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Cardiac diseases have high mortality rates and are a significant threat to human
health. Echocardiography is a commonly used imaging technique to diagnose
cardiac diseases because of its portability, non-invasiveness and low cost.
Precise segmentation of basic cardiac structures is crucial for cardiologists to
efficiently diagnose cardiac diseases, but this task is challenging due to several
reasons, such as: (1) low image contrast, (2) incomplete structures of cardiac,
and (3) unclear border between the ventricle and the atrium in some
echocardiographic images. In this paper, we applied contrastive learning strategy
and proposed a semi-supervised method for echocardiographic images
segmentation. This proposed method solved the above challenges effectively
and made use of unlabeled data to achieve a great performance, which could
help doctors improve the accuracy of CVD diagnosis and screening. We
evaluated this method on a public dataset (CAMUS), achieving mean Dice
Similarity Coefficient (DSC) of 0.898, 0.911, 0.916 with 1/4, 1/2 and full labeled
data on two-chamber (2CH) echocardiography images, and of 0.903, 0.921,
0.928 with 1/4, 1/2 and full labeled data on four-chamber (4CH) echocardiography
images. Compared with other existing methods, the proposed method had fewer
parameters and better performance. The code and models are available at https://
github.com/gpgzy/CL-Cardiac-segmentation.
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1. Introduction

Cardiovascular diseases (CVDs) are increasing threats to global health and have become

the leading cause of death in industrialized countries (1). The American Society of

Echocardiography (ASE) and the European Association of Cardiovascular Imaging

(EACVI) have emphasized the importance of cardiac chamber quantification by

echocardiography in the diagnosis and treatment of cardiovascular diseases (2).

Echocardiography is one of the most widely utilized diagnostic tests in cardiology,

offering clear visualizations of left ventricular size during end systole and end diastole,

along with the thickness of the myocardium (3). In echocardiography, a heart afflicted by

disease might display enlarged atrial and ventricular volumes or an augmented thickness
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of the myocardium (4). However, these chamber quantifications,

such as chamber sizes, volumes, and etc., are usually based on

precise segmentation of certain critical structures (such as

ventricle, atrium and myocardium), and then measuring key

metrics that indicate the heart’s functionality (2, 5). Practically,

this process requires cardiologists to manually describe the

anatomy and takes measurements of relevant biological

parameters, which can be tedious, time-consuming, and

subjective (5). Therefore, there exists a genuine requirement in

clinical settings for an efficient and precise automated

echocardiographic segmentation technique that can enhance the

efficacy and reduce the burden of the physician in clinical

imaging screening, track disease progression and make informed

decisions about treatment and intervention.

There are two main categories of automated segmentation

techniques for cardiac structures: traditional techniques and

neural network-based methods. Traditional methods include

contour models (6), level sets (7), and atlas-based methods (8).

Barbosa et al. (6) put forward a B-spline active contour

formulation that employs explicit functions for real-time

segmentation of 3D echocardiography and liver computer

tomography. This method overcomes the limitations of the initial

Active Geometric Functions (AGF) framework introduced by

Real-time segmentation by Active Geometric Functions while

preserving computational speed. Yang et al. (7) proposed a two-

layer level set method along with a circular shape constraint to

segment the left ventricle (LV) from short-axis cardiac magnetic

resonance images (CMRI) without relying on any pre-trained

models. This technique can be applied to other level set methods

and effectively addresses common issues in LV segmentation,

such as intensity overlap between Trabeculations and Papillary

Muscles (TPM) and the myocardium, and the existence of

outflow track in basal slices. Zhuang et al. (8) developed a fully

automated framework for whole-heart segmentation that relies

on the locally affine registration method (LARM) and free-form

deformations with adaptive control point status (ACPS FFDs) for

automatic segmentation of CMRI. However, these methods are

unable to surmount the challenges of low contrast and noise that

are inherent in echocardiography. As a result, they are unable to

produce accurate segmentation results based on echocardiography.

