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Objective: Identifying individuals with subclinical cardiovascular (CV) disease
could improve monitoring and risk stratification. While peak left ventricular (LV)
systolic strain has emerged as a strong prognostic factor, few studies have
analyzed the whole temporal profiles of the deformation curves during the
complete cardiac cycle. Therefore, in this longitudinal study, we applied an
unsupervised machine learning approach based on time-series-derived features
from the LV strain curve to identify distinct strain phenogroups that might be
related to the risk of adverse cardiovascular events in the general population.
Method: We prospectively studied 1,185 community-dwelling individuals (mean
age, 53.2 years; 51.3% women), in whom we acquired clinical and
echocardiographic data including LV strain traces at baseline and collected
adverse events on average 9.1 years later. A Gaussian Mixture Model (GMM) was
applied to features derived from LV strain curves, including the slopes during
systole, early and late diastole, peak strain, and the duration and height of
diastasis. We evaluated the performance of the model using the clinical
characteristics of the participants and the incidence of adverse events in the
training dataset. To ascertain the validity of the trained model, we used an
additional community-based cohort (n= 545) as external validation cohort.
Results: The most appropriate number of clusters to separate the LV strain curves
was four. In clusters 1 and 2, we observed differences in age and heart rate
distributions, but they had similarly low prevalence of CV risk factors. Cluster 4
had the worst combination of CV risk factors, and a higher prevalence of LV
hypertrophy and diastolic dysfunction than in other clusters. In cluster 3, the
reported values were in between those of strain clusters 2 and 4. Adjusting for
traditional covariables, we observed that clusters 3 and 4 had a significantly
higher risk for CV (28% and 20%, P≤ 0.038) and cardiac (57% and 43%, P≤
0.024) adverse events. Using SHAP values we observed that the features that
incorporate temporal information, such as the slope during systole and early
diastole, had a higher impact on the model’s decision than peak LV systolic strain.
Conclusion: Employing a GMM on features derived from the raw LV strain curves,
we extracted clinically significant phenogroups which could provide additive
prognostic information over the peak LV strain.
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1. Introduction

Cardiovascular (CV) diseases remain the leading cause of

mortality and morbidity (1). With increased life expectancy and

the prevalence of risk factors, the burden of CV diseases,

including heart failure (HF), continues to rise (2). The early

identification of asymptomatic individuals at risk for HF and

cost-effective prevention strategies are thus of paramount

importance (3). In this regard, the use of advanced

computational models, built upon echocardiographic information

could be helpful in improving and personalizing risk stratification.

Echocardiography is a safe, non-invasive and widely used test

that is considered the gold standard for assessing cardiac geometry

and function (4). In addition, the emergence of speckle tracking

echocardiography (STE) has facilitated the accurate assessment of

myocardial deformation (strain) (5). Several studies have shown

that both left atrial (LA) and left ventricular (LV) longitudinal

strain are early indicators of heart dysfunction and independent

predictors of adverse outcomes in the general population (6–9).

However, the majority of previous studies used only the peak LV

systolic strain in the analyses, disregarding potentially important

information hidden in other parts of the deformation curves (e.g.,

slopes and the diastolic phase). On the other hand, the integration

of temporal information obtained from the entire LV strain curve

may help to assess heart health more accurately. Furthermore,

understanding the impact of parameters summarizing the

temporal changes in a deformation curve could further pave the

way for refining CV risk stratification, especially in asymptomatic

individuals at risk. Nowadays powerful computational approaches

could mine the complex bulk of time-series data collected in the

clinic to build integrative profiles of heart health.

The importance of introducing machine learning (ML) in CV

medicine has already been proven by many studies. For instance,

several studies investigated the impact of supervised and

unsupervised ML models in the assessment of CV health, using

routinely measured echocardiographic indexes reflecting different

aspects of cardiac structure and function (10, 11). At the same

time, the computational ability of ML models has enabled us to

explore the clinical value of time series variables obtained from

echocardiography such as LV velocity and strain curves (12, 13).

To our knowledge, the published studies addressing this issue

were limited to patients with symptomatic HF (12, 13).

