non-blood type O

individuals having a higher risk (62, 63). The DNA methylation

of the ABO gene promoter plays a pivotal role in regulating ABO

gene expression (64), where increased methylation status of the

ABO gene promoter was associated with an elevated risk of AMI

by suppressing ABO mRNA expression (65, 66). An epigenome-

wide association study identified 34 differentially methylated

CpG sites associated with MI. These CpGs may contribute to MI

through influencing the expression of genes related to

inflammatory and lipid metabolism, including MPO, SERPINA1,

NISCH, DLEU1, ZFPM1, and others (67). Furthermore,

biomarkers derived from DNA methylation data, such as

GrimAgeAccel, PhenoAgeAccel, EEAA, and DNAmRS, can

predict the risk of MI. Among these, GrimAgeAccel has proven

to be the most effective tool for evaluating MI risk (68).

DNA methylation is an emerging and exciting research field

in the treatment of MI, which is still in the early stages of

exploration and development. DNA methylation can affect the

expression and activity of mitochondria, antioxidant and

apoptosis genes, thereby leading to ischemia-reperfusion (I/R)

injury (69). I/R injury plays a key role in the process of MI (70),

so a deep understanding of the role of DNA methylation in this

process is crucial for developing targeted therapeutic strategies.

Some studies have begun to explore drug intervention in DNA

methylation to improve the recovery of patients with MI. These

drugs can affect the methylation status of specific genes and are

expected to promote cardiac repair and regeneration after

MI. DNA methyltransferase-1 (DNMT1) has been identified as a

key player in cardiac fibrosis by regulating miR-133b

methylation, affecting myofibroblast activation and CTGF

expression. 5-Azacytidine can counteract DNMT1-induced miR-

133b methylation, delaying myocardial fibrosis (71). Additionally,

APAF1 gene is a key player in the regulation of apoptosis, a

fundamental process in cell biology (72). DNMT1 has also been

identified as playing a role in the methylation of the APAF1

promoter, silencing the APAF1 gene. This mechanism reinforces

the protective effect of sevoflurane against cardiomyocyte injury

induced by hypoxia/reoxygenation (73). Long non-coding RNA

(lncRNA) ZFAS1 has been demonstrated to be upregulated

during cardiac I/R injury, affecting cardiac function by

influencing the methylation level of the Notch1 gene.

Nicotinamide mononucleotide could enhance Notch1 expression,

leading to improved cardiomyocyte survival and cardiac function

(74). Furthermore, lifestyle factors, such as diet, exercise, and

smoking cessation, have been demonstrated to influence DNA

methylation (75–77). Maintaining a healthy lifestyle during MI

recovery can potentially enhance cardiovascular health by

impacting DNA methylation. Healthcare professionals play a
Frontiers in Cardiovascular Medicine 04
crucial role in mitigating the risk of MI by educating patients

about making healthy lifestyle choices.

Histones are essential for maintaining the shape and structure

of chromatin, and the tail region of histones undergoes various

post-translational modifications such as methylation, acetylation,

and phosphorylation. These modifications can lead to changes in

chromatin conformation, ultimately affecting the transcription of

important genes (78, 79). Histone methylation, particularly

trimethylation of histone H3 on lysine-4 (H3K4me3), plays a

crucial role in MI (80). JMJD3 demethylase was found to

exacerbate cardiac fibrosis by reducing H3K27me3 at the beta-

catenin promoter in activated cardiac fibroblasts, worsening

cardiac fibrosis. Inhibiting JMJD3 may be a potential therapy for

cardiac fibrosis (81). Another study showed that Salvia

miltiorrhiza and Carthamus tinctorius extract (SCE) effectively

reduced myocardial fibrosis and inflammation by inhibiting

H3K4me3 and H3K36 trimethylation (H3K36me3) at the Smad3

promoter in cardiac fibroblasts, leading to decreased Smad3

transcription (82). Additionally, riboflavin has been shown to

protect myocardium from damage by regulating phospholipid

metabolism and H3K4me2 (83). Histone acetyltransferases

(HATs) and histone deacetylases (HDACs) play crucial roles in

regulating histone acetylation, which in turn affects

inflammation, myocardial function, and cardiac repair following

MI (84, 85). After a MI, miRNA-134-5p goes up, inhibiting

histone H3K14 acetylation by lowering lysine acetyltransferase 7

expression. This reduces antioxidant enzyme activity, raising

oxidative stress and promoting harmful heart remodeling

(86, 87). Eicosapentaenoic acid, docosahexaenoic acid, and

ecklonia stolonifera Okamura extract were found to inhibit p300

HAT activity. This inhibition reduced histone acetylation and

regulates gene expression, ultimately suppressing cardiomyocyte

hypertrophy and preventing HF development (88, 89). Sodium

caprylate has been shown to enhance cardiac recovery after MI

by acting on HAT Kat2a, increasing histone acetylation levels,

activating antioxidant gene expression, and reducing

cardiomyocyte apoptosis (90). Studies have shown that inhibition

of HDAC1 (91), HDAC3 (92), HDAC4 (93), HDAC5 (94),

HDAC6 (95), and HDAC9 (96) has a protective effect on

cardiomyocyte apoptosis, left ventricular remodeling (LVR),

cardiac disfunction, and cardiac fibrosis after MI. This signifies

the potential therapeutic value of targeting these specific HDACs

to enhance post-MI cardiac recovery and mitigate adverse

remodeling processes. Therefore, studying histone modifications

is expected to offer valuable insights for developing new

treatment strategies to alleviate MI and promote patient recovery.
2.3. Transcriptomics

Transcriptomics refers to the study of all RNA transcripts within

a specific species, including both mRNA and non-coding RNA

(ncRNA). Gene transcription is known to be spatiotemporal

specific, meaning that gene expression can vary between different

tissues or at different stages of the same tissue. The analysis of

transcription plays a critical role in identifying the structure and
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function of the genome, decoding the genetic network underlying

diseases, and searching for sensitive molecular biomarkers for

diseases, drugs, and pathogens (97, 98).

Transcriptomic studies have identified many genes associated

with MI, including genes that are up- or down-regulated after

MI. These differentially expressed genes can reveal changes in

cell signaling pathways after infarction and possible therapeutic

targets. Sheng et al. (99) identified 552 differentially expressed

genes and 23 differentially expressed lncRNAs of MI by

analyzing the gene expression profile of circulating endothelial

cells. They observed that inflammation-related genes such as

NR4A2, IRAK3, NFIL3, IL1R2, CLEC4E and BCL3AMI were

highly up-regulated, indicating that inflammation is an important

feature of MI. Another study employed a bioinformatic analysis

to pinpoint eight key immuno-inflammation-related genes,

namely SH2D1B, ADM, PI3, MMP9, NRG1, CBLB, RORA, and

FASLG, which have been identified as potential biomarkers for

AMI (100). Zhuo et al. (101) constructed an MI-related lncRNA-

miRNA-mRNA network using RNA sequencing data and

identified lncRNA SNHG8, hsa-miR-411-5p, SOCS3 and ICAM1

were key nodes in the network. Their findings demonstrated that

lncRNA SNHG8 not only emerged as a risk factor for MI but

also exhibited substantial diagnostic potential. Furthermore,

extensive transcriptomic studies have revealed a significant

correlation between the abnormal expression of inflammation-

related genes, such as VEGFA (102), TNF (103), IL6 (103, 104),

IL6R (104), PTGS2 (105), immune response-related genes

including CDKN2B (106), CDKN1C (107), TLR2 (108), TLR4

(108), apoptosis and proliferation-related genes like F3 (109),

BTG2 (110), TXNIP (111), SAMSN1 (112), lipid metabolism-

related genes such as PPARGC1A (113), ACSL1 (114), ABCG1

(115), SULT2B1 (116), and extracellular matrix (ECM) and

collagen-related genes, such as MMP2 (117), MMP9 (117),

LTBP4 (118), TNXB (118), and the occurrence and development

of MI. These findings offer crucial insights into a deeper

comprehension of the mechanisms underlying MI and hold

promise for the development of more precise approaches for

preventing and treating heart disease in the future.

NcRNAs, includingmicroRNAs (miRNAs), lncRNAsand circular

RNAs (circRNAs), have a significant attention in the field of MI

research. They not only contribute to a deeper understanding of the

disease’s pathogenesis but also serve as valuable biomarkers,

diagnostic tools, prognostic indicators, and potential therapeutic

targets, offering new hope for managing MI patients (119–123).

Numerous studies have demonstrated significant changes in the

expression profiles of ncRNAs in both cardiac tissue and body fluids

after MI. Some ncRNAs are upregulated, while others are

downregulated. These changes are involved in the regulation of

crucial pathological processes such as inflammation, apoptosis, and

fibrosis, aiding in a more profound comprehension of the molecular

basis of this disease (121, 123–125). Furthermore, many ncRNAs

have been identified as biomarkers that can be utilized for MI

diagnosis. These include miRNAs such as miRNA-1-3p (126, 127),

miRNA-208a-3p (127, 128), miRNA-499a-5p (127), miRNA-486-5p

(129), miRNA-21-5p (129, 130), as well as lncRNAs such as N1LR

(131), SNHG1 (131), HIF1A-AS2 (132), TTTY15 (133), HULC
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(133), and circRNAs like cZNF292 (134), circTMEM165 (135),

circUBAC2 (135), circZNF609 (135), circANKRD12 (135),

circSLC8A1 (135), and among others. Additionally, ncRNAs are

also employed to assess patients’ prognosis, assist in determining

treatment strategies, and predict disease progression. They are

associated with patients’ cardiac function, the risk of recurrent MI,

and the occurrence of adverse events (124, 136–140). This

information can offer valuable assistance to healthcare professionals

in making well-informed decisions regarding treatment and

predicting patient outcomes.

Transcriptome research plays a crucial role in treating MI. By

studying how genes are active in heart tissue or cells,

transcriptome research uncovers how drugs affect the body’s

molecular responses. This helps us understand treatment effects

and mechanisms better, leading to more personalized therapies.

In rat studies, it was indicated that photobiomodulation therapy

can intervene in the activation of cardiac fibrosis after MI by

altering gene activities and miRNAs in heart (141, 142). Su et al.

(143) analyzed gene and ncRNA expression to uncover potential

molecular mechanisms linked to the varying effectiveness of

acubitril/valsartan treatment in patients with HF after AMI.

These type of studies offers valuable insights into a deeper

comprehension of drug mechanisms of action and resistance.