Neural network-based methods have demonstrated enhanced

segmentation accuracy in echocardiography as well, and they can

be classified further as supervised methods and semi-supervised

methods. Cui et al. (9) proposed a multitask model with Task

Relation Spatial Co-Attention for joint segmentation and

quantification on 2D echocardiography. This method integrated

the Boundary-aware Structure Consistency (BSC) and Joint

Indices Constraint (JIC) into the multitask learning optimization

objective to guide the learning of segmentation and

quantification paths. It was validated on the CAMUS dataset and

demonstrated outstanding performance, achieving an overall

mean Dice score of 0.912 and 0.923, as well as average precision

scores of 0.931 and 0.941 for the two-chamber views (A2C) and

apical four-chamber views (A4C). Cui et al. (10) utilized a

training strategy named multi-constrained aggregate learning

(MCAL) for the segmentation of myocardium in 2D
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echocardiography. This method leveraged anatomical knowledge

learned through ground-truth labels to infer segmented parts and

discriminate boundary pixels. It was validated on CAMUS

dataset and had performance with segmentation Dice of

0:853+ 0:057 and 0:859+ 0:560 for the apical A4C and A2C

views, respectively. Hamila et al. (11) proposed a novel

convolution neural network (CNN) that combines denoising and

feature extraction techniques for automatic LV segmentation of

echocardiography. 2D echocardiographic images from 70 patients

were used to train this network, and it was then tested on 12

patients, achieving a segmentation Dice of 0.937. While these

supervised methods can achieve excellent performance, they all

require a sufficient number of pixel-wise annotations to train the

model, which can be a time-consuming and tedious process.

Semi-supervised methods have shown effectiveness in reducing

the need for a large number of annotated samples in

echocardiography segmentation. Wu et al. (5) integrated a novel

adaptive spatiotemporal semantic calibration module into the

mean teacher semi-supervised architecture to determine

spatiotemporal correspondences based on feature maps for

echocardiography segmentation. The proposed method was

evaluated using the EchoNet-Dynamic and CAMUS datasets,

resulting in average Dice coefficients of 0.929 and 0.938,

respectively, for the segmentation of the left ventricular

endocardium. Additionally, based on these two datasets, El Rai

et al. (12) presented a new semi-supervised approach called

GraphECV for the segmentation of the LV in echocardiography

by using graph signal processing, respectively resulting in Dice

coefficients of 0.936 and 0.940 with 1/2 labeled data for the left

ventricular segmentation. Wei et al. (13) used a co-learning

mechanism to explore the mutual benefits of cardiac

segmentation, therefore alleviating the noisy appearance. It was

validated on the training set of CAMUS dataset using 10-fold

cross-validation, achieving a Dice of 0.923, 0.948 and 0.895 for the

segmentation of LV, myocardium and left atrium (LA). Chen et al.

(14) proposed a framework for cross-domain echocardiography

segmentation that incorporated multi-space adaptation-

segmentation-joint based on a generative adversarial architecture

with a generator and multi-space discriminators. The CAMUS

dataset was used to evaluate this method, and the experiments

show that this method attained the mean Dice coefficients of

0.890 for the segmentation of LV endocardium and LV

epicardium. However, only a few semi-supervised methods have

been used for the segmentation of the LV, LA, and myocardium,

and although some methods attempt to segment all three regions

simultaneously, the accuracy of multi-structure segmentation

remains to be improved, especially for the LV and LA segmentation.

To help improve the accuracy of diagnosing and screening for

cardiovascular diseases while also easing the workload associated

with evaluating LV images. In this paper, we proposed a novel

semi-supervised method for multi-structure segmentation of

echocardiography, and the main contributions could be

summarized as follows:

(1) We first applied contrastive learning in the multi-structure

segmentation of echocardiography, and could accurately
frontiersin.org
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segment LV, LA and myocardium without requiring a large

number of annotated samples, which explored the feasibility

of contrastive learning in echocardiography multi-structure

segmentation.

(2) We made two improvements to the existing model, building

upon the work by Lai et al. (15): replacing DeeplabV3+ (16)

with u-net (17) and modifying the structure of the

projector. These changes aimed to tackle challenges in

echocardiography, such as low contrast, unclear boundaries,

and incomplete cardiac structures.

(3) Our method was evaluated on the CAMUS dataset, and it

demonstrated excellent performance in both two-chamber

(2CH) and four-chamber (4CH) echocardiographic images.
FIGURE 1

Overview of the proposed framework. The proposed framework can be divide
was trained with a few epochs firstly, followed by training the unsupervised bran
neural network (CNN) to extract the feature map of labeled images and a clas
classifier from the supervised branch were used, the classifiers in two branche
multi-channel feature map and each white box represents a copied feature m
upward red arrows indicate the upsampling stages. The blue arrow to the right
a skip connection. The dilated convolutions were implemented in the down
feature dimensions. In the supervised branch, the loss function employed
between the predictions and the ground truth. On the other hand, the unsup
difference between pseudo labels and feature maps.
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2. Method

2.1. Overview

The cardiac structure segmentation network in this study was

built upon the contrastive learning, taking inspiration from the

work of Lai et al. (15) (Figure 1). The proposed network consists

of two branches: a supervised branch and an unsupervised

branch. The supervised branch was first trained with labeled data

to acquire basic features within the echocardiographic images.