Therefore, in this study, we tested the hypothesis that by

applying unsupervised learning approaches to features derived

from the time-series LV strain curve, we could identify distinct

strain phenogroups in the general population that associate with

CV risk profiles and adverse outcomes.
2. Materials and methods

2.1. Study participants

For our analysis, we used data obtained from two general

population studies, namely the Flemish Study on Environment,
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Genes and Health Outcomes (FLEMENGHO) (8) and the

European Project of Genes in Hypertension (EPOGH) (14). The

FLEMENGHO study is a longitudinal family-based population

resource on the genetic epidemiology of CV phenotypes. In this

study, a population sample was recruited within northeast Belgium

as described elsewhere (https://flemengho.eu/en/) (8). The study

was approved by the Ethics Committee of the University of Leuven

(S64406) and written informed consent was obtained. In this

analysis, we included 1,284 participants who have been examined

in 2009–2014 and in whom LV deformation profiles were collected

in .text format. We excluded 92 subjects with an atrial fibrillation

or a pacemaker (n = 40), or with low-quality echocardiographic

images for LV strain assessment (n = 52). Finally, recordings with a

frame rate lower than 45 Hz (n = 7) were not taken into

consideration resulting in a final dataset of 1,185 participants.

The EPOGH cohort was used to externally validate the trained

model and evaluate its predictive performance. In the EPOGH

study, the individuals were recruited using the same approach as

in FLEMENGHO. Additionally, both studies shared the same

clinical and echocardiographic protocols. Using the same

exclusion criteria we finally utilized data from 545 individuals

from the EPOGH cohort.

In both studies, we applied a standardized questionnaire to

collect information on the participants’ medical history, lifestyle

(e.g., smoking and drinking habits) and medication intake. Blood

pressure (BP) was the average of five auscultatory readings

obtained while the participant was seated. We defined

hypertension as a systolic blood pressure higher than 140 mmHg

and/or a diastolic blood pressure above 90 mmHg and/or the

intake of antihypertensive drugs (15). Diabetes mellitus was

defined by a self-report, a fasting serum glucose level above

126 mg/dl and/or the intake of antidiabetic medications (16).
2.2. Echocardiography

All participants abstained from smoking, heavy exercise and

consuming alcohol or caffeinated beverages at least 3 h before the

clinical examinations. The echocardiography was performed after

the participant had a 15-minute rest in supine position.

2.2.1. Data acquisition
As described elsewhere (17, 18) experienced physicians

performed echocardiography using a Vivid 7 Pro and Vivid E9

(GE Vingmed, Horten, Norway) interfaced with a 2.5-–3.5-MHz

phased-array probe. With the subject in partial left decubitus

position, the observers recorded images along the parasternal

long and short axes and from the apical four- and two-chamber

and long axis views together with a simultaneous ECG signal.

The observers recorded pulsed-wave Doppler velocities in the LV

mitral and outflow tracts from the apical view. All recordings

were digitally stored for off-line post-processing.

2.2.2. Off-line analysis
The post-processing of echocardiographic images was

performed by an experienced observer (T.K) blinded to the
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participants’ characteristics. The images were processed in a

workstation with EchoPAC software, version 202 (GE Vingmed,

Horten, Norway). We calculated LV mass using end-diastolic LV

dimensions and an anatomically validated formula. LV

hypertrophy was defined as LV mass index (LVMI) higher than

50 g/m2.7 in men and 47 g/m2.7 in women (15). We calculated

the LV ejection fraction using LV end-systolic and end-diastolic

volumes measured by the biplane method of the disks. The

maximal LA volume was measured at the end of systole by the

same method and was indexed to the body surface area (LAVI).

Using transmitral blood flow Doppler recordings, we measured

peak early (E) and late (A) diastolic velocities, their ratio (E/A) and

A flow duration. We determined the duration of the pulmonary

vein (PV) reversal time during atrial systole using PV flow signal

in 1,169 out of 1,185 subjects (98.6%). On tricuspid continuous

Doppler recordings (if detectable), we determined the peak

velocity of the tricuspid regurgitation (TR) jet at the modal

frequency. From pulsed-wave Tissue Doppler Imaging (TDI)

recordings, we extracted the early diastolic mitral annular

velocity (e’) at the septal and lateral walls. We calculated the E/e’

ratio by dividing transmitral E peak by TDI e’ peak averaged

from both acquisition sites.

Based on our previous population study (19), we classified LV

diastolic dysfunction as E/e’ ≥9.5 or as borderline E/e’ between 8.5

and 9.5 combined with any of the following: low peak LA strain

(< 23%), LA enlargement (LAVI ≥45 ml/m2), TR (> 2.5 m/s) or

prolonged reverse atrial flow (i.e., mitral atrial flow ≤ reverse PV

flow - 10 ms).

