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Introduction: Changes in coronary artery luminal dimensions during the cardiac
cycle can impact the accurate quantification of volumetric analyses in
intravascular ultrasound (IVUS) image studies. Accurate ED-frame detection is
pivotal for guiding interventional decisions, optimizing therapeutic interventions,
and ensuring standardized volumetric analysis in research studies. Images
acquired at different phases of the cardiac cycle may also lead to inaccurate
quantification of atheroma volume due to the longitudinal motion of the
catheter in relation to the vessel. As IVUS images are acquired throughout the
cardiac cycle, end-diastolic frames are typically identified retrospectively by
human analysts to minimize motion artefacts and enable more accurate and
reproducible volumetric analysis.
Methods: In this paper, a novel neural network-based approach for accurate end-
diastolic frame detection in IVUS sequences is proposed, trained using
electrocardiogram (ECG) signals acquired synchronously during IVUS acquisition.
The framework integrates dedicated motion encoders and a bidirectional
attention recurrent network (BARNet) with a temporal difference encoder to
extract frame-by-frame motion features corresponding to the phases of the
cardiac cycle. In addition, a spatiotemporal rotation encoder is included to
capture the IVUS catheter’s rotational movement with respect to the coronary
artery.
Results: With a prediction tolerance range of 66.7 ms, the proposed approach was
able to find 71.9%, 67.8%, and 69.9% of end-diastolic frames in the left anterior
descending, left circumflex and right coronary arteries, respectively, when tested
against ECG estimations. When the result was compared with two expert
analysts’ estimation, the approach achieved a superior performance.
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FIGURE 1

Longitudinal examples of an IVUS seq
identifying ED-frames. (A) An ED-fram
longitudinal view images demonstratin
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Discussion: These findings indicate that the developed methodology is accurate and fully
reproducible and therefore it should be preferred over experts for end-diastolic frame
detection in IVUS sequences.

KEYWORDS

end-diastolic frame, keyframe detection, recurrent neural network, intravascular ultrasound,

electrocardiogram gating, medical imaging
Introduction

Intravascular ultrasound (IVUS) is the preferred modality to

accurately assess lumen dimensions and coronary atheroma

burden in clinical practice and in research studies, playing a

pivotal role in diagnosing, treating, and monitoring coronary

artery disease (CAD). In contemporary practice, IVUS image

acquisition is performed using an automated pull-back device

that withdraws the catheter at a constant speed without gating.

However, the dynamic changes in luminal dimensions during the

cardiac cycle can introduce significant variability, affecting the

accuracy of volumetric analysis (1). Moreover, the IVUS

catheter’s movement in relation to the vessel during the cardiac

cycle introduces additional errors in the quantification of

atheroma volume (2). Recent reports have highlighted the

superiority of IVUS volumetric analysis performed in end-
uence, showing the side branches, the
e. (B) The longitudinal view image of
g the saw-tooth artery border caused

02
diastolic (ED) frames, where cardiac motion is minimized, in

providing more consistent and reproducible assessments of

atheroma volume. Yet, the accurate detection of these ED-frames

remains a challenge due to the intricate motion of the epicardial

coronary arteries and the simultaneous motion of the IVUS

catheter (3). Compounding this challenge are factors like noise,

artifacts, and the complex imaging environment, which further

hinder the correct identification of ED frames (4), as exemplified

in Figure 1. Notably, even trained experts, despite their extensive

experience, often struggle to consistently identify the ED-frames.

Given these challenges, there’s a pressing need for a fully

automated, accurate, and reproducible method for ED-frame

detection, which holds the promise of revolutionizing CAD

management and treatment outcomes.

Neural networks have recently been proposed for the analysis

of sequential data series. The long short-term memory (LSTM)-
guide wire artifact and calcification, which all increase the challenges in
an IVUS pullback (3,000 frames). (C) An ECG signal. (D) Two enlarged

by the movement of the vessel during the cardiac cycle.
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based method has been developed for processing sequential

musical audio data (5) and the detection of deception from gaze

and speech (6). Recently, transformer-based methodologies were

adapted for temporal information processing in natural language

(7), audio (8), image (9), and video processing (10). However,

these approaches require training on analyzed datasets, meaning

they have limited generalizability to the ED-frame detection

problem for which accurate manual labelling is unavailable.

Key frame detection in computational image analysis has been

attempted with various approaches including neural networks

(11, 12), clustering algorithms (13) and bidirectional LSTM

(14, 15, 22). Moreover, video action recognition with skeleton-based

and video-based methods has been also used for this purpose

(16, 17). However, these methods contain complex encoder

structures, and thus need to be trained on even larger datasets. This

constraint prevents them from being readily appliable to IVUS

sequences which have challenging image qualities and motion

patterns. In addition, the amount of time it takes for the above

approaches to process an IVUS sequence is prohibitive, making

them unsuitable for clinical applications of automated IVUS analysis.

Human expert analysts tend to capture sudden changes in

motion patterns when identifying ED-frames—such as reverse

rotation of blood vessels and sudden start or stop of the vessel—

with the presumption that the period before the largest movement

of the vessel corresponds to end-diastole. Existing computational

approaches for IVUS gating are based on similar assumptions and

can be broadly divided into two categories: feature extraction and

supervised methods. Feature extracting methods extract motion

signals from IVUS pullback sequences, and gate them by

identifying local extrema in the entire sequence. Since automatic

ED-frame detection requires extracting key features from relative

vessel motions, the main innovation has previously been to focus

on exploiting motion features from shallow-learned feature

representation. Several methodologies have been introduced over

the recent years for IVUS ED-frame detection that relies on

feature extraction including local mean intensity-based (18–20),

cross-correlation based (19, 21, 22), longitudinal displacement

based (21, 23–25), clustering-based (26), filter-based (3), and

wavelet transform-based algorithms (27). The supervised ED-

frame detection methods can be further divided into two groups:

electrocardiogram (ECG)-guided methods and expert annotation-

guided methods. Most current ED-frame detection methods based

on ultrasound images are guided by expert annotations, meaning

they use expert annotations as the gold standard (3, 27, 28). In

contrast, many traditional shallow learning-based algorithms are

available to solve ED-frame detection in IVUS with the support of

ECG gating, such as Darvishi et al. (29), Zolgharni et al. (30),

Gatta et al. (23), Isguder et al. (26), and Hernandez-Sabate et al.