Transcriptome research also aids in identifying potential

biomarkers that can be utilized to assess treatment outcomes,

monitor treatment progression, and predict patient responses to

therapy. For instance, plasma levels of miR-223 and miR-126

have demonstrated potential as predictive biomarkers of dual

antiplatelet therapy response and prognosis in patients with ST-

segment elevation MI (STEMI) (144). Furthermore, abundant

research suggests that miRNA hold promising potential in

treating MI by regulating gene expression and crucial cellular

processes. Key therapeutic candidates include miRNA-21 (145–

147), miRNA-192-5p (148), and miRNA-432-5p (148), involved

in inflammation and fibrosis; miRNA-499 (149), implicated in

endothelial injury; miRNA-126 (150, 151), contributing to

angiogenesis; miRNA-133 (152), influencing cardiac function;

and miRNA-208a (153), linked to fibrosis. Intervening with these

miRNAs could fundamentally change MI treatment by adjusting

core processes and facilitating cardiac recovery.
2.4. Proteomics

Proteomics studies all proteins in tissues or cells, including

protein expression levels, post-translational modifications, and

protein-protein interactions to the study structure and location of

protein and protein-protein interactions, providing a direct basis

for clarifying the nature of life phenomena. Commonly used

proteomics technologies include mass spectrometry (MS), two-

dimensional gel electrophoresis, protein microarrays, protein-

protein interaction assays, and imaging techniques like

fluorescence and electron microscopy (154). Proteomics has

played a crucial role in improving our understanding of the

molecular mechanisms underlying MI and identifying potential

protein markers of this disease.
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Proteomics has unveiled dynamic fluctuations in protein

expression during MI. By analyzing proteins in myocardial

samples obtained from MI patients and animal models, scientists

have identified a variety of proteins associated with MI, including

inflammatory mediators, apoptosis-related proteins, and cardiac

contractile proteins, shedding light on multiple key pathways

involved in the development of MI (155–159). For example, Das

et al. (160) used Orbitrap MS to identify 38 up-regulated and 26

down-regulated proteins in MI patients, most of which were

related to chronic inflammation, atherosclerosis, and cholesterol

reverse transport. Pan et al. (161) used ITRAQ (Isobaric tags for

relative and absolute quantification) combined with LC-MS/MS

(Liquid chromatography-tandem mass spectrometer) technologies

to identify 95 MI differential expression proteins related to

carbon metabolism, toll-like receptor signal pathway and

hypertrophic cardiomyopathy. The proteomics approach has led

to the discovery of an increasing number of diagnostic

biomarkers, such as plasminogen (162), complement C8 beta

chain (162), coagulation factor II (162), alpha-1 acid glycoprotein

2 (163), corticosteroid-binding globulin (163), serotransferrin

(163), lactate dehydrogenase (164), creatine kinase (164),

haptoglobin (165), etc. In a mouse model, researchers conducted

proteomic analysis and identified cardiac myosin binding

protein-C (cMyBP-C) as a potential up-regulated biomarker for

MI (166). The potential of cMyBP-C as a sensitive cardiac-

specific biomarker of MI was further confirmed by measuring its

increased levels in the plasma of MI patients through enzyme-

linked immunosorbent assay (ELISA) (167). Furthermore,

proteomic approaches have identified many potential biomarkers for

predicting MI prognosis by revealing distinct protein expression

patterns. By examining the distinct protein expression patterns

associated with MI, researchers have been able to discover valuable

biomarkers that can provide insights into various outcomes,

including HF (168), pulmonary hypertension (169), LVR (170),

chronic kidney disease (171), and long-term outcomes (171). Liu

et al. (168) found NF-κB signaling-related proteins linked to HF

after MI. Another study also identified 50 proteins during MI

patient hospitalization for predicting long-term HF occurrence

(172). These proteins hold promise as potential markers for

diagnosing HF after MI. LVR is a prevalent complication following

MI, and researchers have identified several potential protein

biomarkers associated with this condition. These biomarkers include

apolipoprotein A1, immunoglobulin A, interleukin-17E, tissue

inhibitor of metalloproteinases-1, urokinase-type plasminogen

activator, midkine, proprotein convertase subtilisin/kexin type 6,

among others (170, 173, 174). Furthermore, proteomic studies can

provide useful information in assessing left ventricular ejection

fraction (LVEF) and infarct size after MI (175).

Currently, established cardiac biomarkers such as cardiac

troponin (cTn), creatine kinase (CK), creatine kinase MB (CK-MB),

copeptin, and heart-type fatty acid binding protein (H-FABP) have

been validated as valuable for the diagnosis and prognosis of MI

(176, 177). Among these, cTn is acknowledged as a biomarker for

assessing the risk of acute coronary syndrome (ACS), including

cardiac troponin T (cTnT) and cardiac troponin I (cTnI) (178).

Furthermore, protein biomarkers can provide significant diagnostic
Frontiers in Cardiovascular Medicine 06
information for MI, which is crucial for follow-up treatment. For

instance, myeloid-related protein 8/14 (MRP-8/14) was found to

have higher concentrations, and high-sensitivity cardiac troponin I

(hs-cTnI) to have lower concentrations in type 2 MI compared to

type 1 MI (179). Pandey et al. (180) demonstrated that the levels of

cTnT and CK-MB were significantly higher in patients with type 1

MI than in those with type 2 MI, and cTnT increased

disproportionately with CK-MB in type 2 MI patients. Additionally,

coagulation factor VII levels were significantly higher in patients

with silent MI than in those with clinical MI in another study (181).

Proteomics analysis can be employed to unravel the complex

mechanisms underlying the therapeutic effects of various

interventions in the context of MI. Within the domain of MI

and its treatment, proteomic studies have illuminated the

cardioprotective effects of different compounds. For example, a

proteomic study demonstrated that the cardioprotective effects of

Shexiang Baoxin pill (SBP) and Suxiao Jiuxin pill (SJP) in MI

rats are achieved by modulating pathways associated with focal

adhesion, and platform activation (182). Additionally, SBP’s

cardioprotective mechanisms were also found to involve energy

metabolism within cardiac tissue (183). Wang et al. (184)

employed proteomics to delve into the therapeutic effects of Salviae

Miltiorrhizae and Cortex Moutan extract post-MI in rats. Their

findings underscored the significance of metabolism, oxidative

stress, and cytoskeleton modulation in these effects. Proteomics

has provided insights into the regulatory protein targets impacted

by specific treatments, offering valuable knowledge for advancing

therapeutic strategies. Through the utilization of the SOMAScan

aptamer-proteomics platform, George et al. (185) identified a

cluster of five proteins whose regulation is influenced by the

antagonistic effects of IL-6. These identified proteins were

speculated to potentially play a role in mediating the therapeutic

effects of tocilizumab in cases of non-ST segment elevation MI

(NSTEMI). Furthermore, proteomic investigations have unveiled

the positive influence of physical exercise on cardiac remodeling

after MI. These benefits are attributed to increased anti-oxidant

levels, diminished ion channel expression, favorable adaptations in

energy metabolism, dampened inflammation, and alterations in

ECM organization (186, 187).
2.5. Metabolomics

Metabolomics is a research method used to quantitatively

analyze all metabolites in an organism and investigate the

relationship between metabolites and physiological and

pathological changes. This method employs various technologies,

such as nuclear magnetic resonance (NMR) spectroscopy, MS,

gas chromatography (GC), liquid chromatography (LC), capillary

electrophoresis (CE), Fourier transform infrared (FTIR)

spectroscopy, and Raman spectroscopy to study the small

molecules produced by metabolic processes in biological fluids,

cells, and tissues (188). Metabolomics studies have identified

several dysregulated metabolites during MI, including lipids,

amino acids, energy metabolites, and oxidative stress markers

(189–191).
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1250340
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Zhan et al. 10.3389/fcvm.2023.1250340
Research has revealed notable distinctions in metabolite

profiles between patients with MI and healthy individuals or

other populations (192, 193). Some metabolites, such as 12,13-

diHOME, noradrenaline, tryptophan, and cysteic acid, were

significantly elevated in patients with MI, while some

antioxidants like glutathione were decreased (194–196). Changes

in these metabolites may serve as potential biomarkers of MI.

Abnormal amino acid metabolism is one of the early indicators

of MI. Research has shown that amino acids and their

metabolites such as tryptophan, carnitine, l-homocysteine sulfinic

acid, kynurenine, and cysteic acid, significantly increase in the

serum after MI, while amino acids like leucine, isoleucine, l-

proline, l-alanine, glycine, l-cysteine, and l-cysteine sulfinic acid

decrease (190, 195, 197). These changes in amino acid

concentrations can serve as biomarkers for MI, aiding in early

diagnosis and monitoring of patients’ conditions. Lipid

metabolism also undergoes significant changes in MI.

Triglycerides, low-density lipoprotein cholesterol (LDL-C), non-

high-density lipoprotein cholesterol (non-HDL-C), remnant

cholesterol, and total cholesterol levels significantly increase after

MI, while high-density lipoprotein cholesterol (HDL-C) decreases

(198–201). This lipid metabolism abnormality is closely

associated with the development of coronary artery

atherosclerosis and can be used to predict the risk of MI. MI

results in an insufficient energy supply to myocardial cells.

Therefore, metabolomics research places a significant emphasis

on metabolites related to energy metabolism. Examples of such

metabolites include lactic acid (202), fatty acids (203), phosphates

(204, 205), and creatine (206), all of which experience alterations

following MI and can serve as biomarkers for this condition.

Additionally, MI is characterized by disruptions in glucose

metabolism. Various studies have observed substantial changes in

metabolites related to glucose metabolism, including glucose and

lactate, following a MI (207, 208). These changes reflect a shift in

the myocardial cells’ energy dependence. The measurement of

these metabolites can provide valuable insights into the metabolic

status of patients with MI.

Metabolomic studies have revealed a series of metabolites

related to the prognosis of MI, including amino acids, lipids, and

sugar metabolites. These metabolites can be used to predict

adverse outcomes in patients with MI, such as major adverse

cardiovascular events (MACEs), HF, death, etc. (209–211). For

example, recent research has identified a significant positive

correlation between heightened levels of various metabolites, such

as phenylacetyl glutamine, indoxyl sulfate, deoxycholic acid,

trimethylamine N-oxide, trimethyllysine, dimethylarginines, and

MACEs, in individuals suffering from MI (212–214). Increased

plasma kynurenine levels have been found to be positively

associated with the occurrence of STEMI and its adverse

outcomes (190). These findings provide valuable insights for

healthcare professionals, enabling them to better assess a

patient’s risk and implement appropriate interventions. After a

MI, the body rapidly activates its inflammatory response,

resulting in increased levels of markers like interleukins and C-

reactive protein, which can damage cardiac tissue (215).

Metabolomic studies reveal the intricate interactions between
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these inflammatory molecules and metabolic compounds,

providing a comprehensive understanding of inflammation’s

metabolic effects (216–218). Additionally, metabolic alterations

have been shown to reflect energy deficit, acidosis, oxidative

stress, ion imbalance, and cardiac injury following MI (191).

Analyzing changes in metabolic markers allows us to assess the

extent of myocardial tissue damage and predict patient prognosis.

Metabolomic studies provide valuable insights into the

treatment of MI. Firstly, through metabolomics techniques,

doctors can gain a better understanding of the metabolic profiles

of each patient, thereby adjusting drug selection and dosages to

enhance treatment effectiveness. Xia et al. (189) conducted

research into the distinct metabolic changes in diabetic patients

experiencing AMI. They uncovered essential metabolites linked

to compromised mitochondrial function, impaired glucose

utilization, and heightened inflammation. These finding sheds

light on personalized therapeutic strategies for cases involving

diabetes-associated AMI, representing a promising avenue for

targeted interventions. Additionally, metabolomics can also

contribute to the discovery of new drugs that may treat MI by

intervening in metabolic pathways. Metabolomic studies have

been employed to elucidate the therapeutic impacts of drugs on

MI, such as the hydroethanolic extract of Cucumis sativus

L. seeds (219), colchicine (220), SJP (221), and SBP (222). These

studies offer a comprehensive insight into the mechanisms

underlying drug treatments for MI. They hold the potential to

guide the development of more effective treatments and provide

valuable insights into evaluating the safety and potential side

effects of drugs. Fan et al. (223) used metabolomics to reveal the

therapeutic potential and synergistic mechanism of total saponins

and flavonoids in notoginseng-safflower (NS-SF) in treating MI,

emphasizing its superior efficacy compared to individual

components and highlighting their combined regulation of key

metabolic pathways in MI treatment. This study provides

valuable insights for the clinical development of NS-SF as a

potential treatment for CVDs. Furthermore, metabolomic studies

can shed light on the impact of specific interventions in patients

with MI. For instance, ketone ester supplementation has been

shown to attenuate cardiac inflammation and enhance cardiac

energy in a porcine model of AMI (224). Another metabolomic

investigation has indicated that the combination of smoking and

a high-fat diet may exacerbate cardiac dysfunction following MI,

resulting in substantial disruptions in metabolic pathways related

to inflammation, energy metabolism, and excessive oxidative

stress (225). Therefore, gaining a deeper understanding of how

different dietary patterns, supplements, and dietary modifications

affect metabolic pathways could prove instrumental in enhancing

the recovery and treatment outcomes of MI patients.
2.6. Microbiomics

Microbiomics is an interdisciplinary field that combines

microbiology, macrotranscriptomics, macroproteomics,

metabolomics, chemistry, culturomics, ecology, phylogeny, and

systems biology to investigate the composition, diversity, and
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function of microorganisms (226, 227). The primary sequencing

methods used in microbiomics include marker gene sequencing (e.g.,

16S amplicon sequencing), macrogenome sequencing, and

macrotranscriptome sequencing (228).