The LV strain curves were extracted using myocardial speckle

tracking software (Q-analysis, GE Vingmed) at default settings

(8, 17), which automatically tracks the motion of the

myocardium. We traced the LV endocardium borders at the end-

systole from the apical 4-chamber view. The full LV strain

tracing of one heart cycle were saved in .txt format together with

the ECG trace. In these .txt files, information regarding the start

and the end of the cardiac cycle was included.

As described elsewhere (8) the intra-observer reproducibility of

LV strain was calculated. The relative bias was 2.51 ± 3.02% with

absolute limits of agreement ranged from 8.44% to 3.41% and

reproducibility of 6.1%.
2.3. Outcome assessment

We compiled information on adverse outcomes in both

population cohorts to assess the incidence of events with respect

to the extracted LV strain clusters. Using the Belgian health

registry we collected fatal events until December 2021 in the

FLEMEGHO cohort. The incidence of non-fatal outcomes was

assessed via a follow-up visit or a telephone interview using a

standardized questionnaire. All diseases reported by the

participants were cross-checked and supplemented using

information obtained from general practitioners and/or regional

hospitals. Adverse cardiac events comprised coronary events

(myocardial infarction, acute coronary syndrome, angina pectoris/

ischemic heart disease requiring coronary revascularization), HF,
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atrial fibrillation and pacemaker implantation. CV events

included the cardiac events along with fatal and non-fatal stroke

and peripheral revascularization. In our analysis, we only

considered the first event per subject.
2.4. Cluster analysis

To separate the participants into phenogroups (clusters) of

distinct LV deformation patterns, we performed an unsupervised

learning analysis. For the implementation of the proposed

approach, we used standard Python 3.9 environment (https://

www.python.org) along with well-established signal processing

(SciPy) (20) and scientific libraries (NumPy and Scikit-learn) (21,

22). An overview of the adopted computational pipeline is shown

in Figure 1. The python scripts implementing the steps

illustrated in Figure 1 are publically available at https://github.

com/HCVE/LV_strain_clustering.git.
2.4.1. Signal pre-processing
After a quality assurance process of the LV deformation

patterns, we applied an ECG landmark-based alignment to

compensate for the time offset across the different LV strain

traces. The observed time shifts were due to the differences in

the frame rate of the echocardiographic images and/or in the

heart rate between the study participants. To perform the

temporal alignment, we segmented the LV strain curves based on

the cardiac cycle events, including the peaks of R- and P-waves

and the aortic valve closure (AVC). Then we resampled the LV

strain curves to match the duration of the longest recorded

sequence.

Moreover, we approximated the LV strain rate by calculating

the derivative of the LV strain curves. The latter was achieved by

calculating the difference between the pairs of consecutive samples.
2.4.2. LV feature extraction
To train the unsupervised model, we extracted 6 features from

the raw time series LV strain curves, namely the slopes during

systole, early and late diastole, the duration and the height of the

diastasis and the peak LV strain (Figure 2). To identify each

heart cycle phase, we first employed a piecewise linear

interpolation and then, based on the obtained interpolated curve,

we separated the original LV strain curve into the desired

temporal regions. A detailed description of this process is given

in the Supplementary data.
2.4.3. Unsupervised model training
In this analysis, we opted to perform the clustering task using a

Gaussian Mixture Model (GMM) algorithm trained on the 6

extracted features fitted with expectation maximization. GMM

algorithm is a model-based clustering approach able to analyze

complex data and identify clusters with different sizes and

shapes. We used the Bayesian Information Criterion (BIC)

method to determine the optimal number of clusters. After

training of the clustering model on the features extracted from
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FIGURE 1

Overview of the computational pipeline. Blue and orange parallelograms illustrate the input data and the output of the processing steps, respectively.
Green rectangles indicate data processing steps. The flow of the steps is represented by black arrows.

FIGURE 2

LV strain curve with the 6 extracted features used for clustering. The
green region indicates the systolic phase of the heart cycle. The orange
and magenta regions show the early and late diastole of the heart
cycle, respectively. The black region indicates the diastasis.
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the FLEMENGHO cohort, we tested the model performance in the

EPOGH cohort after extracting the same 6 features.

2.4.4. Feature importance analysis
To better understand the clustering results and identify which

features impacted the model’s decision the most, we performed two

feature importance analyses using the SHAP values (23) and the

Random Forest algorithm. We plotted the impact of the

extracted feature on the final “decision” of the GMM algorithm.