(18). These ECG-guided methods use simultaneously captured

ECG signal to train the machine learning models (31, 32). This

paper focuses on a Deep Learning-based IVUS gating approach,

which distinguishes itself by employing deep learning techniques

for gating, departing from the reliance on image features and

signal processing for identifying key frames.

In the realm of IVUS gating, traditional methods such as ECG-

based gating have been limited by synchronization challenges and
Frontiers in Cardiovascular Medicine 03
susceptibility to arrhythmias. Image-based gating, although simpler,

often compromises on accuracy due to the inherent complexities of

images. Deep learning-based gating, as exemplified by our prior

work (33), employed recurrent neural networks (RNNs) and served

as a foundational step in liberating IVUS gating from ECG

synchronization, thereby enhancing resilience to noise and

improving accuracy. However, the current study introduces

CARDIAN, a more advanced computational framework for real-

time ED-frame detection in IVUS. Unlike the previous work that

primarily utilized a bidirectional gated-recurrent-unit (Bi-GRU),

CARDIAN incorporates a more complex BARNet to exploit both

forward and backward motion features in IVUS sequences. It also

employs meticulously designed high-performance encoders—

Temporal Difference and Spatiotemporal Rotation—for robust

feature extraction. The framework is further enriched by a dual-

layer Bidirectional Long Short-Term Memory (Bi-LSTM) structure

with attention mechanisms, allowing for the processing of longer

input sequences and offering more accurate post-processing.

Rigorous training and testing protocols, including leave-one-out and

three-fold cross-validation methods, are outlined. Additionally,

novel strategies for unit acquisition and data augmentation have

been introduced to adapt the model to various vessel wall motions

and other artifacts. Developed in partnership with industry

(InfraReDx, Inc., Burlington, Massachusetts), CARDIAN has the

potential to be incorporated into commercially available systems for

real-time processing of near-infrared spectroscopy-IVUS images.

This multi-faceted approach significantly extends the scope,

robustness, and versatility of our previous work, aiming to set a new

standard in the accuracy, efficiency, and reliability of IVUS ED-

frame detection. To substantiate the efficacy of CARDIAN, we have

conducted rigorous internal validation using three-fold cross-

validation methods. Furthermore, we have benchmarked our

approach against Image-based gating methods, which are widely

employed in commercial IVUS analysis software, thereby providing

a comparative perspective on its performance.

The main contributions are summarized as follows:

- CARDIAN is proposed, namely, a novel Computational Approach

for Real-time end-diastolic frame Detection in Intravascular

ultrasound (IVUS) using bidirectional Attention Networks.

CARDIAN utilizes a bidirectional recurrent neural network

(BARNet) to exploit the forward and backward motion features

in IVUS sequences with the guidance of a temporal attention

scheme trained on gold standard data obtained by ECG gating.

- A framework based on CARDIAN is implemented for ED-frame

detection in IVUS sequences, which includes an IVUS-sequence

denoising and motion encoding module, a BARNet network for

predicting the likelihood of a frame being an ED-frame, and an

ED-frame search module for accurate identification of ED-

frames based on a generated probability graph.

- Demonstration of the superior performance of the CARDIAN

methodology compared to human expert analysts and

conventional motion feature-based ED-frame gating

methodologies. CARDIAN shows promising results in

accurately detecting ED-frames, even in challenging scenarios

with noise, artifacts, and complex imaging environments.
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- Evaluation of the CARDIAN methodology using metrics such as

group-of-pictures (GoP) recall, GoP precision, GoP F1 score,

and nearest prediction interval (NPI), which provide insights

into its effectiveness in identifying ED-frames with high

detection rates and minimized errors.

- Validation of the CARDIAN methodology in NIRS-IVUS

sequences, showing its robust performance across different

coronary arteries and its potential for clinical and research

applications in coronary artery disease (CAD) management.

In this study, we provide a detailed description of the proposedmethod

in Chapter 2. The performance of the proposed method is evaluated

and analysed in practical scenarios, and compared against the state-

of-the-art methods in Chapter 3. The discussion in Chapter 4

provides further insights into the effectiveness of the proposed

method, and its potential for clinical applications is analysed.
Materials and methods

The overall architecture of the proposed CARDIAN

methodology is illustrated in Figure 2. In the following, every

component in this architecture is introduced in detail.
Data acquisition

In the data acquisition process, this study encompassed six

participants diagnosed with obstructive coronary artery disease who

were undergoing coronary angiography and percutaneous coronary
FIGURE 2

The overall architecture of the proposed CARDIAN methodology, depicting t
process commences with using a 140-frame acquisition window to extract r
Next, feature signal extraction is performed to gather relevant motion inform
and accuracy. Then, BARNet is employed to predict the likelihood of a fram
arranges the units sequentially and further explores the accurate positions of
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intervention. These individuals were enlisted in the “Evaluation of

the effectiveness of computed tomographic coronary angiography

(CTCA) in the evaluation of coronary artery morphology and

physiology” investigation (NCT03556644), forming the basis of the

current analysis. The core procedure involved subjecting all patients

to near-infrared spectroscopy intravascular ultrasound (NIRS-IVUS)

imaging of their coronary arteries and significant lateral branches.

This imaging was conducted using the innovative Dualpro NIRS-

IVUS system, developed by Infraredx, located in Burlington, MA.

To orchestrate the process meticulously, the NIRS-IVUS probe

was systematically retracted at a uniform pace of 0.5 mm/s,

facilitated by an automated pull-back apparatus. Concurrently,

data acquisition occurred at a rate of 30 frames per second (fps).

While this transpired, an electrocardiogram (ECG) trace was

concurrently recorded alongside the IVUS sequence. Notably, the

frame rate for this ECG data was elevated to 120 fps. A visual

representation of this synchronization and coordination can be

observed in Figure 1, where the IVUS sequence and ECG trace

converged, allowing for seamless co-registration and precise

identification of the IVUS frame that corresponded to the zenith

of the R-wave, an event termed the ED-frame.