The human body contains over 2,000 types of microorganisms

that interact in complex ways with the host (229). Disruptions in

microbial ecology can promote atherosclerosis and CVD through

inflammation, arterial fibrosis, and dyslipidemia (230–233). Firstly,

the microbial community within the human body is closely related

to the pathogenesis of MI. Research has shown that an imbalance in

the gut microbiota is a key factor contributing to the development of

CVDs (234). This imbalance can lead to an increase in harmful

microorganisms while simultaneously decreasing the presence of

beneficial microorganisms, thereby promoting an increase in

inflammatory responses and disturbances in lipid metabolism.

These factors may result in atherosclerosis, ultimately leading to the

occurrence of MI (235). For example, short-chain fatty acids

(SCFAs) are metabolites produced when intestinal microorganisms

ferment dietary fibers such as cellulose. Research shows that SCFAs

can have anti-inflammatory and antioxidant effects, which

contribute to the maintenance of cardiovascular health (236).

Nevertheless, an imbalance in gut microbes may lead to reduced

SCFA production, thereby diminishing this protective effect and

potentially promoting the development of MI (237). Additionally, a

study has shown that the gut microbiota may impact the occurrence

and development of AMI through the SCFA pathway (238).

Trimethylamine oxide (TMAO) is a compound produced through

intestinal microbial metabolism and is commonly associated with

the consumption of fish, red meat, and other foods rich in choline

and L-carnitine (239). Studies have demonstrated that elevated levels

of TMAO are linked to the promotion of plaque formation,

inflammatory responses, and an increased risk of cardiac events

(240, 241). TMAO may also exacerbate the occurrence and

progression of MI by damaging arterial endothelial function and

inducing atherosclerosis. Furthermore, the gut microbiota differed

significantly not only between MI patients and healthy individuals

but also among subgroups of MI patients (238). Similarly, blood

microbiota was also associated with MI. A study found that the

structure and abundance of blood microbiota differed between MI

patients and healthy individuals (242). These microbiome changes

may become potential biomarkers, providing new avenues for early

diagnosis and risk assessment of MI.

Microbiomics has made significant progress in MI prognosis

research. In patients with STEMI, intestinal bacterial translocation

was positively correlated with systemic inflammation and adverse

cardiovascular events. Treatment with antibiotics to eliminate

intestinal bacterial translocation alleviated systemic inflammation

and myocardial cell damage in MI mice (243). Butyrate, a SCFA

produced by the microbiota, can suppress inflammation and

prevent myocardial hypertrophy. Research has demonstrated its

capacity to enhance cardiac function and promote sympathetic

nerve remodeling after MI in rats (244). Conversely, elevated

plasma levels of TMAO independently correlated with a high risk

of plaque rupture in STEMI patients (245). Additionally, studies

have consistently indicated that high TMAO levels are positively

associated with MACEs, atrial fibrillation, and coronary
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atherosclerotic burden (209, 213, 246–248). TMAO holds promise

as a valuable biomarker for predicting poor prognosis and

improving risk assessment and management in MI patients.

Considering these findings, microbiomics opens up new diagnostic

and therapeutic avenues for MI patients. By restoring balance to

the intestinal microecology, it is anticipated to reduce chronic

inflammation levels, enhance immune function, lower the risk of

recurrent MI, and ultimately improve patient survival rates.

Microbiome research has made exciting advancements in MI

treatment, offering innovative perspectives for novel therapeutic

strategies. Firstly, research has established a strong link between the

gut microbiome and chronic inflammation, a significant contributor

to MI (235, 249). By modulating the intestinal microecology, it holds

the potential to alleviate chronic inflammation in patients and

support post-MI recovery. For instance, studies have demonstrated

that supplementing with probiotics or prebiotics can restore a

healthier balance of intestinal flora, effectively reducing

inflammation and facilitating recovery following MI (250–252). This

provides direction for the development of new biologics or dietary

interventions. Secondely, studies have shown that gut microbiota

remodeling through certain interventions, such as Lactobacillus

johnsonii, dapagliflozin, and flavonoids, can result in enhanced

cardiac function after AMI (253–255). SCFAs have been found to

improve cardiomyocyte function and heart contractility (244, 256).

Therefore, by increasing the intake of dietary fiber and promoting

the production of SCFAs, it is expected to improve the cardiac

function of patients with MI. Furthermore, exercise intervention can

influence the gut microbiota to improve cardiac function after MI

(257, 258). Thirdly, the microbiome can influence drug metabolism

and effects. Studies have shown that the efficacy of some drugs, such

as antibiotics (259), immunosuppressive drugs (260, 261), and

anticoagulants (262), in the treatment of MI may be affected by the

microbiome. Therefore, by adjusting the microbiome, drug efficacy

can be optimized and therapeutic effects improved.
2.7. Single-cell omics

Cells are the fundamental building blocks of all living

organisms, and exploring the phenotype and function of

individual cells can lead to a deeper understanding of biological

activities, helping to comprehend the causes, progression, and

treatment of medical conditions such as MI. The use of single-

cell omics has greatly advanced our understanding of cell

heterogeneity, with technologies such as single-cell RNA

sequencing (scRNA-seq), single-cell DNA sequencing (scDNA-

seq), single-cell ATAC sequencing (scATAC-seq), and cytometry

providing unprecedented levels of detail when examining

individual cells (263, 264). Single-omics analysis unveils cell

population diversity and functional disparities, opening a new

dimension for studying diseases like MI.

Single-cell genomics has provided unprecedented insights into

the responses of distinct cell types within cardiac tissue during MI.

MI involves a cascade of complex biological events, including

myocardial cell necrosis, infiltration of inflammatory cells, and

fibroblast proliferation, among others. Traditional research
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methods struggle to capture the nuances and changes within these

cell types. Fortunately, single-cell genomics technology empowers

researchers to decode the gene expression patterns of individual

cells. Through scRNA-seq of cardiac samples from MI patients,

researchers have identified various cell types, including

myocardial cells, immune cells, fibroblasts, and endothelial cells,

and have explored their dynamic changes during MI (265–268).

This comprehension of cellular diversity is pivotal in the study of

cardiac development, injury responses, and the progression of

cardiac diseases. In a study by Qian et al. (269), utilizing the

scRNA-seq method, the transcriptomes of peripheral blood

mononuclear cells in AMI patients were analyzed, revealing a

total of 27 cell clusters. This investigation unveiled that

peripheral immune cells in patients with plaque rupture

exhibited marked pro-inflammatory characteristics, while plaque

erosion was associated with intermediate monocyte expansion,

neutrophil activation, and granule release. These single-cell

analysis techniques enable scientists to delve deeper into the

distinctive roles of various cell types in MI pathology. Research

has consistently shown that myocardial cell heterogeneity is

closely linked to cardiac remodeling, angiogenesis, and

inflammation following MI (267, 270–274). A recent study has

revealed a highly enriched regulatory T cell (Treg) subtype

within the myocardium of MI mice, which facilitates cardiac

damage repair post-MI (275). Furthermore, in an analysis of

myocardial cells from a pig AMI model, a cell cluster potentially

related to cardiac injury was identified. This cluster regulates the

cardiac injury response by upregulating genes such as TBX5,

TBX20, ERBB4, and GRK5 (276). These research findings

underscore the significance of myocardial cell heterogeneity and

potential mechanisms in the treatment of MI and cardiac injury

repair. Furthermore, scRNA-seq is a valuable tool for

investigating communication between different types of heart

cells. Understanding the network of interactions among cardiac

cells that constitute the heart is crucial for comprehending

cardiac homeostasis and the progression of diseases (277). Skelly

et al. (278) delved into the analysis of non-muscle cells in the

mouse heart using scRNA-seq technology, uncovering the

diversity and sex differences among cardiac cells. This research

provides essential insights for the study of cardiac development

and diseases, deepening our understanding of cardiac cell

composition and function. Another study conducted a focused

study on the cellular composition of the mouse left ventricle.

Through scRNA-seq, they identified various types of cardiac cells

and elucidated their functions. This study not only offers

potential therapeutic targets for CVDs but also unveils an

extensive network of interconnected communication among cells

within the left ventricle (279). Through a comprehensive

exploration of the functions of different cell types and their

interactions, we enhance our understanding of MI’s pathogenesis

and provide invaluable insights for future treatment strategies.

Single-cell genomics provides an opportunity to discover new

biomarkers. By examining individual cells, particularly their gene

expression patterns within different cell subpopulations,

researchers have successfully identified a range of potential

biomarkers associated with MI. For example, Zhang et al. (280)
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used scRNA-seq technology to reveal the potential roles that

IL1B and TLR2 may play in the diagnosis of MI, which are

closely related to various infiltrating immune cells. Another study

also identified a series of immune cell-related genes, including

FOS, DUSP1, CXCL8, and NFKBIA, which can not only

differentiate between AMI and coronary heart disease (CHD) but

also predict the risk of HF in AMI patients (281). Furthermore,

single-cell studies have revealed some monocyte-related genes,

including CUX1, CTSD, ADD3, PRKAR1A, and SDCBP, which

can be used to predict the risk of developing HF after AMI

(282, 283). These findings provide new clues for early diagnosis

and prognosis assessment of MI, with the potential to improve

patient treatment and management. Additionally, single-cell

genomics also helps uncover individual differences among MI

patients. Each patient’s cell composition and gene expression

may vary, suggesting that personalized treatment strategies may

hold promise. Single-cell research can provide a basis for

developing personalized treatment plans, thereby enhancing

treatment effectiveness.
2.8. Radiomics

Radiomics is a methodology that enables the precise

characterization of pathological observations detected in

radiological imaging by essentially converting images into data.

Its research stages typically include data selection, medical

imaging, feature extraction, exploratory analysis, and modeling

(284). A The advancements in technologies such as magnetic

resonance imaging (MRI), computed tomography (CT),

echocardiography, nuclear imaging, and others have greatly

supported accurate diagnosis and treatment in the context of MI.