A more detailed description of the model interpretability

approaches is provided in the Supplementary data.
2.5. Statistical analysis

SAS software, version 9.4 (SAS Institute, Cary, NC, USA) was

used for database management and statistical analysis. We

assessed the clinical significance of the derived LV clusters

(phenogroups), by comparing the clinical and echocardiographic

characteristics of the participants assigned in each group in both

cohorts (FLEMENGHO and EPOGH). We used Z and χ2

distributions to calculate the mean values of continuous variables

and proportions of categorical variables, respectively. We also

estimated the cumulative incidence of adverse events per cluster

using the Kaplan-Meier method. Finally, we calculated the

standardized hazard ratio using Cox regression. We adjusted the
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1263301
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 3

Selection of optimal number of clusters (k) for GMM based on BIC score. The point where the rate of the decrease becomes smaller, suggests the optimal
number of clusters. Red lines indicate the selected number of clusters and the respective BIC score.
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hazard ratio for baseline risk factors such as age, sex, body mass

index (BMI), total cholesterol, systolic blood pressure, smoking,

history of cardiac diseases and diabetes mellitus.
3. Results

3.1. Cluster analysis of LV time-series-based
features

In total, 1,185 FLEMENGHO participants were included in this

study, of whom 558 (47.1%) were hypertensive and from those 332

(59.5%) were on antihypertensive treatment. The mean age at

baseline was 53.2 ± 15.4 years.

Based on the BIC score, the optimal number of strain clusters

was between 4 and 5 (Figure 3). We opted to continue our analysis

with 4 clusters, as the derived patterns showed a more meaningful

partition of the LV strain curves. Figure 4 shows the individual LV

strain curves per cluster along with their respective cluster

centroids. We observed substantial differences between strain

clusters during the diastolic phase of the heart cycle along with

some differences in the peak LV strain (Figure 5).

The importance of diastole for the clustering of LV strain

curves was also supported by the feature importance analysis

using SHAP values (Figure 6). Indeed, for cluster 1, the most

important feature corresponded to the slope during early

diastole, showing that the LV strain curves with higher slopes

(i.e., more rapid change) had a high probability belonging to this

cluster. For clusters 2 and 3, diastasis height was the most

important feature for clustering, followed by the slopes. On the

other hand, cluster 4 was characterized by the smallest slopes

during early diastole and systole (i.e., less rapid change), and the
Frontiers in Cardiovascular Medicine 05
shortest duration of diastasis. Finally, for all clusters the peak LV

strain was one of the least important features with a clear impact

only for cluster 1 (high peak LV strain) and cluster 4 (low peak

LV strain).

In addition, we trained a Random Forest model using the

clustering assignments as labels, which allowed us to retrieve the

feature importance, calculated as the decrease in impurity

(Figure 7). The results confirmed that the most important

features were those incorporating the temporal information

hidden in the LV strain curves, such as the slopes during systole

and early diastole along with the height of the diastasis. Thus,

both SHAP and Random Forest approaches indicated that the

most important features for strain clustering belonged to the

diastolic phase of the cardiac cycle and the slope during systole.
3.2. LV strain clusters and CV risk factors

Table 1 shows the clinical and echocardiographic

characteristics of the individuals belonging to each cluster. The

comparison across all clusters revealed significant differences in

age and heart rate (Table 1). Cluster 1 showed the most

favorable CV profile, with the lowest blood pressure and the

lowest percentages of hypertensive subjects and subjects with

history of cardiac disease. Also, cluster 1 had the lowest

prevalence of LV diastolic dysfunction with respect to the rest of

the phenogroups. On the other hand, participants assigned to

cluster 4 showed the worst CV profile with elevated blood

pressure and high prevalence of LV hypertrophy and LV diastolic

dysfunction (Table 1). In LV strain cluster 3, the reported values

were in between those of clusters 2 and 4.
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FIGURE 4

Clustering results in the FLEMENGHO cohort as derived by GMM on the
6 features extracted from the LV strain curve. (A) shows the individual
time series LV strain curves assigned in each cluster. (B) presents the
centroids of LV strain and LV strain rate curves of each cluster
calculated as the average of the individual curves assigned to each
cluster.