The 50 MHz Dualpro system developed by Infraredx in

Burlington, Massachusetts was employed for NIRS-IVUS imaging.

Localization of the NIRS-IVUS probe was achieved through the

introduction of a contrast agent, which was succeeded by the

acquisition of an angiographic projection following the

administration of 400mcg of nitrates. This preparatory phase

facilitated the subsequent advancement of the NIRS-IVUS probe

towards the distal section of the vessel.
he consecutive stages from data processing to ED-frame detection. The
elevant segments, followed by identifying ED-frames using ECG signals.
ation. Data augmentation is then applied to improve model adaptability
e being an ED-frame in each unit. Finally, the ED-frame search module
ED-frames based on a generated probability graph.
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During the pullback procedure, precision was maintained

through the use of an automated pullback device, ensuring a

consistent velocity of 0.5 mm/s. This pullback action was

concomitantly accompanied by the capture of an ECG trace. The

NIRS-IVUS pullback process was meticulously synchronized with

the ECG data. A frame rate of 30 fps was allocated to the automated

pullback mechanism, while a camera equipped with a heightened

frame rate of 120 fps was deployed to record the amalgamated

display, showcasing both the NIRS-IVUS data and the ECG trace.

A manual inspection was then administered by experts in the

field. They engaged in a comprehensive review of the

amalgamated video footage, which harmonized NIRS-IVUS data

and ECG signals. This meticulous analysis involved the manual

annotation of all end-diastolic frames within the NIRS-IVUS

recording, guided by the cues provided by the ECG signals. The

identification of the IVUS frame corresponds to the peak of the

R-wave within the ECG signal, which was aptly documented as

the end-diastolic frame and gold stranded of the research. For

the purpose of rigorous validation, the dataset was carefully

partitioned into three folds, adhering to a patient-based

stratification approach. This ensured that pullbacks from the

same patient were not present in both the training and test sets

within each fold. Additionally, efforts were made to balance the

number of ED-frames across these folds to maintain a consistent

level of challenge for the model during the cross-validation process.
Frame denoising and motion encoding

The conventional encoders in CNN mainly focus on pixel-

level short-term relationships (34, 35). We observed that the

most relevant information for identifying ED-frames in IVUS

pullbacks is the relative motion of the coronary arteries with

regards to the IVUS probe. Thus, we aim to design encoders

that can extract dynamic change data across frames as

descriptive features. The IVUS images contain significant noise

that can interfere with the encoding of key information. It is

essential to smooth this noise and reduce its obfuscating effects,

allowing the model to focus on the periodic motion features

induced by the cardiac cycle rather than fluctuations from

noise, and consequently improve extraction of clinically relevant
FIGURE 3

Examples of the normalized encoded temporal feature sequences, from orig
which is extracted by the proposed temporal difference encoder. The red
includes 300 frames.
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features from the IVUS imagery. To achieve this, we have

implemented a guided image filter for smoothing out

perturbations. The filter operates according to the equation

G(x) ¼ a � I(x)þ b, where G(x) is the output, I(x) is the input

image, and a and b are two constants. This denoising technique

effectively mitigates the impact of noise, thereby allowing the

model to concentrate on the cyclical motion characteristics

intrinsic to cardiac activity.

After noise filtering, we developed two specialized encoders:

the Temporal Difference Encoder and the Spatiotemporal

Rotation Encoder, to extract motion feature caused by cardiac

motion. The details of which will be elaborated upon

subsequently. The encoders not only capture the dynamic

changes across frames but also enhance the model’s resilience to

noise and other confounding factors.
Temporal difference encoder

The IVUS sequences are projected onto a one-dimensional

feature signal where each value represents how much difference

there is between every two adjacent IVUS frames. The change

data between every two frames are calculated by the sum of

absolute pixel intensity differences:

en ¼
XH

i¼1

XW

j¼1

jPi,j
nþ1 � Pi,j

n j, (1)

where en is the encoded motion feature between two consecutive

frames fn and fnþ1 with frame resolution H � W. Pi,j
n is a pixel’s

intensity in the frame fn, where i and j representsthe pixel

coordinates. Some examples of the temporal difference motion

features are shown in Figure 3. It can be observed that most

motion peaks are strongly correlated to the R peaks in ECG, but

not always, particularly in vessels with excessive motion like the

right coronary artery (RCA).

The temporal difference encoding is simple yet effective in

reducing the quality demand for the input sequence, allowing the

method to work on pullbacks captured by different catheters

with different frame rates.
inal IVUS sequences. The blue line represents the temporal feature data,
dots represent the ED frames detected by the ECG. Each sequence
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Spatiotemporal rotation encoder

The rotational motion of the vessel during the cardiac cycle is

key information for ED-frame feature extraction. Therefore, a

spatiotemporal rotation encoder is designed to extract the vessel’s

rotation features. First, a rotation angle extractor (RAE) is

developed to align two consecutive frames. Figure 4B illustrates

the rotation of the vessel around the catheter center o between

two adjacent IVUS frames. Assuming a rotation angle u the pixel

d is rotated to the position q in the next frame. To estimate the

actual rotation angle u, we first determine the angle range based

on the prior information of the acquisition device. Then we obtain

a set of angles ux by averagely sampling all angles in this range,

where x is the angle index. We denote the rotation operation

around the center of the catheter as R. The estimated angle u� is

calculated by minimizing the difference between adjacent rotated

frames by Equation 2 and Equation 3. In Figure 4A, the catheter

in fnþ1 is rotated by u� degrees clockwise to align the two adjacent

frames. After that, the pixel d in the current frame, and q0 in the
FIGURE 4

(A) The correspondence between the peak of R wave in ECG and ED-frames i
The spatiotemporal rotation encoder aligns two consecutive IVUS frames by
estimated by minimizing the difference between the adjacent rotated frames
in the first frame is rotated to the position q in the next frame.