MRI stands as a high-resolution non-invasive technique

employed to gain intricate insights into heart structure and

function, including parameters such as ventricular wall thickness,

myocardial function, and volume. Recent research indicates that

MRI-based radiomics, particularly in non-contrast MRI, holds

great potential in predicting MI, promising to revolutionize the

management and treatment of heart diseases. A study by Smith

et al. (285) demonstrated the reliability of machine learning-

based radiomic features extracted from non-contrast MRI in

distinguishing between MI and normal tissue, offering a novel

avenue for clinical diagnosis. Another study revealed that

radiomic analysis using non-contrast MRI can predict adverse

LVR following STEMI, thereby enhancing the accuracy of patient

prognosis assessment (286). Furthermore, the integration of

native T1 and extracellular volume (ECV) mapping within MRI

technology, along with radiomic analysis, elevates the accuracy of

predicting heart function recovery and microvascular damage.

Ma et al. (287) indicated that radiomic analysis using non-

contrast CMR T1 mapping can play an important role in the

diagnosing AMI and the predicting myocardial function recovery.

This method not only enhances the accuracy of detecting

microvascular obstruction but is also expected to improve long-

term predictions of myocardial contraction function, providing

valuable tools for the clinical management of cardiac diseases.
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Additionally, radiomics based on non-contrast-enhanced T1

mapping exhibits the capacity to predict MACEs in STEMI

patients, facilitating patient risk stratification (288). Chen et al.

(289) unveiled that radiomic texture analysis-based ECV score

mapping can differentiate between reversible and irreversible

myocardial injuries in STEMI patients while predicting LVR,

potentially assuming a significant role in clinical applications. Late

gadolinium enhancement (LGE) is a commonly used MRI

technique for detecting myocardial abnormalities. Di Noto et al.

(290) found that radiomic features of LGE can accurately

differentiate between MI and myocarditis, offering a promising

tool for non-invasive diagnosis. Furthermore, combining LGE-

based radiomics with machine learning can predict MACEs in

STEMI patients (291). Therefore, MRI-based radiomics and

machine learning have opened new horizons in CVD research.

They can be seamlessly integrated with MRI and clinical

information to enhance model accuracy and predictive performance.

CT plays a significant role in the diagnosis and evaluation of

MI. Coronary CT angiography (CCTA) enables the non-invasive

assessment of coronary artery narrowing and obstruction, aiding

doctors in determining the patient’s coronary condition.

Pericardial adipose tissue (PCAT) is the fat surrounding the

heart within the pericardial sac, often relevant in cardiovascular

research and clinical contexts due to its potential impact on

heart health (292). A recent study has discovered that the use of

CCTA for the radiomic analysis of PCAT can effectively

differentiate between patients with AMI and those with stable

coronary arterial disease (CAD) (293). This research highlights

the potential role of radiology and machine learning in cardiac

disease image diagnosis. Specifically, the combination of clinical

characteristics, PCAT attenuation, and radiomic parameters can

enhance the accuracy of identifying AMI patients. Additionally,

Si et al. (294) indicate that radiomics analysis of CCTA-based

PCAT radiological features excels at distinguishing between AMI

and unstable angina pectoris (UA). They found that the

application of PCAT’s radiomics characteristics and the fat

attenuation index can improve performance in recognizing AMI,

offering a promising new approach for non-invasive CHD

diagnosis. Another study has also proven that radiomics features

based on CCTA-derived PCAT can be used to distinguish

between NSTEMI and UA. However, this study also noted

certain limitations in the radiological model of epicardial adipose

tissue for this task (295). Therefore, the radiomic features of

PCAT based on CCTA can be used for the differential diagnosis

of MI.

Therefore, radiomics plays an increasingly vital role in the

diagnosis, treatment planning, and overall patient management of

MI. The ongoing development and enhancement of these

technologies hold the promise of delivering more precise and

personalized diagnostic and treatment options for MI patients,

ultimately contributing to improved recovery and survival rates.

However, it’s imperative to address challenges related to data

privacy, standardization, and clinical integration to effectively

introduce these innovations into routine clinical practice and,

ultimately, to the benefit of patients.
Frontiers in Cardiovascular Medicine 10
3. From single-omics to multi-omics
integrative analyses: toward the era of
MI personalized medicine

3.1. Necessity of multi-omics integration in
personalized medicine

As depicted in Figure 1, diverse omics exhibit unique

characteristics when delving into the intricacies within

organisms. The different omics provide insights into different

layers of biological information. Furthermore, there exists a

strong interconnectedness among these omics. Genomics

concentrates on an organism’s genetic information, which

generally remain relatively static and stable. Conversely, other

omics domains like epigenomics, transcriptomics, proteomics,

and metabolomics offer dynamic insights into gene expression,

protein activity, and metabolite levels (296–298). Progressing

from genomics to epigenomics, and subsequently to

transcriptomics, proteomics, metabolomics, and other omics, the

complexity and dynamism of information progressively intensify,

more effectively showcasing a wide range of disease phenotypes

and contributing to the comprehension of disease origins and

progression mechanisms (299). Nevertheless, as complexity

deepens, data analysis becomes increasingly intricate.

Furthermore, each omics approach has its own advantages and

disadvantages (Table 1). Single-omics studies offer the advantage

of conducting in-depth examinations of specific biological or

molecular mechanisms. There studies provide highly focused

information that allows researchers to delve deeply into specific

genes, proteins or molecular mechanisms, revealing microscopic

level details and mechanisms. This focus makes single-omics

studies particularly useful when addressing specific biological

questions and research goals, such as identifying disease-causing

genes, analyzing protein function, or studying a specific

metabolic pathway (300). Additionally, single-omics studies

usually have high experimental controllability, facilitating the

acquisition of reproducible results and offering relatively low

costs. This makes single-omics studies a powerful tool for

studying specific biological questions or conducting preliminary

explorations. However, the disadvantage of single-omics studies is

their narrow focus, and they often fail to provide insights into

the interactions and integration of the overall biological system.

Life science often involves multi-level and complex interactions,

so relying solely on data from a single research field may not

fully understand the integrity and comprehensiveness of

biological systems (301–303). Furthermore, each omics approach

has its own limitations, including technical constraints,

experimental setups, and data analysis.

Therefore, a pressing need has arisen to transition from single-

omics to multi-omics integrative approaches in current biomedical

research. Although conventional single-omics techniques retain

significance within specific fields, they encounter challenges in

fully capturing the intricacies and diversity present within

organisms. Particularly, when delving deeply into complex

maladies like MI and the analysis of individual variabilities,
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TABLE 1 Advantages and disadvantages of individual omics approaches.

Omics
approach

Advantages Disadvantages

Genomics Provides comprehensive information on the entire genome sequence,
including data on all genes and non-coding regions, helping to identify
important genomic changes and mutations.

Predictions of final biological effects are limited because genes do not always
have a direct impact on biological performance.

Epigenomics Provides information about potential regulatory mechanisms of genes,
including DNA methylation, histone modifications, etc., thus helping to
understand gene regulation and expression patterns.

Metabolite profiles may not fully capture cell type dynamics, and their
correlation with gene expression can be limited due to epigenetic
modifications not always directly governing gene expression levels.

Transcriptomics Capable of comprehensive gene expression analysis, including splice
variants, with high sensitivity and quantification, even in single-cell
experiments for cell-specific transcriptome resolution.

Differences in organ and cell-specific transcriptomes do not always linearly
translate to the protein level due to distinct regulatory mechanisms between
gene and protein expression.

Proteomics Reveals the final level of regulation within the cell, as proteins are the main
cellular effectors and can directly reflect biological functions and metabolic
status.

Difficulty isolating and detecting certain proteins, a high dynamic range, the
need for absolute quantitative markers, limited coverage, and challenges in
accurately analyzing post-translational modifications.

Metabolomics Closely linked to phenotype while allowing repeated sampling of easily
accessible biological fluids with high sensitivity and specificity

Metabolite profiles vary individually and are influenced by factors like diet,
environment, and age. Research results may lack reproducibility, and there
are complexities and challenges in data analysis and interpretation.

Microbiomics Reveals the diversity and functionality of microbial communities in various
environments and hosts, aiding in the understanding of the relationship
between microorganisms and health.

Understanding the relationship between microbial community structure and
function is often challenging, with sample collection and processing
potentially distorting microbial composition.

Single-cell omics Provides high-resolution single-cell analysis, revealing the diversity and
functionality within cells while uncovering cellular heterogeneity.

Requires highly complex experimental procedures and data processing, with
data analysis posing a challenge.

Radiomics Visualizes the structure and function within the organism, offering a potent
tool for pathology, anatomy, and biomedical research, thereby aiding in
early disease diagnosis and treatment.

Limited image resolution challenges microstructure capture, demanding
substantial resources and specialized expertise for analysis.
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single-omics approaches exhibit inherent limitations. The etiology

of MI is exceptionally intricate, potentially giving rise to

abnormalities across multiple levels. Genetic variations and

irregularities in gene expression may hold pivotal roles in the

progression of the disease. Genetic mutations could render

individuals more susceptible to cardiac ailments, thereby

amplifying the risk of MI (304). In parallel, aberrant gene

expression could disrupt the functionality of the cardiovascular

system, further hastening the onset of MI (305, 306). However,

beyond genetics, subsequent alterations could serve as triggers for

MI, encompassing factors such as environmental influences,

lifestyles, and epigenetics (123, 307–310). This underscores that

MI constitutes a multi-tiered and complex process, with

deviations at each omics level potentially influencing the eventual

outcome. Consequently, when confronted with the intricacies of

MI, the integration of multi-omics approaches becomes pivotal,

not only furnishing additional evidence but also propelling deep

phenotyping analysis and the advancement of personalized

medicine.

The integration of multi-omics approaches refers to the

practice of combining and analyzing data from various omics

technologies, such as genomics, epigenomics, transcriptomics,

proteomics, and metabolomics. These approaches enable a more

comprehensive understanding of biological systems, yielding

profound insights into complex biological processes and diseases.

By merging molecular omics with clinical phenotype omics data,

we can delve into the underlying causes of MI, unravel the

complex connections between genes and phenotypes, and create

a detailed patient information landscape. This not only enhances

the accuracy of disease diagnosis but also empowers the creation

of tailor-made treatment protocols and the real-time tracking of

patient responses to treatment. Thus, the shift from single-omics
Frontiers in Cardiovascular Medicine 11
methods to multi-omics integrative approaches has evolved into

an indispensable trend in contemporary biomedical research.

This transformation paves the way for broader possibilities in

future medical research and clinical practice, ushering in a new

era of personalized medicine for MI.
3.2. Advancements in multi-omics
integration research for MI

In recent years, researchers have adopted a strategy of

integrating two or more “omics” approaches to conduct in-depth

research on the molecular mechanisms and potential biomarkers

of MI. These studies help us better understand the pathogenesis

of MI and provide new clues for early diagnosis and treatment.

Table 2 displays some MI research involving multi-omics

integration.

Multi-omics integration analysis is a powerful tool for

exploring the relationships between molecules at various levels in

MI and identifying potential biomarkers and key molecules. The

integrated research of genomics and transcriptomics is used to

study the relationship between genetic variations and changes in

transcriptional expression, which is conducive to clarifying the

potential molecular mechanisms of MI. Chen et al. (311)

revealed that genetic variations significantly reduce the

transcriptional activity of the SIRT5 gene promoter. This

alteration could result in changes in SIRT5 levels, thereby

increasing the risk of AMI. SIRT5 overexpression has been

demonstrated to provide protection against cardiac dysfunction

induced by pressure overload, while simultaneously suppressing

adverse metabolic and fibrotic pathways associated with HF

(342). Similarly, other studies have uncovered that genetic
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1250340
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 2 Studies for multi-omics integration of myocardial infarction.