FIGURE 5

Radar chart of the 6 extracted LV strain features illustrates the
superposition of the average values of parameters calculated by the
trained GMM in each of the four clusters. The values are normalized
with respect to the maximum value of each feature.
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3.3. LV strain clusters and adverse events

In the FLEMENGHO cohort, the median follow-up time was

9.1 years (5th–95th percentile, 2.9–11.8). A total of 116

participants experienced at least one adverse CV event over

10,291 person-years of follow-up (11.3 events/1,000 py). For

cardiac events, 81 participants experienced at least one adverse

event resulting in a 7.7 events per 1,000 person-years.

The cumulative incidence of CV and cardiac outcomes by LV

strain cluster is illustrated in Figure 8, left panel A. In cluster 1,

we observed a low risk for CV events with only 4 events (1.7/

1,000 person-years) while strain clusters 3 and 4 showed a high

risk with 55 events (17.3/1,000 person-years) and 37 events

(24.9/1,000 person-years), respectively. Intermediate CV risk was
Frontiers in Cardiovascular Medicine 06
observed for cluster 2 (20 events; 6.1/1,000 person-years). The

same pattern was observed for cardiac events (Figure 8, right

panel A).

Figure 8, panel B illustrates the adjusted hazard ratios

expressing the risk in each cluster compared with the average

risk in the whole cohort. In strain clusters 3 and 4, the adjusted

risk was significantly higher than the average risk for CV (28%

and 20%, P≤ 0.038) and cardiac (57% and 43%, P≤ 0.024)

events respectively, whereas in cluster 1, the risk was significantly

lower by at least 30% (P = 0.027) for all events (Figure 8, panel

B). Moreover, including the LVMI and the E/e’ ratio in the Cox

model, strain clusters 3 and 4 remained significant in predicting

both CV (27% and 21%, P≤ 0.044) and cardiac events (55% and

44%, P≤ 0.028).

Although we observed the higher cumulative incidence of

adverse events in subjects with an abnormal peak LV systolic

strain belonging to quartile 4 (<18%) as compared to those with

normal peak LV strain, the adjusted risk for adverse events was

not significant (P = 0.29; Supplementary Figure S1).
3.4. External validation cohort

A total of 545 EPOGH participants were included in the

external validation cohort, with 309 (56.7%) being females.

EPOGH cohort comprised younger participants (38.8 ± 14.4

years), with lower prevalence of hypertension (29.9%), fewer

person-years of follow-up (6,070) and reported CV adverse

events (n = 45) than the FLEMENGHO cohort. For evaluation of

the trained model and to ascertain its clinical significance, we

applied the GMM using the same 6 features extracted from the
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FIGURE 6

SHAP analysis per LV strain cluster. The features are ordered from the most to the least important for clustering analysis. High impact indicates that LV
strain curves with the indicative feature values have higher probability to be assigned to the respective cluster.

FIGURE 7

Feature importance of the 6 LV strain features used for clustering as
calculated by the random forest model. The model was trained using
the clustering assignments as the ground truth labels.
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LV strain traces of the EPOGH cohort (Figure 9). Overall, in this

validation cohort, we observed differences in clinical and

echocardiographic characteristics between the LV strain clusters

that were similar to those in FLEMENGHO participants

(Supplementary Table S1). Also, the cumulative incidence of CV

events was the highest in cluster 4 (20 events; 13.1/1,000 person-

years) followed by cluster 3 (10 events; 10.5/1,000 person-years)

as compared to clusters 1 (2 events; 2.5/1,000 person-years) and

2 (13 events; 4.7/1,000 person-years).
Frontiers in Cardiovascular Medicine 07
4. Discussion

In this analysis, we utilized an unsupervised ML model on data

from community-dwelling participants to separate LV deformation

patterns into phenogroups (clusters) with significant clinical

relevance. Applying GMM on features derived from time series

LV strain curves, we identified four groups of distinct patterns

related to different CV risk profiles. Across these four strain

clusters we demonstrated significant differences in age, blood

pressure and heart rate distribution. Cluster 1 comprised the

youngest participants with a low prevalence of CV risk factors,

whereas subjects assigned to cluster 4 showed the most

unfavorable CV risk profile with a higher prevalence of

hypertension, LV hypertrophy and diastolic dysfunction. In strain

cluster 3, the prevalence of CV risk factors was between that of

clusters 2 and 4. Survival analysis and adjusted hazard ratios

showed that participants in clusters 3 and 4 had the highest risk

of developing adverse events as compared to the average

population risk.