FIGURE 5

(A) Partial longitudinal views and the proposed encoded sequence in 4 IVUS seq
The image on the left is a representative IVUS frame with the red line showing t
the longitudinal view indicate the ED-frames annotated by ECG. The yellow c
encoder and the green the temporal difference encoded sequence.
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next frame are on the same line. We apply the spatiotemporal

rotation encoding frame by frame in each IVUS sequence.

mx ¼
XH

i¼1

XW

j¼1

jRux (P
i,j
nþ1)� Pi,j

n j, (2)

u� ¼ argminux (mx): (3)

The artery motion captured by spatiotemporal rotation encoding

is calculated for each two adjacent and aligned IVUS frames:

e0n ¼
XN

i¼1

XM

j¼1

jRu� (P
i,j
nþ1)� Pi,j

n j: (4)

Figure 5 shows the signals encoded by the temporal difference

encoder and spatiotemporal rotation encoder, together with the

corresponding longitudinal view for the original IVUS pullback. In

the first three cases, the encoded signals from intense and regular
n IVUS. (B) Catheter rotation alignment between two consecutive frames.
rotating the vessel around the catheter center. The rotation angle u is

, and the aligned frames are then used for feature extraction. The pixel d

uences—the length of each partial longitudinal view is 800 frames (26.6 s).
he sampled pixels used in the partial longitudinal view (0�). The red lines in
urves show the feature sequence encoded by the spatiotemporal rotation
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cardiac motion show a clear cycle of motion between ED-frames,

demonstrating the regular systolic relaxation of the heart. In the

last case on the lower right, the movement of the vessel is small,

and thus the coded movement feature is weak as well as vessel’s

rotation. The proposed temporal difference encoder and

spatiotemporal rotation encoder transfers 2D image signal to 1D

global temporal features to reduce the demand for GPU

performance for ED-frame detection and eliminates the

interference factors during data collection such as noise, rotation,

and local diseases of vessels.
Training the CARDIAN

In the training stage, first, the input IVUS frames are de-noised to

minimize the influence of imaging artifacts. Then, the frames are

encoded by the two lightweight encoders, the temporal difference

encoder and the spatiotemporal rotation encoder, to generate a

descriptive representation of the IVUS sequence in the temporal

domain. The representation is then reorganized into small units

which are used to train the BARNet model together with the

reference ECG-derived ED-frame as the gold standard. Through the

training, BARNet learns to predict the likelihood of each frame being

an ED-frame.
Testing the CARDIAN

The trained model is then tested using the leave-one-out cross-

validation approach—all sequences are used for training apart from

the sequence of one vessel. This is done for each vessel type,

namely, left anterior descending (LAD), left circumflex (LCx)

and right coronary artery (RCA). This process is repeated leaving

a different vessel out from the training set each time until all

vessels are used for testing.

A three-fold cross-validation method was applied to the

matched ECG-IVUS data to compare the performance of experts

and automated methodologies. In each fold, the dataset was

evenly distributed among the three types of coronary arteries:

RCA, LAD, and LCx. To tackle the data imbalance problem, the

underrepresented vessel type frames were multiplied to ensure an

equivalent representation for each type. To mitigate the risk of
FIGURE 6

The distribution of the cardiac cycle period in the 3 coronary arteries. The avera
a 27 frames interval per heartbeat. (A) LAD, (B) LCx, and (C) RCA.
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data leakage, each pull-back was strictly allocated to either the

training or testing set within a given fold, ensuring no overlap

between the two sets. Specifically, in each fold, approximately

67% of the pull-backs were designated for training, while the

remaining 33% were exclusively used for testing. The

performance metrics were then averaged across all folds to

provide a robust estimate of the overall efficacy of the proposed

method. We then averaged the results to estimate the overall

performance of the proposed method.
Unit acquisition

The distributions of cardiac cycle durations in three types of

arteries are shown in Figure 6. Based on our dataset, the average

cardiac cycle is about 900 ms or 27 frames. To prepare suitable

inputs to the detection model, a sliding window of 140-frame

length is applied to the encoded motion feature of every

pullback with a step size of 1. The 140-frame window roughly

covers the motion of five cardiac cycles. This means that for

each IVUS sequence with K, a total number of frames K � 139

encoded motion segments {E1, E2, : : :, Ek�139} are acquired,

where En ¼ {e1n, e2n, : : :, e140n }, n ¼ 1, 2, . . . , K � 139.

Each corresponding ECG signal goes through the same process

to obtain matching ground truth units {Y1, Y2, : : :, Yk�139}.

After that, pairs of encoded IVUS feature units and ECG signal

units covering a 140-frame length are prepared as the training

input.

The units of 140 frames, which roughly cover five cardiac cycles

can provide a wider view of the network and reduce the chance of

confusing T peaks with R peaks. An ED-frame lies around the

middle between every two cardiac cycles. This unit setting allows

our model to determine the locations of ED-frames based on the

temporal motion information over a longer term. In addition,

among the multiple ED-frames, each one can use the others as

references in the prediction process.
Augmentation

Data augmentation serves as a critical step in our pipeline,

performed prior to feature extraction. The primary objective is
ge heart rate in the dataset is 67 heartbeats per minute—corresponding to
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to equip the model with the ability to generalize across a wider

range of vessel wall motions, cardiac cycle amplitudes, and

other IVUS-specific artifacts such as plaque morphology,

ventricular or atrial ectopics, and random noise. This strategy

aims to mitigate the impact of these variables on detection

accuracy.

Our augmentation techniques include random interpolation,

frame elimination, and the addition of Gaussian noise.

Specifically, for each 140-frame unit, we randomly remove 1–5

frames and replace them with new synthetic frames, the values of

which are computed as the average of adjacent frames. This

stochastic alteration of the IVUS sequence effectively modulates

the cardiac cycle period, thereby training the model to adapt to

varying heart rates. Furthermore, we introduce a random scaling

factor between 0.8 and 1.2 to each frame’s pixel values and add a

10% Gaussian noise to the feature signal. These steps are

designed to make the model resilient against IVUS artifacts and

improve its ability to discern genuine vessel and lumen

characteristics.

While generative models offer the potential for creating

synthetic inputs, they often require a large volume of training

data to produce reliable and highly resembling outputs. Given

the specialized and complex nature of IVUS imaging, and the

challenges associated with data collection, a poorly trained

generative model could introduce more noise and confounding

variables, thereby potentially degrading the model’s performance.