Study Year Species Omics types Biomarkers or key molecules Findings
Chen et al.
(311)

2018 Human Genomics,
transcriptomics

SIRT5 Genetic variations significantly reduced SIRT5 gene
promoter transcriptional activity and may change
SIRT5 levels, increasing AMI risk.

Zhang et al.
(312)

2018 Human Genomics,
transcriptomics

ATG7 Genetic variations significantly altered ATG7 gene
promoter transcriptional activity and may change ATG7
levels, increasing AMI risk.

Sun et al. (313) 2019 Human Genomics,
transcriptomics

GATA6 Genetic variations (DSV g.22168409 A > G and SNP
g.22168362 C > A) in the GATA6 gene promoter may
elevate GATA6 levels, increasing AMI risk.

Wang et al.
(314)

2019 Human Genomics,
transcriptomics

VEGFR-1 Genetic variations significantly altered VEGFR-1 gene
promoter transcriptional activity and may change
VEGFR-1 levels, increasing AMI risk.

Sedky et al.
(315)

2018 Human Genomics, metabolomics CYP2R1 CYP2R1 genetic variants strongly influenced serum 25-
hydroxyl vitamin D levels and had a strong association
with MI risk.

Asif et al. (316) 2018 Human Genomics, metabolomics LRP8 The TG haplotype of LRP8 gene variants rs10788952
and rs7546246 significantly increased MI risk, along
with higher low-density lipoprotein cholesterol and
total cholesterol levels in MI patients.

Semaev et al.
(317)

2019 Human Genomics, metabolomics CETP The rs708272 variant in the CETP gene was linked to
higher MI risk, correlated with reduced high-density
lipoprotein cholesterol levels and increased
atherogenicity.

Li et al. (17) 2020 Human Genomics, metabolomics ANRIL, MALAT1 Genetic variations in ANRIL and MALAT1, particularly
rs9632884 and rs3200401 SNPs, were linked to lipid
levels in MI patients.

Wang et al.
(318)

2020 Mouse Epigenomics,
transcriptomics

H3K27ac, H3K9ac, and H3K4me3 Histone modifications regulated early MI gene
expression, influencing processes like cardiomyocyte
development, inflammation, angiogenesis, and
metabolism, possibly through super-enhancers
initiating early angiogenesis.

Corbin et al.
(319)

2022 Human Epigenomics,
transcriptomics

F2RL3, PAR4 Smoking-induced DNA hypomethylation at the F2RL3
locus may increase PAR4 expression, potentially
enhancing platelet reactivity and worsening the elevated
MI risk associated with smoking.

Luo et al. (17) 2022 Mouse Epigenomics,
transcriptomics

Ptpn6, Csf1r, Col6a1, Cyba, and Map3k14 Substantial DNA methylation and gene expression
alterations occurred in early AMI, particularly within
6 h post-AMI.

Liu et al. (320) 2022 Murine Epigenomics,
transcriptomics

SPI1 Increased SPI1 expression due to reduced DNA
methylation worsens MI by triggering the TLR4/NFκB
pathway, resulting in heightened inflammation and
cardiac damage.

Wu et al. (321) 2023 Mouse Transcriptomics,
proteomics

Itgb2, Syk, Tlr4, Tlr2, Itgax, Lcp2, Coro1a Identified seven key AMI-related genes, with Coro1a
upregulated in both omics, and strong diagnostic
potential found in Tlr2, Itgax, and Lcp2 for AMI.

Jia et al. (322) 2019 Rat Transcriptomics,
proteomics

N/A Salvianic acid A sodium exhibited cardioprotective
effects in MI by regulating multiple pathways.

Li et al. (323) 2019 Mouse Transcriptomics,
proteomics

Nppa, Serpina3n, Anxa1 Characterized transcriptome and proteome changes in
MI, emphasizing immune, cell cycle, and ECM-related
pathways, and identifying potential biomarkers for MI.

Liu et al. (324) 2023 Mouse Transcriptomics,
proteomics

WIPI1 Identified early immune activation, pyroptosis, and
autophagy in myocardial tissue after AMI, and
provided a potential diagnostic biomarker (WIPI1) for
AMI and therapeutic implications of the pyroptosis
inhibitor VX-765.

Contessotto
et al. (325)

2023 Ovine Transcriptomics,
proteomics

N/A Uncovered unique tissue remodeling traits compared to
STEMI, offering insights for potential pharmacological
treatments targeting fibrotic remodeling in NSTEMI.

Jia et al. (326) 2019 Rat Proteomics, metabolomics N/A Salvianic acid A sodium protected against MI in rats by
reversing multiple MI-induced metabolic changes and
binding to specific proteins involved in metabolic
pathways.

Yan et al. (327) 2022 Rat Proteomics, metabolomics N/A Nutmeg-5 reduced post-MI cardiac fibrosis by
inhibiting the ECM-receptor interaction pathway and
TGF-β1/Smad2 signaling via plasma metabolite control.

(Continued)
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TABLE 2 Continued

Study Year Species Omics types Biomarkers or key molecules Findings
Zhang et al.
(328)

2023 Rat Proteomics, metabolomics Cytochrome P450 family 7 subfamily A
member1 (CYP7A1)

The ethanol extract of Pueraria lobata boosted bile acid
levels and alleviated gut microbiota dysbiosis in AMI by
increasing CYP7A1 expression and reinstating diversity
in the intestinal microbiota.

Chan et al.
(329)

2020 Human,
murine

Proteomics, single-cell
transcriptomics

N-terminal B-type natriuretic peptide, troponin
T, angiopoietin-2, thrombospondin-2, latent
transforming growth factor-beta binding
protein-4, and follistatin-related protein-3

Identification of potential protein biomarkers of post-
MI HF and their sources.

Li et al. (330) 2023 Mouse Proteomics, single-cell
transcriptomics

Plasma exosomes Neonatal mouse plasma exosomes (npEXO) enhanced
cardiac repair and angiogenesis in adult hearts after MI
through 28 npEXO ligands interacting with five cardiac
endothelial cell receptors.

Zhang et al.
(331)

2022 Human Metabolomics,
metagenomics

N/A Dysbiosis of the gut microbiota significantly
contributed to increased platelet reactivity in STEMI
patients treated with ticagrelor after PCI.

Dong et al.
(332)

2023 Human Metabolomics,
microbiomics

Alistipes, Streptococcus, Lactobacillus,
Faecalibacterium, formate, methionine,
tyrosine, urea, galactose

A combination of gut microbiota and fecal/urinary
metabolites has yielded a set of potential, useful, and
noninvasive predictive biomarkers for distinguishing
AMI from stable CAD.

Liao et al.
(333)

2023 Rat Metabolomics,
microbiomics

Staphylococcusm, Jeotgalicoccus,
Lachnospiraceae, Blautia,eicosanoids

Suxiao Jiuxin pill’s cardioprotective effects against AMI
might result from its impact on gut microbiota and host
fatty acid metabolism, particularly eicosanoids.

Kim et al.
(334)

2023 Mouse Single-cell
transcriptomics, spatial
transcriptomics

Trem2 Trem2hi macrophage subsets played a role in subacute
MI, displaying increased expression of anti-
inflammatory genes, indicating potential therapeutic
role of in Trem2 post-MI LVR.

Haase et al.
(61)

2022 Mouse Genomics, epigenomics,
transcriptomics

Gpr15 Elevated GPR15 expression was associated with early-
onset MI, potentially mediating the adverse effects of
smoking on MI risk. Additionally, DNA
hypomethylation and a GPR15 nucleotide
polymorphism, rs2230344, were also linked to MI risk.

Kuppe et al.
(335)

2022 Human,
mouse

Epigenomics, single-cell
transcriptomics, spatial
transcriptomics

N/A Created a comprehensive molecular map of human
cardiac remodeling post-MI, revealing insights into cell-
type shifts, transcriptome and epigenome changes, and
tissue reorganization.

Lavine et al.
(336)

2023 Human Epigenomics, single-cell
transcriptomics, spatial
transcriptomics

FAP, POSTN, THY-1, EDNRA, RUNX1, CCR2 Discovered a subset of fibroblasts in cardiac disease,
which causes tissue fibrosis. Their emergence results
from interactions with CCR2 macrophages through IL-
1β signaling. Targeting inflammation to block these
interactions holds potential as a therapy to reduce
cardiac fibrosis and restore organ function.

Wang et al.
(337)

2015 Rat Epigenomics,
transcriptomics,
proteomics

ALDH2 Abnormal hypermethylation of CpG sites in the
ALDH2 promoter upstream sequence was linked to
myocardial ischemic injury and contributes to ALDH2
mRNA and protein downregulation after MI.

Lan et al. (338) 2022 Mouse Epigenomics,
transcriptomics,
proteomics

DYRK1A Inhibiting DYRK1A activated the cardiomyocyte cell
cycle and enhanced cardiac repair after MI, with a
crucial role played by epigenetic modifications
(H3K4me3 and H3K27ac) involving WD repeat-
containing protein 82 and lysine acetyltransferase 6A.

Ward-Caviness
et al. (339)

2018 Human Epigenomics,
transcriptomics,
metabolomics

KCNN1, FRY, LRP8, DHCR24, GLIPR1L2,
ALKBH1, PDE4DIP, C1orf129

Significant changes in DNA methylation occur after MI
and were associated with alterations in branched-chain
amino acid metabolism.

Hadas et al.
(340)

2020 Mouse Transcriptomics,
proteomics, metabolomics

Acid ceramidase Elevated acid ceramidase via modified mRNA delivery
lowers ceramide levels, boosts cell survival, and offers
cardioprotection post-MI by enhancing heart function
and reducing scar size.

Jiang et al. (93) 2020 Mouse Transcriptomics,
proteomics, metabolomics

HDAC4, GLUT1 Exercise enhances cardiac function and glucose
metabolism in HF mice post-MI induced by ischemia
by inhibiting HDAC4 and increasing GLUT1 expression
via AMPK-HDAC4-MEF2a pathway activation.

Lim et al. (341) 2022 Human Metabolomics, lipidomics,
glycomics, metallomics

N/A Unraveled the potential mechanisms of
glycerophospholipids, Ca-ATPases, and
phosphatidylethanolamine. The combination of all four
omics datasets significantly enhanced AMI classification.

AMI, acute myocardial infarction; MI, myocardial infarction; DSV, dynamic structured variant; SNP, single nucleotide polymorphism; ECM, extracellular matrix; WIPI1, WD

repeat domain, phosphoinositide interacting 1; HF, heart failure; PCI, percutaneous coronary intervention; CAD, coronary artery disease; Trem2, triggering receptor

expressed on myeloid cells 2.
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variations in ATG7 (312), GATA6 (313), and VEGFR-1 (314) can

significantly impact the transcriptional activity of these genes,

further influencing the risk of MI. Furthermore, Haase et al. (61)

employed a combination of genomics, epigenomics, and

transcriptomics to reveal that elevated GPR15 expression is

associated with early-onset MI, potentially mediating the adverse

effects of smoking on MI risk. Additionally, they found that

DNA hypomethylation and a nucleotide polymorphism

(rs2230344) of GPR15 are also linked to MI risk. Since rs2230344

is located in close proximity to GPR15 DNA methylation sites

(343), it may influence DNA methylation, leading to increased

GPR15 levels. The integrated research of genomics and

metabolomics is employed to explore the intricate connections

between genetic variations and alterations in metabolite profiles.