The prognostic value of peak LV longitudinal strain (or global

longitudinal strain, GLS) has already been reported in several

studies (24, 25). For instance, Sengelov et al. showed that peak

LV systolic strain assessed by echocardiography was an

independent predictor for all-cause mortality in patients with HF

with reduced ejection fraction (24). Furthermore, a few

longitudinal studies in the general population reported that

lower GLS was associated with a higher risk of developing CV

and cardiac events independent of traditional CV risk factors

(8, 26, 27).

The recent developments in ML algorithms have created new

possibilities in processing complex clinical and echocardiographic
frontiersin.org
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TABLE 1 Clinical characteristics of FLEMENGHO participants by LV strain clusters.

Characteristic Cluster 1 (n = 255) Cluster 2 (n = 372) Cluster 3 (n = 375) Cluster 4 (n = 183)
Anthropometrics

Females, n (%) 136 (53.33) 187 (50.27) 197 (52.53) 88 (48.09)

Age, year 42.71 ± 12.84 46.84 ± 14.1a 61.58 ± 10.89a,b 63.85 ± 12.88a,b,c

Body mass index, kg/m2 24.9 ± 3.84 26.29 ± 4.11a 27.35 ± 4.16a,b 28.1 ± 4.26a,b,c

Systolic pressure, mm Hg 121.85 ± 13.36 128.2 ± 14.89a 136.7 ± 16.14a,b 141.76 ± 18.26a,b,c

Diastolic pressure, mm Hg 77.57 ± 8.94 82.15 ± 9.34a 83.1 ± 9.38a 86.16 ± 10.7a,b,c

Heart rate, beats/min 57.58 ± 7.82 65.41 ± 8.6a 61.79 ± 8.19a,b 69.69 ± 10.01a,b,c

Questionnaire data

Current smoking, n (%) 50 (19.61) 64 (17.2) 38 (10.13)a,b 24 (13.11)

Drinking alcohol, n (%) 119 (46.67) 148 (39.78) 142 (37.87)a 59 (32.24)a

Hypertensive, n (%) 55 (21.57) 131 (35.22)a 235 (62.67)a,b 137 (74.86)a,b,c

Treated for hypertension, n (%) 28 (10.98) 57 (15.32) 158 (42.13)a,b 79 (43.17)a,b

History of cardiac disease, n (%) 3 (1.18) 15 (4.03)a 40 (10.67)a,b 29 (15.85)a,b

History of diabetes mellitus, n (%) 3 (1.18) 13 (3.49) 28 (7.47)a,b 20 (10.93)a,b

Biochemical data

Serum creatinine, mmol/L 70.73 ± 12.26 73.03 ± 18.75 76.39 ± 23.54a,b 78.92 ± 21.51a,b

Total cholesterol, mmol/L 4.88 ± 0.93 4.93 ± 0.87 4.92 ± 0.94a 5.17 ± 0.98a,b,c

Echocardiography

LV structure

LV internal diameter, (cm) 5.06 ± 0.44 4.98 ± 0.4a 5.01 ± 0.44 4.96 ± 0.5a

Relative wall thickness 0.35 ± 0.04 0.37 ± 0.05a 0.39 ± 0.05a,b 0.42 ± 0.06a,b,c

LV mass index, (g/m) 86.84 ± 17.91 85.9 ± 17.11 96.59 ± 21.09a,b 100.8 ± 24.74a,b,c

LV hypertrophy, n (%) 31 (12.16) 39 (10.48) 110 (29.33)a,b 69 (37.7)a,b,c

LV systolic function

LV end-systolic volume index, ml/m2 21.38 ± 5.2 20.99 ± 5.04 19.71 ± 5.26a,b 20.77 ± 5.51c

LV end-diastolic volume index, ml/m2 53.91 ± 10.75 51.43 ± 10.06a 51.49 ± 10.25a 49.37 ± 11.27a,b,c

Stroke volume index, ml/m2 32.54 ± 6.92 30.44 ± 6.35a 31.78 ± 6.63b 28.6 ± 7.19a,b,c

Ejection fraction, % 60.34 ± 5.06 59.29 ± 5.18a 61.88 ± 5.79a,b 58.11 ± 6.42a,b,c

Peak LV longitudinal strain, % 19.83 ± 1.8 18.39 ± 1.5a 20.38 ± 1.97a,b 17.74 ± 2.48a,b,c