Next, these parameters were shared with the unsupervised

branch, which was then continually optimized with unlabeled

data. More details about the supervised branch, the unsupervised
d into two branches: supervised and unsupervised. The supervised branch
ch with a lot of epochs. The supervised branch consists of a convolutional
sifier to make predictions. In the unsupervised branch, the same CNN and
s share parameters with each other. In CNN, each blue box represents a
ap. The downward red arrows indicate the downsampling stages and the
represents a convolution of 1� 1 and the black arrow to the right indicates
sampling stages. Furthermore, a projector was introduced to modify the
a standard cross-entropy loss (Lce), which measures the discrepancy
ervised branch employed a contrastive learning loss (Lcl) to quantify the
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branch and loss functions were introduced specifically in Sections

2.2, 2.3 and 2.4.
2.2. Supervised branch

The supervised branch of our network, like other

supervised networks, was composed of a convolutional

neural network (CNN) and a classifier. The CNN was

employed to extract features from images, whereas the

classifier was responsible for mapping these features to

predictions. More specifically, we employed the u-net as the

backbone in supervised branch to convert training images

into feature vectors, which was the CNN referred to in

Figure 1. U-net (17) is a type of neural network that

follows an encoder-decoder structure, where the encoder is

able to capture context information and the decoder can

perform precise localization. The encoder and decoder are

connected through a skip connection. While the skip

connection in u-net can help prevent shallow features from

being lost, the use of multiple pooling layers in the

contracting path can result in information loss in the

images. Dilated convolutions can be used to solve this issue

by increasing the field of perception without adding more

parameters, minimizing information loss during

downsampling. These convolutions inflate the kernel with

holes between the kernel elements, and the dilation rate

parameter indicates the amount the kernel is widened (18).

To enhance the performance of the proposed network, we

incorporated dilated convolutions into the downsampling

process of u-net, and used this modified u-net as the CNN.

The dilated convolutions were implemented in the second,

third and fourth downsampling stages of u-net, with

dilation rates of 1, 2 and 4 respectively. To evaluate the

effectiveness of the dilated convolutions, we conducted an

ablation experiment which was described in Section 3.6.
FIGURE 2

Performance comparison of our ablation studies on 2CH images from CAMUS
our ablation studies. (B) The validation loss values were analyzed to evaluate
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2.3. Unsupervised branch

The proposed unsupervised branch was based on the

contrastive learning strategy, which is a type of framework for

learning discriminative representations. The main focus of

contrastive learning was to compare pairs of sample examples

that are considered to be either similar (positive samples) or

dissimilar (negative samples) in terms of their semantic content.

In our work, each image was randomly cropped twice and then

done some different augmentations to create two different

transformation views, which were considered as positive samples.

In this process, we made sure the two positive samples have an

overlap region. The negative samples were images from the

training set, but without including the given image. As shown in

Figure 1, we transformed the xu image to create xu1 and xu2,

which serve as positive samples, and randomly selected images

from our training set (excluding xu) as negative samples. The

training process aimed to bring the positive samples (xu1 and

xu2) closer together and separated the negative samples that

belong to other classes. To maintain consistency in the

representation of the overlap region, we employed the loss

function Lcl . Finally, the unsupervised branch was able to learn

the deep features of ventricle, myocardium and atrium and

discriminate them well without labeled images.

As shown in Figure 2, the unsupervised branch consisted of a

CNN, a classifier and a projector. Among them, the CNN is the

same one shared with the supervised branch. The classifier in

unsupervised branch had the same architecture as that in the

supervised branch, and they shared the same parameters. The

projector was comprised of two linear layers, with the first layer

followed by batch normalization and rectified linear units

(ReLU). The purpose of the projector was to change the feature

dimension and prevent the loss of useful information for

segmentation. An ablation experiment was performed to evaluate

the significance of this projector, and more details have been

shown in Section 3.6. The loss function was a pixel-wise
dataset. (A) The IoU values were examined to assess the performance of
the performance of our ablation studies.
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contrastive loss, and it will be elaborated upon, as shown in

Section 2.4.
2.4. Loss functions

2.4.1. Supervised loss
Cross entropy loss was used in supervised networks to measure

the dissimilarity between the predicted probability distribution of

class labels and the actual distribution of class labels (19).

Compared with other loss functions, this loss function is

differentiable and easy to optimize using gradient based methods.