25-hydroxy vitamin D (25OHD) serves as an intermediary

product in the body’s vitamin D metabolism, participating in

lipid metabolism. Its deficiency may increase the risk of MI

(344). Sedky et al. (315) revealed that genetic variations in the

CYP2R1 gene can modulate serum 25OHD levels, thereby

impacting MI risk. Lipid metabolism abnormalities are intricately

linked to the risk of MI, as elevated cholesterol levels and

imbalanced lipid profiles can contribute to atherosclerosis and

heighten the likelihood of MI (345). Studies have indicated that

genetic variations in the LRP8 (rs10788952 and rs7546246) (316),

CETP (rs708272) (317), NRIL (rs9632884) and MALAT1

(rs320040) (17) are closely associated with MI risk by exerting

their influence on lipid metabolism. These research findings

underscore the potential significance of genetic variations in the

pathogenesis of MI, offering promising avenues for future disease

treatment and personalized medicine.

The integrated research in epigenomics and transcriptomics is

utilized to investigate the impact of epigenomic alterations on gene

expression and to identify key molecular signatures and potential

mechanism. A recent study has revealed that substantial

alterations in DNA methylation and gene expression take place

in the early phases of AMI, particularly within the initial 6 h

following AMI. Additionally, the study has identified promising

epigenetic-based biomarkers for early clinical diagnosis and

potential therapeutic targets for AMI, which include Ptpn6, Csf1r,

Col6a1, Cyba, and Map3k14 (305). Wang et al. (318) unveiled

the critical roles of histone modifications such as histone H3

lysine 27 acetylation (H3K27ac), histone H3 lysine 9 acetylation

(H3K9ac), and H3K4me3 in the early stages of MI. They

identified that at least 195 genes were upregulated and associated

with one of these modifications, impacting various key biological

processes, including cardiac cell development, inflammation,

vascularization, and metabolism. Additionally, they discovered

that enhancers rich in H3K27ac may play a crucial role in early

vascular responses. In another study, researchers discovered that

knocking down DYRK1A enhanced the expression of numerous

genes involved in cell proliferation, thereby activating the cell

cycle of cardiac cells and promoting cardiac repair following MI.

Throughout this process, epigenetic modifications, particularly

H3K4me3 and H3K27ac modifications, played a crucial role,

involving proteins such as WD repeat-containing protein 82 and

lysine acetyltransferase 6A. Therefore, by regulating these
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epigenetic modifications and protein activity, it may be possible

to promote more effective cardiac cell repair, potentially leading

to improved recovery and cardiac function in MI patients (338).

Spleen focus forming virus proviral integration oncogene (SPI1)

belongs to the ETS family of transcription factors and

participates in a wide range of cellular processes, including

inflammation and cell apoptosis (346, 347). Liu et al. (320)

revealed that the upregulation of SPI1 gene expression, driven by

reduced DNA methylation, leads to heightened inflammation and

cardiac damage through the activation of the TLR4/NFκB

pathway, further exacerbating MI development. This research

sheds light on the pivotal role of SPI1 in the pathological process

of MI and establishes a foundation for exploring new

intervention strategies. Aldehyde dehydrogenase 2 (ALDH2)

downregulation is related to MI severity, and epigenetic changes

may contribute to its downregulation (348). Researchers found

that ALDH2 mRNA and protein downregulation after MI was

partly due to CpG hypermethylation in the upstream ALDH2

gene promoter, as revealed by multi-omics analysis in the rat MI

model (337). The integration of epigenomics and transcriptomics

provides important insights into the mechanisms linking

smoking and MI. A recent study discovered that smoking can

induce DNA demethylation at the F2RL3 site, potentially

increasing the expression level of the PAR4 gene. This alteration

may lead to heightened platelet reactivity, thereby escalating the

risk of MI in smokers (319). Furthermore, Ward-Caviness et al.

(339) correlated epigenetic fingerprint sites with cis-gene

expression and integrated them into the gene expression

metabolomics network. They found that DNA methylation

changes in MI were associated with alterations in branched-chain

amino acid metabolism. This discovery suggests that epigenetic

changes may play a vital role in metabolic regulation after MI.

This has significant implications for our understanding of the

metabolic regulation of MI and for identifying potential

therapeutic pathways. Collectively, these studies underscore the

regulatory role of epigenomics in the pathogenesis of MI and

provide valuable insights and targets for understanding and

treating this condition.

Liu et al. (324) conducted an analysis of transcriptomes and

proteomes in myocardial tissue at various time points following

AMI. They noted that the earliest significant changes occurred at

6 h after AMI, and pyroptosis was activated at 24 h after AMI.

Additionally, they highlighted the potential of the pyroptosis

inhibitor VX-765 as a promising drug target and identified the

protein WIPI1 (WD repeat domain, phosphoinositide interacting

1) as a valuable early diagnostic biomarker for AMI. Another

study also revealed transcriptomic and proteomic changes

associated with MI, with a particular emphasis on changes in

immune, cell cycle, and ECM-related pathways. In addition, the

study identified potential blood markers that could be used for

the diagnosis or treatment monitoring of MI. Wu et al. (321)

employed an integrated approach combining transcriptomics and

proteomics to successfully identify seven key genes associated

with AMI, with Coro1a exhibiting upregulation in both omics

levels. This pivotal discovery not only presents potential new

biomarkers for early AMI diagnosis but also offers hope for
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enhanced treatment and patient management strategies. Notably,

the Coro1a gene, a member of the Coronin family, primarily

functions within the immune system, and its aberrations can

lead to immune system dysfunction and other health

complications (349). Furthermore, a recent study that integrated

transcriptomics and proteomics has unveiled tissue remodeling

signatures specific to NSTEMI. In conjunction with the elevation

of inflammation and fibrosis markers, the ischemic regions of

NSTEMI displayed unique patterns of complex galactosylated

and sialylated N-glycans within cellular membranes and the

ECM (325). These findings offer valuable insights into potential

drug therapies aimed at addressing fibrous remodeling in

NSTEMI, presenting novel perspectives for future therapeutic

strategies.

Integrated analysis of metabolomics and other omics has been

used to uncover the protective mechanisms of drugs against MI.

Sodium salvianolic acid A (SAAS) is a novel drug derived from a

traditional Chinese medicine Salvia miltiorrhiza. It is currently

undergoing Phase I clinical trials in China for the treatment of

CHD and stable angina. Through proteomics and metabolomics

analyses, Jia et al. (326) revealed that SASS possesses the

remarkable ability to counteract a multitude of metabolic

alterations induced by MI. SAAS exerts this protective effect by

selectively binding to specific proteins integral to metabolic

pathways, thereby effectively safeguarding rats from the

detrimental consequences of MI. Furthermore, Jia et al. (322)

utilized transcriptomic and proteomic analyses to reveal the

cardioprotective effects of SAAS in MI by regulating pathways

such as the actin cytoskeleton, phagosomes, focal adhesions, and

others. These studies offer valuable insights into SAAS treatment

for MI and pave the way for innovative research directions in

future treatment strategies. Nutmeg-5 is an ancient and classic

formula in traditional Mongolian medicine composed of five

traditional Chinese medicines, widely used in the treatment

of MI. Yan et al. (327) further elucidated the mechanisms

underlying Nutmeg-5’s protective efficacy against MI by

employing proteomics and metabolomics analyses. Their findings

revealed that Nutmeg-5 achieves its protective effect on MI

through the inhibition of ECM-receptor interaction pathways and

TGF-β1/Smad2 signaling transduction, which was achieved by

regulating plasma metabolites. Acid ceramidase (AC) serves as

the primary enzyme responsible for catalyzing the hydrolysis of

ceramide, thereby producing free fatty acids and sphingosine.

Recent research has highlighted the promising potential of

AC gene therapy in alleviating pulmonary arterial hypertension

with right heart dysfunction (350). In a study by Hadas

et al. (340), utilizing a comprehensive approach encompassing

transcriptomics, proteomics, and metabolomics, it was revealed

that overexpressing AC via modified mRNA (modRNA) delivery

can lower ceramide levels, promote cell survival, and offer

cardiac protection after MI by improving heart function and

reducing scar size. This discovery underscores the therapeutic

potential of AC modRNA in ischemic heart disease. Zhang et al.

(331) utilized metabolomics and metagenomics analyses to reveal

that gut microbiota dysbiosis is a key contributing factor to high

platelet activity in STEMI patients receiving ticagrelor treatment
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after PCI. This finding underscores the importance of gut

microbiota in treating MI patients and offers new potential

strategies for improving platelet activity. Liao et al. (333) used

metabolomics and microbiomics analyses and discovered that the

cardiac protective effects of SJP in AMI may be linked to its

impact on gut microbiota and host fatty acid metabolism,

especially its regulation of eicosanoids. This study offers valuable

insights into the mechanism of this traditional Chinese medicine

formulation and provides new avenues for AMI treatment and

prevention. Furthermore, multi-omics analysis can also be used

to reveal the protective effect of exercise on MI. Jiang et al. (93)

conducted an integrated analysis of transcriptomics, proteomics,

and metabolomics, shedding light on the beneficial effects of

exercise in rats suffering from HF. Their investigation revealed

that exercise not only enhances heart function but also improves

glucose metabolism in HF rats through the activation of the

AMPK-HDAC4-MEF2a pathway, inhibition of HDAC4 activity,

and enhancement of GLUT1 expression. These discoveries

provide novel and valuable insights into the potential treatment

of HF following MI.

With the advancement of single-cell and multi-omics

technologies, single-cell analysis has entered the multi-omics era.

Multi-omics single-cell analysis integrates multiple types of omics

information, such as genomics, epigenomics, transcriptomics,

proteomics, metabolomics, or spatial state, simultaneously at

single-cell resolution. This provides a more comprehensive

understanding of cellular states and fates, which is of great

significance for the development of precision medicine for MI.

Kuppe et al. (335) developed a multi-omics map of MI using

single-cell gene expression, chromatin accessibility, and spatial

transcriptomic profiling. They created a comprehensive molecular

map of human cardiac remodeling post-MI, revealing insights

into cell-type shifts, transcriptome and epigenome changes, and

tissue reorganization. These findings have significant implications

for understanding cardiac diseases and potential therapeutic

approaches. Kim et al. (334), through the use of single-cell

transcriptomics and spatial transcriptomics techniques, have

unveiled the heterogeneity of macrophages in the post-MI heart

and identifies Trem2hi macrophages as potential therapeutic

targets. Additionally, they found that the injection of soluble

form of triggering receptor expressed on myeloid cells 2 (Trem2)

during the subacute phase of MI improved myocardial function

and remodeling, offering promise for novel MI treatments. In

another study, a comprehensive approach involving multi-omic

single-cell gene expression analysis, epitope mapping, and

chromatin accessibility profiling identified a specific subset of

fibroblasts in human cardiac disease that contributes to tissue

fibrosis. This study found that their emergence is driven by

interactions with C-C chemokine receptor type 2 (CCR2)

macrophages via interleukin 1 beta (IL-1β) signaling. These

discoveries emphasize the broader therapeutic potential of

targeting inflammation as a strategy to combat tissue fibrosis and

restore normal organ function (336).