Therefore, we opted for targeted, clinically explainable

augmentation techniques that are specifically tailored to address

the unique challenges of IVUS imaging. By employing these

augmentation techniques, we aim to create a more versatile and
FIGURE 7

A schematic illustration of the proposed bidirectional attention recurrent n
bidirectional RNN layers (GRU or LSTM), followed by an attention layer to l
frame likelihoods. The encoded IVUS features are input into the network, and
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robust training set, thereby enhancing the model’s performance

and generalizability.
Bidirectional attention recurrent network

RNN (36) and attention (37) have become milestone techniques

for text classification and speech recognition tasks. Recently, the

transformer has become one of the most popular state-of-the-art

attention branches (38). Inspired by its robust performance, we

design a bidirectional attention recurrent network (BARNet) to

detect ED-frames on the encoded IVUS features, as depicted in

Figure 7. We apply two bidirectional gated recurrent units (GRUs)

(39) or LSTM (40) as the first two layers of BARNet. The reason

for considering a bidirectional RNN (41) is that the relevant

motion features involve adjacent frames both before and after the

target position. The output features of the bidirectional RNN pass

through an attention layer to further learn the long-term

dependency inside each unit, as shown in the BARNet block in

Figure 2. For a long sequence with 140 cells, some intermediate

state information will inevitably be lost in the middle cells.

Compared with bidirectional LSTM and GRU, the attention layer

in BARNet has a higher reception field for better learning the

long-term dependencies. This capability has obvious advantages in

ED-frame detection, by giving higher weights to frames with larger

motion amplitude and focusing on these key frames for generating

predictions.

We input the encoded feature units En into the two-layer

bidirectional RNN and denote the output of the layer as

Fn [ R140�1. Then the attention weight An [ R140�1 of the feature
etwork (BARNet) for ED-frame detection. The network consists of two
earn long-term dependencies, and finally generating the predicted ED-
the output is the probability of each frame being an ED-frame.
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unit En is calculated based on a normalized element-wise multiplication

with the learnable weightW [ R140�1, as shown in Equation 5:

An ¼ W � FnP
t (WtFn,t)

, Bn ¼ exp(tanh(An)); (5)

where WtFn,t is the influence of the nth unit on the tth feature

element of the target. To bring in more non-linear information

and increase the margin between ED-frames and non-ED-

frames, we obtain the local attention Bn using a tanh function

and an exponential exp on the normalized An. The exponential

function is used to alleviate the gradient vanishing problem of

the tanh operation. The predicted ED-frame likelihood

Y 0
n [ R140�1 of each element n is generated by the element-wise

multiplication between the local attention Bn and the encoding

Fn, as shown in Equation 6:

Y 0
n ¼ BnFn, n [ {1, 2, . . . , 140}: (6)

The ground truth on ED-frames is denoted as

Yn ¼ {y1n, y
2
n, . . . , y

140
n }, y [ {0, 1}. yn ¼ 1 when the nth

frame is an ED-frame. A BARNet model is then trained using

encoded motion segments En and their corresponding ground

truth ED-frames Yn. The ED-frame likelihood Y 0
n of the motion

segment En is predicted by minimizing the mean squared error

(MSE) loss LMSE in every training epoch (42).
ED-frame search module

In the proposed method, the spatiotemporal rotation feature

and temporal difference feature are used as inputs to generate

more robust prediction results. Inspired by the argumentation

methods in image classification and segmentation tasks, we

proposed a test-time embedding augmentation (TTEA) scheme

for IVUS ED-frame detection. In the prediction stage, for a

unit of 140 frames {E1, E2, : : :, Ek�139}, each frame is

randomly multiplied by a number from 0.8 to 1.2 and added

with a 10% Gaussian noise. The model will generate a

prediction on this version of the unit. The augmentation and

prediction processes are repeated 50 times, and the output of

50 probability graphs is averaged to obtain the final probability

graph, indicating the likelihood of each of the 140 frames being

an ED-frame {y01, y
0
2, . . . , y

0
K�139}. The mean likelihood value v

for each frame is considered as the final likelihood of the

corresponding frame being an ED-frame. Since the duration of

an average cardiac cycle is equivalent to 27 frames, a Hanning

smoothing window of size 13 is performed on the final

probability graph v. To avoid identifying more than one ED-

frame in a cardiac cycle, a 13-frame sliding window will go

through the smoothed probability graph, and the local maxima

on the 7th frame of a sliding window will be finally identified

as an ED-frame.
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Performance evaluation

The performance of the CARDIAN was compared with the

visual screening results of two expert analysts from an

intravascular imaging core-lab. They reviewed the IVUS pull-

backs and identified the end-diastolic frames as the frame with

the minimum vessel motion before a sudden motion of the

vessel in relation to the catheter. Furthermore, we compared the

performance of CARDIAN with an automated ED-frame

detection methodology for retrospective gating of IVUS images.

This automatic method relies on detecting neighboring frames

where the lumen motion is minimal (LM-method) (43). This

methodology has been incorporated in a user-friendly software,

the QCU-CMS IVUS image analysis software (Leiden University

Medical Center, Leiden, The Netherlands), and has been

extensively used in the past to identify the ED frames in clinical

research.
Statistical analysis

For quantitative evaluation in this study, numerical variables

are presented as mean ± standard deviation (SD), and categorical

variables as absolute values and percentages. The chi-squared test

was used to compare categorical variables. Bland–Altman

analysis was employed to compare the estimations of expert

analysts, the conventional image-based approaches (LM) (43)

and the proposed method CARDIAN.

To effectively demonstrate the performance in ED-frame

detection, in this paper, we define a few new metrics, namely,

group-of-pictures (GoP) recall, GoP precision and GoP F1 score.

In calculating these recall/precision values, each detection is

considered a hit if the predicted ED-frame is within a tolerance

range of ±3 frames of the target frame, that is, ±66.7

milliseconds (ms) in time. This approach follows the evaluation

paradigm used in evaluating human labelling of ED-frames in

previous studies (33), but it uses a tighter range of ±number of

frames or time.