Therefore, in the supervised branch, we used cross entropy loss

as the loss function, which is frequently employed for image

semantic segmentation tasks.

The cross-entropy loss Lce can be written as follows:

Lce ¼ � 1
N

X
i

XM
c¼1

yiclog(pic) (1)

whereM and N are the number of classes and samples; yic depends

on the truth value of i, if it is equals to c, yic is 1, else yic is 0. pic is

the probability of sample i belongs to class c.
2.4.2. Unsupervised loss
In the unsupervised branch, followed the previous work Lai

et al. (15), the proposed loss function Lcl is:

Lcl ¼ Lce þ lLns,pf
dc (2)

where l is used to control the contribution of Lns,pf
dc , and the range

of l is 0-1. In our experiment, we set l with 0.1. Lce is a standard

cross entropy loss, which is the same as the loss function in

supervised branch.

Lns,pf
dc was a Directional Contrastive loss (DC Loss), which was

used to minimize the distance between positive feature pairs

(features with the same class) and maximize the distance

between negative feature pairs (features with different classes).

Specifically, as shown in Figure 1, we regarded two features of

fu1 and fu2 as a positive pair, because both of them

corresponded to the same pixels in xu but with different

transformations. In addition, any two images in the training

dataset were regarded as a negative pair.

The DC Loss (Lns,pf
dc ) can be written as follows:

Lns,pf
dc ¼ 1

B

XB
b¼1

(lb,ns,pfdc (fu1, fu2)þ lb,ns,pfdc (fu2, fu1)) (3)

where B represents the batch size of training.
Frontiers in Cardiovascular Medicine 05
The lb,ns,pfdc can be written as follows:

lb,ns,pfdc (fu1, fu2) ¼ � 1
N

X
h,w

Mh,w
d,pf

� log r(fh,w
u1 , f

h,w
u2 )

r(fh,w
u1 , f

h,w
u2 )þ

P
fn[Fu

Mh,w
n,1 � r(fh,w

u1 , fn)

(4)

where Mh,w
d,pf is the binary mask and can filter those uncertain

positive samples. r denotes the exponential function of the cosine

similarity s between two features with a temperature t.

r(f1, f2) ¼ exp (s(f1, f2)=t); h and w denote the height and

width of 2-D images; N denotes the number of spatial locations

of xu; fn [ Rc represents the negative counterpart of the feature

fh,w
u1 , and Fu represents the set of negative samples.

The binary mask Mh,w
d,pf can be written as follows:

Mh,w
d,pf ¼ Mh,w

d � 1{maxC(f h,wu2 ) . g} (5)

where g is a threshold. If the confidence of a positive sample is

lower than g, this positive pair will not contribute to the final loss.

The directional mask Mh,w
d can be written as:

Mh,w
d ¼ 1{maxC(f h,wu1 ) , maxC(f h,wu2 )} (6)

where C is the classifier. f h,wu1 and f h,wu2 are features of xu1 and xu2
extracted by CNN.
3. Experiment

3.1. Dataset

In this paper, the proposed method was validated on CAMUS

dataset (20), which consisted of clinical exams from 500 patients.

For each patient, it included two-dimension (2D) apical 2CH

and 4CH view echocardiogram sequences, along with

annotations for LV, LA, and LV endocardium at end diastole

(ED) and end systole (ES) frames. Thereinto, 450 patients were

used as the training dataset to train the proposed model, and 50

patients were used as the testing dataset to evaluate the

performance of the trained model. For the training dataset, it

contained 366 patients with good or medium image quality, and

84 patients with poor image quality. The testing dataset

contained 40 patients with good or medium image quality, and

10 patients with poor image quality. Since the images in the

dataset had different sizes, we resized all of them to a uniform

resolution of 512� 512 and normalized them to the range of

[� 1, 1] before training.
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3.2. Implementation details

The proposed network was implemented based on pytorch1.13

and trained on a single NVIDIA Tesla A40 GPU with 48GB

memory. In order to reduce the GPU memory usage and

improve the efficiency of training, we used automatic mixed

precision (AMP) in training.