Furthermore, multi-omics data integration analysis enables the

development of biomarkers for early diagnosis and personalized

medicine of MI. Lim et al. (341) conducted a comprehensive
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investigation utilizing metabolomics, lipidomics, glycomics, and

metallomics approaches to construct intricate multi-omics maps

of interconnected biomolecules, significantly advancing our

comprehension of MI. Their research not only unveiled the

potential role of glycerophospholipids in immune regulation

mediated by N-glycans but also underscored the critical

importance of sarcoplasmic reticulum Ca-ATPase (SRCA) in

CVD. Additionally, they elucidated the contribution of

phosphatidylethanolamines to SRCA function. These findings

provide pivotal insights into the molecular mechanisms of MI.

Furthermore, their multi-omics classifier exhibited exceptional

performance in distinguishing AMI cases from healthy subjects,

achieving an impressive AUC (Area Under the Curve) of 0.953.

Dong et al. (332) employed an integrated approach, combining

metabolomics and metagenomics analyses, and successfully

identified four gut microbiota species (Alistipes, Streptococcus,

Lactobacillus, Faecalibacterium), three critical fecal metabolites

(formic acid, threonine, tyrosine), and two urinary metabolites

(urea, lactulose) associated with MI. The combination of these

factors yielded a set of potential, valuable, and non-invasive

biomarkers for distinguishing AMI from stable CAD, with an

AUC of 0.932. These findings provide a valuable predictive tool

with significant clinical applications. Chan et al. (329) used

proteomics and single-cell transcriptomics methods to identify

several potential protein biomarkers for diagnosing HF in patients

following MI. These biomarkers, including N-terminal B-type

natriuretic peptide, cTnT, angiopoietin-2, thrombospondin-2,

latent transforming growth factor-beta binding protein-4, and

follistatin-related protein-3, hold promise for early HF diagnosis

and treatment. Furthermore, the study elucidated the sources of

these biomarkers, with NPPB and TNNT2 displaying the highest

gene expression levels in cardiac muscle cells. In summary,

integrating and analyzing multi-omics data holds significant

promise in advancing early diagnosis and personalized medicine

for MI. By analyzing multi-omics data, we can gain a more

comprehensive understanding of this severe CVD, identify

potential biomarkers and treatment targets, and thereby provide

more accurate diagnoses, prognosis assessments, and personalized

treatment plans.
4. Databases and online tools for
multi-omics integrative analyses

4.1. Databases and knowledge bases

Numerous omics databases and knowledge bases offer

researchers invaluable resources to integrate and analyze diverse

biological data across various molecular levels, encompassing

genomics, transcriptomics, proteomics, metabolomics, and more.

These resources facilitate in-depth exploration of interactions

between genes, proteins, metabolites, and offer comprehensive

insights into biological pathways, disease mechanisms, and

beyond. Table 3 presents a series of databases and knowledge

bases available for integrating multi-omics data of MI. Among

these, the CVD Knowledge Portal (CVDKP) (351), MI
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Knowledge Base (MIKB) (10), and HeartBioPortal (352)

concentrate on multi-omics data pertaining to CVDs and MI,

providing robust support for cardiovascular research. The

Genome-Wide Association Study (GWAS) Catalog standardizes

genomic association study data, streamlining analyses of genetic

variations linked to traits (353). ArrayExpress serves as a

repository for gene expression data, furnishing rich resources for

the study of gene regulation and expression patterns (354). The

GTEx project (355) directs attention toward tissue-specific gene

expression, offering precious resources for comprehending gene

functions in distinct tissues. Furthermore, the European

Nucleotide Archive (ENA) (356) functions as a repository for

nucleic acid sequencing data, playing a critical role in genomics

and transcriptomics research by furnishing extensive datasets.

ProteomeXchange consortium (357), PeptideAtlas repository

(358), Proteomics Identifications Database (PRIDE) (359),

Research Collaboratory for Structural Bioinformatics Protein

Data Bank (RCSB PDB) (360), and Human Protein Atlas (362)

supply ample proteomics and MS data, aiding researchers in

probing protein structure and function. Human Cell Atlas (366),

Single Cell Portal (SCP) (367), and Database of Deeply

Integrated Single-Cell Omics data (DISCO) (368) zero in on

single-cell genomics, providing pivotal platforms to uncover

cellular heterogeneity and dynamic changes. Metabolomics

WorkBench (363), MetaboLights (364), and Global Natural

Products Social Molecular Networking (GNPS) (365) concentrate

on exploring metabolomics data, underpinning research on

metabolic pathways and bioactive molecules.

The National Center for Biotechnology Information (NCBI)

(369) and the European Molecular Biology Laboratory European

Bioinformatics Institute (EMBL-EBI) (370) stand as pivotal

bioinformatics resource centers, pivotal in integrating, storing,

and disseminating biological data, tools, and knowledge, thereby

supporting interdisciplinary multi-omics analyses and in-depth

exploration within the global life science research community.

Search Tool for the Retrieval of Interaction Gene/Proteins

(STRING) (371), Reactome (372), and Kyoto Encyclopedia of

Genes and Genomes (KEGG) (373) provide researchers with the

means to delve deeply into protein interactions, pathways, and

functional annotations, furnishing essential insights for

investigating molecular mechanisms. The presence of these

databases lends strong support to interdisciplinary research,

propelling the cross-application and analysis of multi-omics data,

yielding invaluable insights for life science research, and further

advancing our comprehension of the intricate nature of

biological systems.
4.2. Analysis tools

Integrative analysis of multi-omics data is a complex and vital

task, involving combining information from different omics layers

to uncover deeper biological insights. Researchers can use various

tools, categorized into three main types: toolkits, desktop

applications, and web-based tools. Toolkits are designed for

skilled programmers and typically require installation and setup.
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TABLE 3 Databases for multi-omics integrative analysis.

Database Description Omics types Website PMID
CVD Knowledge Portal (CVDKP) It offers access to human genetic data and epigenomic

annotations associated with myocardial infarction (MI),
atrial fibrillation, and related traits.

Genomics, epigenomics https://cvd.hugeamp.org/ – (351)

MI Knowledge Base (MIKB) It is an open-access, curated database integrating multi-
omics knowledge about MI to enhance translational
research and provide comprehensive insights into its
pathogenesis and risk factors.

Diverse omics data http://www.sysbio.org.cn/
mikb/

34900127
(10)

HeartBioPortal It integrates publicly available gene expression data and
genetic association content to harness the power of
transcriptomics in revealing the effects of genetic
variation on gene expression and alternative splicing in
health and disease.

Genomics, transcriptomics https://heartbioportal.com 31294639
(352)

Genome-Wide Association Study
(GWAS) Catalog

It provides standardized and detailed GWAS data,
supporting diverse research communities with variant-
trait associations, summary statistics, and expanded data
types.

Genomics https://www.ebi.ac.uk/gwas 36350656
(353)

ArrayExpress It is a publicly accessible database that provides a
comprehensive repository of high-quality functional
genomics data, including gene expression and molecular
profiling information.

Transcriptomics https://www.ebi.ac.uk/
biostudies/arrayexpress

30357387
(354)

Genotype-Tissue Expression
(GTEx) Project

It facilitates the study of tissue-specific gene expression
and regulation through an extensive collection of
samples and open-access data on gene expression,
quantitative trait locus (QTLs), and histology images.

Genomics, transcriptomics https://gtexportal.org/home/ 23715323
(355)

European Nucleotide Archive
(ENA)

It stores a comprehensive record of the world’s
nucleotide sequencing information, including raw data,
sequence assembly information, and functional
annotation.

Genomics, transcriptomics,
metagenomics

https://www.ebi.ac.uk/ena/
browser/home

36399492
(356)

ProteomeXchange consortium It is a collaborative effort among six members, including
PRIDE and others, aiming to standardize mass
spectrometry proteomics data submission, sharing, and
dissemination for improved data management and re-
use.

Proteomics http://www.proteomexchange.
org/

36370099
(357)

PeptideAtlas repository It provides a comprehensive platform for the storage,
sharing, and exploration of peptide and protein mass
spectrometry data.

Proteomics http://www.peptideatlas.org 16381952
(358)

Proteomics Identifications Database
(PRIDE)

It serves as a public repository aimed at storing, sharing,
and analyzing mass spectrometry-based proteomics
datasets.

Proteomics https://www.ebi.ac.uk/pride/
archive/

23203882
(359)

Research Collaboratory for
Structural Bioinformatics Protein
Data Bank (RCSB PDB)

It a renowned initiative dedicated to collecting, curating,
and disseminating valuable 3D structural information
about biological macromolecules to enable advanced
research in the field of molecular biology and
bioinformatics.

Proteomics https://www.rcsb.org/ 36420884
(360)

ProteomicsDB It provides researchers with enhanced data accessibility,
advanced visualizations, and integration with predictive
tools, thereby facilitating impactful discoveries in multi-
omics research.

Proteomics, transcriptomics,
phenomics

https://www.ProteomicsDB.
org

34791421
(361)

Human Protein Atlas It provides a map of all the human proteins in cells,
tissues, and organs using integration of various omics
technologies, including imaging, genomics,
transcriptomics, proteomics, metabolomics, and
functional data.

Genomics, transcriptomics,
proteomics, metabolomics,
imaging

https://www.proteinatlas.org/ 21139605
(362)

Metabolomics WorkBench It is a publicly accessible repository offering
metabolomics metadata, experimental data, standards,
protocols, metabolite structures and other resources
across various species and experimental platforms.

Metabolomics http://www.
metabolomicsworkbench.org/

26467476
(363)

MetaboLights It houses raw experimental data, associated metadata,
metabolite structures, and reference spectra.

Metabolomics http://www.ebi.ac.uk/
metabolights/

31691833
(364)

Global Natural Products Social
Molecular Networking (GNPS)

It is an online platform that facilitates the sharing and
analysis of mass spectrometry data related to natural
products.

Mass spectrometry data http://gnps.ucsd.edu 27504778
(365)

Human Cell Atlas It is a global collaborative initiative aimed at creating a
comprehensive and detailed map of all cell types and
states in the human body to advance our understanding
of health and disease.

Single-cell omics https://www.humancellatlas.
org/

29206104
(366)

(Continued)
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TABLE 3 Continued

Database Description Omics types Website PMID
Single Cell Portal (SCP) It is a platform for sharing, visualizing, and exploring

single-cell omics data, enhancing research in the single-
cell field.

Single-cell omics https://singlecell.
broadinstitute.org/single_cell

37502904
(367)

Database of Deeply Integrated
Single-Cell Omics data (DISCO)

It offers researchers an accessible and powerful platform
to explore, integrate, and analyze single-cell omics data.

Single-cell omics https://www.
immunesinglecell.org/

34791375
(368)

National Center for Biotechnology
Information (NCBI)—multiple
databases

It is a comprehensive resource providing access to a vast
array of biomedical and genomic information,
databases, tools, and services to support research,
analysis, and understanding of biological data.

Genomics, epigenomics,
transcriptomics, proteomics

https://www.ncbi.nlm.nih.gov/ 36370100
(369)

European Molecular Biology
Laboratory European
Bioinformatics Institute (EMBL-
EBI)

It is a world-leading research institution that specializes
in collecting, curating, and providing access to a vast
array of biological data and resources to support global
scientific endeavors in the field of molecular biology and
bioinformatics.

Genomics, transcriptomics,
proteomics, metabolomics

https://www.ebi.ac.uk/ 36477213
(370)

Search Tool for the Retrieval of
Interaction Gene/Proteins
(STRING)

It is an essential resource that gathers, assesses, and
integrates protein-protein interactions, playing a vital
role in enhancing our understanding of cellular
functions and relationships.