The GoP recall is defined mathematically as:

GoP recall ¼
Pn

i¼1 I Pi � Rij j � PTð Þ
n

� 100%

In this study, the prediction tolerance (PT) is set to be a

range of ±66.67 ms or 2 frames from the peak of the R-wave

on the ECG, but it can be adapted to other values as

appropriate. GoP recall represents the percentage of correctly

detected frames (Pi) within the range of PT from their closest

ED frame by ECG (Ri). The total number of ECG-derived ED-

frame is denoted as ‘n’. The summation runs from i ¼ 1 to n,

the indicator function I(condition) is calculated at each

position, which equals 1 if the absolute distance between the

predicted frame (Pi) and its corresponding closest ED frame

in ECG (Ri) is smaller than the specified range PT; otherwise,

it equals 0.
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Similarly, group of Picture (GoP) precision is defined

mathematically as:

GoP precision ¼
Pm

i¼1 I Pi � Rij j � PTð Þ
m

� 100%

Here, ‘m’ denotes the total number of the detected frames. The

summation runs from i ¼ 1 to m, and each indicator I(condition)

is calculated, which equals 1 if the absolute distance between each

frame classified as ED (Pi) by the experts or the tested methodology

and its corresponding closest ECG-derived ED frame (Rj), is

smaller than the specified range PT ; otherwise, it equals 0. GoP

precision represents the percentage of the correctly detected ED

frames (P i) out of the total number of the detected frames by

an expert or an algorithm.

GoP F1 score is a measure that combines both GoP recall and

GoP precision into a single value, providing a balanced

representation of the method’s performance. It can be calculated

using the following formula:

GoP F1 Score ¼ 2 � (GoP Recall � GoP Precision)
(GoP Recall þ GoP Precision)

The F1 score ranges from 0 to 100%, with higher values indicating

a better performance in terms of high detection rate as well as

minimized errors.

Additionally, nearest prediction interval (NPI) was employed

to measure the average time interval between every detected ED-

frame and its closest ECG-derived ED-frame. Given the total

number of predictions (n) and the distance between each

detected ED frame (Pi) and its closest real frame (Ri), NPI can

be computed as:

NPI ¼
Pn

i¼1 Pi � Rij j
n

These metrics together offer a multi-perspective insight into

the effectiveness of the automated and manual methods for ED-

frame detection.
TABLE 1 Ablation study on the ECG-IVUS dataset based on GoP recall.

% No training augmentation

Backbone Bi-GRU Bi-LSTM
TTEA None Tem. Both None Tem.

w/o att. Fold 1 69.08 72.38 72.58 68.75 69.02

Fold 2 63.17 64.46 63.56 63.96 62.48

Fold 3 57.92 58.89 60.45 57.92 59.38

All 64.17 66.23 66.51 64.26 64.37

with att. Fold 1 71.00 72.64 71.85 70.73 71.32

Fold 2 66.44 66.14 67.62 67.33 66.24

Fold 3 60.54 62.49 62.10 60.16 61.03

All 66.68 67.86 67.83 66.70 66.90

Test-time embedding augmentation (TTEA) is not applied (None), applied on the tempo

spatiotemporal rotation encoded features (Both). The model performance with or witho

rate in all experiments.
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Results

This study involved patients with an average age of 61.7 ± 10.3

years and 83.3% of them were male. None was a smoker but most

of them had a positive family history of CAD (66.7%),

hypertension (66.7%) and hypercholesterolemia (66.7%). Five

patients (83.3%) had normal and one had impaired left ventricular

function. The studied vessels (n = 20) included 9 LCx, 6 LADs and

5 RCAs. Out of the 92,526 frames acquired from these vessels;

after excluding cases of non-interpretable IVUS images and ECG

tracings because of artifacts, 3,271 were classified as ED by the

ECG. The average heart rate was 66 beats per minute.

After adding segments in each vessel type with fewer ED

frames to obtain a more balanced dataset—as described in the

methodology section—a total of 3,556 ED-frames were included

in the analysis, of which 1,269 ED-frames were located in the

LAD, 1,133 in the LCx, and 1,154 in the RCA.
Ablation study

An ablation study was performed to determine the effect of

each proposed module, as reported in Table 1. The proposed

training augmentation mechanism significantly improved the

efficacy of the method to detect the correct ED frames. Since

RNN-like structures are sensitive to the cardiac cycles, by

randomly changing each cardiac cycle length, networks can

better adapt to patients’ data with different cardiac cycles.

Further, the noise and random disturbance added into training

set reduced the influence of challenging areas like frames with

large plaques, artifacts, side-branches, or noise from the catheter,

helping the model to capture critical features from the input

signal. The proposed TTEA module also marginally increased the

performance of all experiments.

We also found that Bi-LSTM models outperforms Bi-GRU.

Further, the attention layer provides an 1%−3% increase in both

models. Since the Bi-LSTM or Bi-GRU in the experiment both

have a length of 140 cells, a primary issue for such long RNN

structures is that the information shared by distancing cells is
Training augmentation

Bi-GRU Bi-LSTM
Both None Tem. Both None Tem. Both

70.93 66.51 66.58 65.59 72.58 73.37 74.75

64.85 59.60 62.38 63.47 64.55 65.54 66.83

58.50 64.24 62.59 63.65 62.59 62.49 62.78

65.61 63.89 64.23 64.43 67.41 68.00 69.04

70.67 72.58 73.83 73.70 70.80 69.94 72.18

66.24 66.63 65.64 66.24 67.33 69.01 69.31

63.46 62.20 66.96 66.67 65.60 66.67 67.25

67.32 67.89 69.52 69.54 68.31 68.73 69.94

ral difference encoded features (Tem.) or on both temporal difference encoded and

ut attention (Att.) are both evaluated. The bold value indicates the highest accurate
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very faint. In this situation, the attention layer plays an important

role by providing a larger field of view to help generate more

accurate predictions, eliminate false predictions caused by other

movements and prevent overfitting.

Most of the ED-frames can be predicted correctly by our end-

to-end CARDIAN approach. Figure 8 illustrates the detection

results on four IVUS sequences based on the best configuration.

In Figure 8A–C, with clear cardiac motion patterns, the

proposed framework detects all the ED frames with a high

accuracy. In an IVUS pullback with irregular cardiac movement

and extensive disease (Figure 8D), the performance of the model

is impaired, but most of the ED frames can still be roughly located.