LV diastolic function

E/A ratio 1.79 ± 0.5 1.38 ± 0.42a 1.01 ± 0.27a,b 0.84 ± 0.3a,b,c

e’ peak, cm/s 13.25 ± 2.95 11.43 ± 3.05a 8.58 ± 2.3a,b 7.0 ± 2.55a,b,c

E/e’ ratio 6.23 ± 1.39 6.52 ± 1.72a 7.92 ± 2.41a,b 8.89 ± 3.81a,b,c

LV diastolic dysfunction, n (%) 5 (1.96) 23 (6.18)a 65 (17.33)a,b 67 (36.61)a,b,c

Values are mean (±SD) or number of subjects (%). LV hypertrophy was a LV mass index of 52 g/m2.7 in men and 45 g/m2.7 in women or more. Significance for between-

phenogroups differences.
aP < 0.05 vs. Cluster 1.
bP < 0.05 vs. Cluster 2.
cP < 0.05 vs. Cluster 3. A indicates late peak diastolic velocity of transmitral blood flow; E, early peak diastolic velocity of transmitral blood flow; e’, early peak diastolic

myocardial velocity; LV, left ventricular.
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data for better prognostications and risk stratification in patients

and in the community. For example, Shah et al. (28) applied

GMM to identify distinct phenogroups in symptomatic patients

with HF with preserved ejection fraction. Using 46 features, such

as demographics, clinical characteristics, biochemical and

echocardiographic indexes, the authors categorized participants

into 3 phenogroups which associated with the risk of HF

hospitalization. In another study, to improve CV risk

stratification in the general population, Sabovčik et al. (11) also

employed GMM to identify distinct echocardiographic

phenogroups. The authors showed that 3 distinguished

phenogroups had significant differences in the risk of developing

adverse CV events. Of note, the majority of these studies

assessed the prognostic value of discrete echocardiographic

indexes including the peak LV strain, disregarding potentially

valuable temporal information hidden in the shape of LV strain

curves during the cardiac cycle.
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On the other hand, studies that investigated the prognostic

value of LV strain curves in the temporal domain, are limited in

distinguishing symptomatic patients with heart diseases from

healthy individuals. For instance, Tabassian et al. investigated the

value of the temporal information hidden in segmental (29) and

global (30) LV longitudinal strain to detect abnormal changes in

LV mechanics and identify patients with symptomatic HF.

Similarly, in a small cross-sectional study, Loncaric et al. (31)

identified ML-based patterns associated with cardiac remodeling

due to pressure overload in 189 patients with hypertension.

Using a two-steps unsupervised ML approach including

hierarchical clustering, the authors distinguished hypertensive

patients from the healthy participants based on tissue and blood-

pool velocity and deformation profiles during the whole cardiac

cycle (31).

Previously, we demonstrated the significance of time series

analysis of deformation profiles of the LA in the general
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https://doi.org/10.3389/fcvm.2023.1263301
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 8

Risk for major adverse events by LV strain cluster. (A) shows the incidence of adverse CV and cardiac events per cluster. (B) presents the Cox regression
hazard ratios (95% Cl) for CV and cardiac events. The hazard ratios express the risks in clusters compared to the average risk in the whole cohort and
adjusted for age, sex, body mass index, smoking, blood pressure, total cholesterol, history of diabetes and cardiac diseases.
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population (32). Using two different clustering approaches we

showed that the incorporation of the whole LA deformation

patterns provides incremental predictive information over the

current practice that considers only peak LA reservoir strain.

Consequently, the present study extends the application of

unsupervised ML modelling in the general population using the

whole spectrum of LV deformation curves. By clustering features

that incorporate temporal information such as the slopes of LV

curve during systole or early and late diastole we were able to

separate participants into distinct phenogroups associated with

different clinical characteristics and risk profiles. Hence, the

developed model could provide the normal patterns of LV strain

curves derived from the general population as well as distinguish

participants at CV high risk. This, in turn, could facilitate early

intervention and improve risk management hindering the

progression of cardiac dysfunction.

Along these lines, the derived centroids of each cluster could

serve as templates to identify the normal or abnormal LV

deformation patterns. For example, low systolic and diastolic

slopes, as observed in the cluster 4 pattern, mean slow emptying

and filling of the LV, respectively, which could be indicative of

increased myocardial workload and higher LV stiffness.
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Furthermore, a shorter duration of diastasis would indicate that

active LV filling during LA contraction occurs earlier, pointing

out a shorter period of LV relaxation.