Genomics, transcriptomics,
proteomics

https://string-db.org/ 36370105
(371)

Reactome It is a powerful and evolving knowledgebase that
provides detailed insights into cellular processes, disease
annotations, and functional relationships, contributing
significantly to advancing our understanding of
biological complexity.

Genomics, transcriptomics,
proteomics, metabolomics,
glycomics

https://reactome.org 34788843
(372)

Kyoto Encyclopedia of Genes and
Genomes (KEGG)

It is a powerful bioinformatics resource that offers
valuable insights into genes, pathways, diseases, and
drugs, playing a crucial role in advancing our
understanding of biological processes and their
applications in diverse scientific disciplines.

Genomics, transcriptomics,
proteomics, metabolomics,
pharmacomics

https://www.kegg.jp 36300620
(373)
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They offer extensive functions and flexibility, allowing researchers

to customize analysis workflows and settings. Common toolkits

include Bioconductor (R language) (374), mixOmics (R

language) (375), Seurat (R language) (376), scikit-learn (Python)

(377), and scGREAT (Python) (378). However, using toolkits

requires programming and data skills, making it challenging for

non-experts. Users also need their own computing and storage

resources. Desktop applications provide graphical interfaces,

enabling non-programmers to conduct multi-omics analysis. For

example, Taverna (379) and KNIME (380) offer graphical user

interface-based workflow design for integrating diverse omics

data. However, desktop apps might have limitations in analysis

due to computing and data constraints.

Web-based online tools provide a convenient solution for

conducting integrative analysis of multi-omics data. These tools

don’t require installation and can be accessed directly through

web browsers. They typically feature user-friendly interfaces that

guide users step-by-step through the analysis process using

graphical interfaces, eliminating the need for programming skills.

However, these online tools might have limitations due to server

computational resources and data privacy concerns, potentially

restricting their usability for large-scale data analysis. Users could

encounter constraints related to computational resources,

affecting the speed of analysis. Furthermore, as the analysis

workflows are predefined, customization options for analyses

could be limited. Table 4 shows several integrative multi-omics

online tools along with their descriptions. For example,

LDexpress (381) specializes in integrating population-specific

linkage disequilibrium data and tissue-specific gene expression
Frontiers in Cardiovascular Medicine 18
information to investigate the impact of germ cell lineage

variations on gene expression and disease associations. Paitomics

(382) integrates transcriptomics and metabolomics data,

Quickomics (383) combines transcriptomics and proteomics data,

and GeneTrail (384) encompasses genomics, transcriptomics,

miRNAomics, proteomics, epigenetics, and single-cell data

integration. TIMEOR (385) integrates genomics, transcriptomics,

and proteomics data to unveil temporal changes in gene

regulatory networks. Omics Integrator (386) uses network

optimization algorithms to integrate proteomics, gene expression,

and epigenetics data. Mergeomics (387) is used to combine

various types of omics data to uncover disease pathways and

potential drugs. These tools offer researchers a wide range of

choices to explore and interpret multi-omics data, leading to

profound insights into biological processes more easily. However,

when choosing an appropriate tool, users should carefully

consider factors like data scale, available computational resources,

privacy requirements, and analysis objectives.
5. Conclusion and perspectives

MI is a complex CVD, and its occurrence and development are

associated with pathological changes in multiple biological systems.

Single-omic approaches, such as genomics, epigenomics,

transcriptomics, proteomics, and metabolomics, have greatly

advanced our understanding of the molecular mechanisms of MI.

However, single-omics approaches possess limitations, as they fail

to fully account for the complex interactions among molecules
frontiersin.org
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TABLE 4 Online tools for multi-omics integrative analysis.

Tool Description Omics types Website PMID
LDexpress It is an online tool that integrates population-specific linkage

disequilibrium data and tissue-specific gene expression
information to explore the impact of germline variation on
nearby gene expression and disease associations.

Single nucleotide polymorphism,
gene expression

https://ldlink.nih.gov/?
tab=ldexpress

34930111
(381)

Paintomics It is a web server for multi-omics data analysis, offering improved
pathway database support, enhanced metabolite analysis, and a
regulatory omics module for comprehensive insights.

Transcriptomics, metabolomics http://www.paintomics.
org

35609982
(382)

Quickomics It empowers biologists with user-friendly modules, customizable
options, and publication-ready visualizations for exploring and
analyzing omics data with ease.

Transcriptomics, proteomics http://quickomics.
bxgenomics.com

33901288
(383)

GeneTrail It facilitates integrated analysis of various molecular datasets,
including transcriptomic, miRNomic, genomic, and proteomic
data, offering diverse statistical tests, reference sets, and biological
categories while enabling direct result comparisons.

Genomics, transcriptomics,
miRNomic, proteomics, epigenetics,
single-cell omics

https://genetrail2.bioinf.
uni-sb.de

32379325
(384)

TIMEOR It leverages ordered multi-omics data to reveal gene regulatory
networks andmechanisms over time, offering researchers a valuable
avenue for gaining insights into complex biological processes.

Genomics, transcriptomics,
proteomics

http://timeor.brown.edu 34125906
(385)

Omics Integrator It is a powerful tool that utilizes network optimization algorithms
to integrate multiple omic data types, revealing underlying
molecular pathways and enabling the discovery of unannotated
connections.

Proteomics, gene expression,
epigenetics

http://fraenkel-nsf.csbi.
mit.edu/omicsintegrator/

27096930
(386)

Mergeomics It is a free online tool for integrating multi-omics data to reveal
disease pathways, networks, key drivers, and potential drugs.

Genomics, epigenomics,
transcriptomics, proteomics,
metabolomics

http://mergeomics.
research.idre.ucla.edu

34048577
(387)

Online Resource for
Integrative Omics
(ORIO)

It is a web-based platform that enables intuitive and versatile
analysis and integration of next-generation sequencing (NGS)
data from various sources and techniques.

Genomics, epigenomics,
transcriptomics, proteomics,
metabolomics

https://orio.niehs.nih.gov/ 28402545
(388)

GraphOmics It is a user-friendly platform that integrates and explores multiple
omics datasets by connecting biological entities based on
biochemical relationships and mapping them to pathways.

Transcriptomics, proteomics,
metabolomics

https://graphomics.
glasgowcompbio.org/

34922446
(389)

3Omics It is a one-click web tool that streamlines the integration and
analysis of transcriptomics, proteomics, and metabolomics data,
providing visualizations and insights into relationships, functions,
pathways, and enrichments across multiple omics datasets

Transcriptomics, proteomics,
metabolomics

https://3omics.cmdm.tw/ 23875761
(390)

MOVIS It empowers researchers to efficiently explore time-series multi-
omics data, creating valuable insights and reproducible
visualizations with simplicity.

Diverse omics data https://movis.mathematik.
uni-marburg.de/

35284047
(391)

xMWAS It is a versatile software that integrates, visualizes, clusters, and
analyzes diverse omics data from multiple platforms, enabling the
identification of sub-networks and topological changes in systems
biology studies.

Diverse omics data https://kuppal.shinyapps.
io/xmwas/

29069296
(392)

OmicsNet It enables researchers to visualize, analyze, and gain valuable
insights from multi-omics data, fostering deeper understanding
of complex biological systems.

Diverse omics data www.omicsnet.ca 35639733
(393)

MicrobioSee It offers researchers an intuitive and efficient toolkit for
visualizing complex multi-omics data and simplifying analysis.

Diverse omics data https://microbiosee.gxu.
edu.cn

35464838
(394)

Visual Omics It offers a seamless and intuitive solution for omics data analysis
and visualization, enabling researchers to effortlessly generate
customized and publication-ready charts that effectively
communicate their findings.

Diverse omics data http://bioinfo.ihb.ac.cn/
visomics

36458930
(395)

Interactive Data
Explorer (OmicsTIDE)

It is a versatile bioinformatics tool designed to seamlessly
integrate diverse numerical omics datasets, through
concatenation and k-means clustering, enabling comprehensive
multi-omics analysis and visualization of clustered associations.

Diverse omics data http://omicstide-tuevis.cs.
uni-tuebingen.de/

36698763
(396)

Galaxy An open, web-based platform for data intensive biomedical
research, which allows users to perform, reproduce, and share
complete analyses.

Diverse omics data https://usegalaxy.org/ 35446428
(397)
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across various levels within the context of the disease. By

integrating data from various omics approaches, multi-omics

research goes beyond the limitations of single omics methods

and addresses gaps in information, revealing a comprehensive

understanding of the causes of MI from different perspectives.

This approach helps us better understand the complete range of
Frontiers in Cardiovascular Medicine 19
molecular changes in MI, which in turn assists in identifying

important biomarkers for diagnosis and treatment. Importantly,

multi-omics integration is not only effective in revealing disease

mechanisms but also has significant potential in the field of drug

therapy. Analyzing data across different omics layers allows us to

gain deeper insights into how drugs work in treating MI. This
frontiersin.org
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aids in developing more personalized and precise treatment

strategies, optimizing treatment effectiveness, and minimizing the

risk of adverse reactions. As a result, multi-omics integration not

only helps uncover the complex molecular mechanisms of MI

but also strongly supports the advancement of precision

medicine and individualized treatment approaches. This

approach offers new perspectives and possibilities for better

understanding, prevention, and treatment of this serious condition.

Currently, multi-omics studies on MI are predominantly

focused on individual omics layers, lacking comprehensive

integration This limitation hinders the realization of personalized

medicine in MI. Furthermore, the diversity of data and the lack

of standardization make cross-study comparisons and integrated

analyses challenging. Simultaneously, the high-dimensionality of

multi-omics data requires more advanced algorithms and models

to uncover underlying correlations. To advance precise medical

research on MI, future directions in multi-omics studies should

emphasize the following aspects, as illustrated in Figure 2:

Firstly, conducting large-scale, multicenter, standardized clinical

studies is essential to gather extensive and diverse multi-omics

data on MI. This approach enhances statistical power, robustness,
FIGURE 2

Prospective directions in multi-omics research for myocardial infarction.
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and replicability of research outcomes. Secondly, the

establishment of unified data standards and sharing platforms is

crucial. This includes constructing a MI ontology, databases, and

knowledge repositories. Such practices ensure data quality and

consistency, enhancing comparability across different studies.

Sharing platforms foster collaboration and information exchange

among researchers, driving continuous progress in multi-omics

studies of MI (398, 399). Thirdly, future research should delve

deeper into multi-omics analyses. Beyond genomics,

transcriptomics, proteomics, and metabolomics, other omics

layers such as epigenomics, microbiomics, and clinical

phenomics could be explored. Integrating data from these diverse

layers can provide comprehensive information, offering stronger

support for accurate MI diagnosis and individualized treatment.

Fourthly, the development of more advanced computational

models and algorithms is necessary to effectively handle large-

scale multi-omics data. Technologies like machine learning and

artificial intelligence can be widely applied to analyze and

interpret multi-omics data. This aids in discovering potential

biomarkers, predicting disease risks, and providing guidance for

developing personalized medicine approaches for MI. Finally,
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medical advancement is progressing towards intelligence, especially

in the realm of precision medicine. Given the intricate nature of

genes and molecules, conventional manual analysis techniques

fall short of meeting requirements. The forthcoming medical

paradigm will lean on intelligent models fueled by data and

guided by knowledge, facilitating swifter and more precise

analysis of intricate multi-omics data. These models will support

physicians in rendering accurate diagnoses and treatment

determinations. Particularly in the case of complex ailments like

MI, the implementation of intelligent models can assist medical

professionals in enhancing their comprehension of disease

mechanisms and devising tailored treatment approaches.
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