The detection errors are often due to the variance in motion

patterns, the accuracy of the network declines when the IVUS

frames have an irregular motion or barely move. This usually

occurs in sequences portraying coronary heart diseases as shown

in Figure 8D.
ED frame detection in NIRS-IVUS
sequences

For quantitative evaluation, ED-frame detection results from two

human analysts, a conventional image-based approach (LM), and

CARDIAN are compared. As summarized in Table 2, the two

analysts correctly identified 808 (22.72%) and 1,032 (29.02%) ED-

frames, and missed 907, 814, and 1,027 ED-frames in LAD, LCx,
TABLE 2 Efficacy of the expert analysts of the LM and of the CARDIAN metho

Number of frames identified as ED-frames

Predicted frames that could not be matched with the ECG estimations (False positive)

Missing ED-frames (False Negative)

Correctly classified ED-frame (True Positive)

FIGURE 8

Four result samples generated by BARNet in 300 frames (10 s). Blue curves: fe
ground truth based on ECG; yellow curves: BARNet generated prediction; g
CARDIAN. Images (A–C) show results generated on regular cardiac cycles
irregular cardiac cycles.
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and RCA, respectively (Table 2). Meanwhile, the analysts incorrectly

identified 3,006 and 2,762 frames as ED-frames while these do not

correspond with cardiac cycles based on the prediction tolerance of

66.7 ms. Among these, the number of falsely identified frames in the

RCA was higher (Exp.1: 1,107, 89.71%; Exp2: 1,006, 81.72%)

compared to LAD (Exp.1: 1,024, 73.88%; Exp2: 964, 70.06%) and

LCX (Exp.1: 875, 73.28%; Exp2: 792, 66.72%).

The LM methodology correctly detected 715 ED-frames

(20.11%), wrongly detected 3,045 (80.98%) frames and did not

detect any ED-frames in 2,841 (79.89%) cardiac cycles. The

numbers of false detected frames by the LM method were

similar in LAD (1,086, 79.62%), LCx (965, 81.50%) and RCA

(994, 82.01%).

In comparison, the proposed CARDIAN method correctly

detected 2,487 (69.94%) ED-frames. To be specific, CARDIAN

detected 912 (71.87%), 768 (67.78%), and 807 (69.93%)

ED-frames in LAD, LCx, and RCA, respectively, and missed

357 (28.13%), 365 (32.22%), and 347 (30.07%) ED-frames in

these vessels. Moreover, 690 (43.07%), 661 (46.26%), and 567

(41.27%) frames were wrongly detected as ED-frames. There

was no significant difference in false ED-frame detection rate

among the three vessels LAD (690, 43.07%), LCx (661, 46.26),

and RCA (567, 41.27%).

Tables 3A,B presents the overall performance of two

analysts, the LM methodology, and the proposed CARDIAN

method regarding GoP recall, precision, and F1 score.

CARDIAN outperforms the other methods, with a significant
d in detecting the ED, using a prediction tolerance of 66.7 ms (2 frames).

ECG-defined ED frames Expert 1 Expert 2 LM CARDIAN
3,556 3,814 3,794 3,760 4,405

– 3,006 2,762 3,045 1,918

– 2,748 2,524 2,841 1,069

– 808 1,032 715 2,487

atures encoded by the temporal difference encoder; red dots: ED-frames
reen lines: final ED-frame prediction based on the prediction scores of
, and (D) presents the result for a patient with frequent ectopics and
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TABLE 3A Comparative performance evaluation of two experts the LM,
and CARDIAN method in the entire dataset, based on a prediction
tolerance of 66.7 ms (2 frames).

% Expert 1 Expert 2 LM BAF
GoP recall 22.72 29.02 20.11 69.94

GoP precision 21.19 27.20 19.02 56.46

F1 Score 21.93 28.08 19.55 62.48

TABLE 3B The GoP recall, GoP precision, and GoP F1 score of ED-frame
detection based on the CARDIAN method, the LM method (43), and
visual annotations by two experts.

% Vessel Expert 1 Expert 2 LM CARDIAN
GoP Recall LAD 28.53 32.47 21.91 71.87

LCX 28.16 34.86 19.33 67.78

RCA 11.01 19.50 18.89 69.93

GoP Precision LAD 26.12 29.94 20.38 56.93

LCX 26.72 33.28 18.50 53.74

RCA 10.29 18.28 17.99 58.73

GoP F1 score LAD 27.27 31.15 21.12 63.53

LCX 27.42 34.05 18.90 59.95

RCA 10.64 18.87 18.43 63.84

The bold values indicate the highest scores for each coronary.
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margin in all metrics. Table 4 further illustrates the performance

for each coronary artery (LAD, LCX, and RCA). It is observed

that expert analysts’ performance declines in RCA arteries in

which vessel motion increases. In contrast, both the LM and

CARDIAN methodologies demonstrate consistent performance

across all coronary arteries. The results indicate that the

CARDIAN methodology offers more robust performance across

all coronary arteries, making it a more reliable choice for

identifying ED frames in NIRS-IVUS sequences. This is

particularly true when it comes to challenging cases with

pronounced vessel motion, such as in the RCA. Some visual

results are given in Figure 9.
Prediction interval evaluation

The nearest prediction interval measurements for analysts 1 and

2, the LM and the CARDIAN methods across the three coronary

arteries are shown in Table 4. It is apparent that the largest

prediction interval values for Expert 1 and 2 are noted in the RCA

where the vessel motion is larger, while for the LM method, the

largest interval is noted in LCx. Conversely, the smallest nearest

prediction interval values for both experts and the LM method are
TABLE 4 The nearest prediction interval (in ms) of the two experts, the LM a

Expert 1 Expert 2

mean std. mean std.
LCX 198.4 144.7 182.6 146.4

LAD 162.5 125.4 158.8 128

RCA 254.1 114.9 222.3 123

ALL 202.3 134 186 135.4

The values in bold represent the best performance in each coronary artery.
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noted in the LAD. Compared to these results, the CARDIAN

method demonstrated a significantly smaller nearest prediction

interval and minimum variations across the three coronary arteries

(Figure 10). For LCx, LAD, and RCA, the median of nearest

prediction interval between the predicted ED-frame and the

ground truth is 33.3, 33.3, and 66.6 ms, respectively.
Discussion

This paper introduces a novel ED-frame detection approach,

CARDIAN, that uses ECG-estimations as the gold standard for

training and testing purposes. This approach takes advantage of

specific features seen in IVUS sequences and the synchronous

ECG tracings to accurately detect ED-frames, achieving superior

performance compared to human experts and conventional

image-based approaches (LM).