In addition, in this study, we demonstrated that we could

retrieve the LV strain rate by calculating the derivative of LV

strain. Of note, LV strain rate showed well-separated patterns for

each cluster as illustrated by their respective centroids. Although

this method requires further research, its application in a clinical

setting could lead to a simpler and transparent manner of

extracting LV strain rate which could supplement LV strain

temporal data.

Another important aspect of our ML analysis is the

interpretability of the developed models. By understanding the

“decisions” of these non-linear models, their “black-box”

characteristic is reduced promoting a better understanding of

the pathophysiology of cardiac dysfunction. Consequently,

interpretability accelerates and eases the adoption of ML

models in the medical field. To improve the interpretability of

our clustering results, we applied SHAP values and Random

Forest to determine the impact of the derived features on the

final construction of each strain cluster. Our analysis showed

that the slopes of the LV strain curves during systole or
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FIGURE 9

Clustering results of LV strain using the GMM trained on FLEMENGHO
data on the 6 extracted features in the EPOGH cohort. (A) illustrates
the individual strain curves assigned in each cluster. (B) depicts the
centroids of LV strain curve and LV strain rate curve of each cluster
calculated as the average of the curves assigned in each cluster.
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early diastole and/or features that summarize diastasis

contributed the most to the formation of the clusters. For

instance, cluster 4 was characterized by LV patterns with the

lowest slope during early diastole and systole, the shortest

diastasis, and the smallest LV peak strain. Consequently, the

incorporation of diastolic phase of the LV strain curve analysis

could improve the further delineation of CV risk in patients.

While we acknowledge that using discrete cut-off values to

categorize a patient’s CV risk is self-explanatory and aligns with

current practice, we emphasize that the objective of this study is

to construct a ML model that could be used as a decision

support tool by clinicians, additionally to the current practice.

This allows to categorize a patient to a particular risk group

based on the whole information derived from LV strain curve (in

this case low-, low/intermediate-, intermediate/high-, high- risk).

Therefore, this study might pave the way to integrate ML models
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into commercial software solutions used for strain analysis.

However, a more extensive validation of the model using

recordings from diverse population and patients cohorts

should be performed before the clinical translation of the study

findings.
4.1. Limitations

We recorded the LV deformation curves using speckle tracking

on echocardiographic images. Of note, during the post-processing

of the images, the region of interest in which speckle tracking was

performed could be adjusted by an observer. Hence, the recordings

used throughout our analysis were susceptible to measurement

errors. Next, to define LV diastolic dysfunction in our study, we

used outcome-derived population-based criteria instead of ASE

criteria. As we previously reported, the prevalence of LV diastolic

disfunction according to the ASE criteria was lower (1.85%) and

therefore they might be less sensitive in general population

settings (19). However, future studies are needed to evaluate

whether epidemiologically based thresholds for diastolic

parameters will better identify asymptomatic subjects at risk.

Also, we included a few cases of pacemaker implantation (n = 9)

as adverse events in our outcome analysis. Of note, most of the

patients with pacemaker implantation additionally experienced

other CV adverse events, such as heart failure, stroke, atrial

fibrillation, etc. Therefore, although the correlation between

conduction abnormalities and strain pattern is not clear, it is

highly unlikely that including these events can confound the

outcome results because these patients still remain in the analysis

due to other adverse events. Additionally, the EPOGH cohort

which we used for validation of our model included fewer

participants than FLEMENGHO. On the other hand, in both

datasets our analysis showed that the derived LV clusters contain

clinically relevant information. We could reinforce our findings

by further evaluation of the trained model on other patient or

community-based datasets with available time series of LV strain

curves. Finally, the BIC score did not provide conclusive results

regarding the optimal number of clusters. The final selection of

this parameter was performed by a visual inspection of the

clustering results in the FLEMENGHO cohort for the two best

values according to BIC.
4.2. Conclusions

Overall, we showed that unsupervised learning methods on

features derived from time series LV strain curves identified

clinically meaningful phenogroups which could provide additive

prognostic information over the peak LV strain. All clusters

revealed considerable differences in the slopes and the diastolic

phase of the cardiac cycle suggesting that the introduction of

diastole in the evaluation of LV strain curves could add valuable

prognostic information. This could lead to the fine-tuning of CV

risk stratification and consequently improve the identification of

early stages of cardiac dysfunction. In addition, we provided the
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normal patterns of LV strain curves derived from the general

population.
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