Over the last years, several computational approaches have

been introduced for IVUS gating based on feature extraction and

supervised methods, which assume that ED-frames are highly

correlated to sudden changes in motion patterns. However, we

have previously demonstrated (33) that extrema point detection

cannot solely be used to reliably indicate the ED phase in an

IVUS sequence. This should be attributed to the complex artery

motion, which varies depending on the studied vessel, and

imaging artifacts such as the presence of side branches or

significant atherosclerotic lesions, making the visual identification

of ED-frames a challenging task for humans and traditional

image-analysis approaches (18).

The experiments in this study show that the proposed method

CARDIAN can effectively achieve the real-time ED-frame

detection task in IVUS sequences. The accurate detection of ED-

frames is crucial for guiding interventional decisions, optimizing

therapeutic interventions, and ensuring standardized volumetric

analysis in IVUS studies. The CARDIAN framework integrates

several dedicated computational methods to extract motion

features and predict ED-frames, including dedicated motion

encoders, a bidirectional attention recurrent network (BARNet),

and a spatiotemporal rotation encoder. The motion encoders,

including a temporal difference encoder and a spatiotemporal

rotation encoder, extract frame-by-frame motion features

corresponding to the phases of the cardiac cycle. The BARNet

model predicts the likelihood of each frame being an ED-frame

using a bidirectional recurrent network with an attention layer.

The spatiotemporal rotation encoder captures the IVUS catheter’s

rotational movement with respect to the coronary artery. All
nd the CARDIAN methodology.

LM Proposed

mean std. mean std.
229.7 156.6 82.7 101.1

165.3 116.2 65.2 86.5

201.7 137.2 82.1 83.5

199 140.1 76.9 92.4
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FIGURE 9

The result of the proposed gating method compared with the expert’s predictions in 6.6 s or 200 frames. Red lines: ED-frames annotated by ECG; green
lines: ED-frame predictions. The examples in LAD (A–C), LCX (A–C) and RCA (B,C) represent vessels with common motion patterns. In the cases LAD (D),
LCX (D) and RCA (A,D), there is a smaller range of motion and artifacts making it harder for ED-frame detection.
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these designs are obtained based on an in depth understanding of

the true requirements of cardiovascular research, by analysing the

unique properties of the data and task, and by putting together

the most advanced computer vision and machine learning

algorithms in a dedicated way for tackling the end diastolic

frame detection challenge.

The deep learning solution of CARDIAN is shown to

overcome the challenges and outperform both human expert

analysts and conventional approaches, with results even

superior to a GRU approach as previously described. This is

attributed to the integration of motion, temporal, and

spatiotemporal rotation encoders with a BARNet network.

Unlike previous deep learning approaches that focus on feature

extraction and shallow-learned representations, the CARDIAN

approach takes advantage of the bidirectional attention

mechanism of the BARNet to capture the temporal relationship

between frames, essential for cardiac gating. The CARDIAN

approach also considers the rotation of the IVUS catheter with

respect to the coronary artery, an important motion feature
Frontiers in Cardiovascular Medicine 13
previously overlooked. This highlights the novelty and

superiority of the proposed CARDIAN approach for ED-frame

detection in IVUS sequences.

Testing of the developed methodology against the ECG

estimations underscores the potential but also the limitations of

the CARDIAN methodology. We found that in contrast to the

expert analysts and the LM method, the CARDIAN approach

provides consistent results in all the 3 epicardial coronary

arteries. More importantly, the performance of our approach is

2–3 times better than the conventional methodologies or manual

screening. The performance of the CARDIAN approach was

excellent in detecting the ED when a prediction tolerance of

100 ms was used, however, the superiority was still present when

this cutoff was 66 ms.

A limitation of the present analysis is that it did not include

patients with arrhythmias—such as atrial fibrillation or frequent

ectopics—to evaluate the performance of the CARDIAN

approach in these cases. Arrhythmia can affect the R-R interval,

which is a crucial component of the CARDIAN approach for
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1250800
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 10

The distribution of nearest prediction interval between predicted ED-frames and ground truth, by expert 1, expert 2, LM, and the CARDIAN methodology.
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ED-frame detection. Despite this limitation, the proposed ED

frame detection constitutes a key advance in IVUS image analysis

and is expected to positively influence subsequent research. We

have previously demonstrated that ED-frame-based volumetric

IVUS analysis is more reproducible than conventional IVUS

segmentation (44). These findings are important for longitudinal

intravascular imaging-based studies assessing the implications of

pharmacotherapies on plaque volume, as a more reproducible

IVUS analysis is expected to reduce the number of vessels that

should be included in these studies to demonstrate statistically

significant changes in plaque burden (45, 46). Another limitation

is undersized dataset based on which the experiments are

performed, this is due to unavoidable constraints in the current

practices, such as limited equipment availability, labor-intensive

data collection, limited suitable patient cases, etc. These problems

limit the number of samples available for training the model. We

acknowledge and appreciate the support from InfraReDx, Inc. for

this work. They have expressed interest in incorporating the

developed CARDIAN approach into their system to accurately

detect the ED-frame for more reproducible volumetric analysis.

This collaboration further validates the potential impact and

usability of the CARDIAN approach in real-world clinical and

research settings.
Conclusions

This study introduces a novel computational approach for real-

time end-diastolic frame detection in intravascular ultrasound
Frontiers in Cardiovascular Medicine 14
using bidirectional attention networks, CARDIAN, that is capable

to accurately detect the EDs in the three coronary arteries. The

proposed method operates in real-time and has superior

performance to expert analysts and conventional LM methods.

These advantages prove that this method is useful in clinical

research and, in particular, in the analysis of large imaging

datasets collected in longitudinal studies of coronary

atherosclerosis.
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