In our experiments, we initialized the network parameters

randomly and opted for the SGD optimizer with a weight decay

of 0.0001 and an initial learning rate of 0.01. To update the

learning rate, we employed the poly decay policy, which can be

expressed as follows:

l(iter) ¼ lr � 1� iter
total

� � power

(7)

where power ¼ 0:9; iter is the number of epochs we are currently

training; total is the sum of the epochs used for training. We

trained the supervised branch in the first 5 epochs before

training the unsupervised branch. In the end, we completed

training for a total of 80 epochs.
3.3. Data augmentation

In order to avoid the overfitting and improve the robustness of

the proposed network, several data augmentations were applied

before training, including Gaussian blur, color jitter, gray scale,

horizontal flipping. In unsupervised branch, we applied random

crop and random rotation. Specifically, we randomly cropped

images to a size of 320� 320 and rotated them with an

arbitrarily degree within the range of [� 15�, 15�].
3.4. Training process

The training process of the supervised branch can be

described as follows. Firstly, the labeled image xl was

processed by the CNN (1) to obtain its corresponding feature

map fl ¼ 1(xl). Then, the classifier C made predictions

�yl ¼ C(fl) based on the feature map. Finally, the predictions

�yl were compared to the ground truth yl using cross entropy

loss for supervision.

The training process of the unsupervised branch can be

described as follows. Firstly, an unlabeled image xu was

processed with two different transformations to get two

images xu1 and xu2. These two images were then fed through

the CNN (1) to generate the feature maps fu1 ¼ 1(xu1) and

fu2 ¼ 1(xu2). After that, the classifier C made predictions and

based on the feature map, while the projector F change the

feature dimension wu1 ¼ F(fu1) and wu2 ¼ F(fu2). Finally, we

calculated the loss between the low dimension feature and the

pseudo labels.
Frontiers in Cardiovascular Medicine 06
3.5. Evaluation metrics

In our experiments, we used Dice Similarity Coefficient (DSC)

and Intersection-over-Union (IoU) to evaluate the performance of

the proposed method for images segmentation.

The DSC and IoU can be described as follows:

DSC ¼ 2� jA> Bj
jAj þ jBj ¼ 2� TP

2� TP þ FP þ FN
(8)

IoU ¼ A> B
A< B

¼ TP
TP þ FP þ FN

(9)

where A is the predicted set of pixels; B is the ground truth; TP

represents the true positive; FP represents the false positive and

FN represents the false negative. Note that IoU and DSC in the

following tables and figures represent the average value of

segmentation results from four classes, including background,

LA, LV and myocardium.
3.6. Ablation study

We conducted a series of ablation experiments to verify the

contribution of each component in the proposed method. The

ablation study was based on the full labeled data on CAMUS

dataset. In our experiments, we first embed a standard u-net as

the baseline. Then, we modified the u-net by adding dilated

convolutions to the downsampling process and named it

“Baseline+Dilation.” Finally, we added a projector to ”Baseline

+Dilation” to complete proposed method, which we called

“Baseline+Dilation+Projector.” The mean IoU and mean DSC

results for each method were presented in Table 1 and Figure 2.

Meanwhile, boxplots were employed to illustrate the variability of

the mean Intersection over Union (IoU) for the aforementioned

three methods in Figure 3.

Dilation: In order to demonstrate the effectiveness of the

dilated convolution applied in the u-net, we made a comparison

between Baseline and Baseline with dilation (Baseline+Dilation).

The experimental results shown that the model incorporated

dilation (Baseline+Dilation) outperformed the one without

dilation (Baseline), with an average IoU of 0.026 for 2CH images

and 0.014 for 4CH images (Table 1).

Projector: In Table 1, we can see that incorporating a projector

into the model improved the mean IoU from 0.847 to 0.849 in 2CH

images. From Figure 2, we can find that the segmentation

performance became better and more stable with the influence of

projector in the last 30 epochs of the training.
3.7. Segmentation results and comparison
with other methods

The proposed method was assessed for its ability to segment

multiple cardiac structures, including LV, myocardium and LA.

The segmentation performance was evaluated on the testing
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TABLE 1 Statistical comparison of ablation studies on 2CH and 4CH images with full labeled training data.

Method 2CH 4CH

IoU D(IoU) DSC D(DSC) IoU D(IoU) DSC D(DSC)
Baseline 0.811 0.004 0.893 0.002 0.854 0.003 0.919 0.002

Baseline + Dilation 0.847 0.003 0.916 0.001 0.868 0.002 0.928 0.001

Baseline + Dilation + Projector 0.849 0.002 0.917 0.001 0.868 0.002 0.928 0.001

The D(IoU) and D(DSC) represent the variance of the IoU and DSC scores, respectively.

The best results are achieved and highlighted by the bold values.

FIGURE 3

The variability of IoU about our ablation studies. (A) The results obtained from 2CH images. (B) The results obtained from 4CH images.

Guo et al. 10.3389/fcvm.2023.1266260
dataset of CAMUS dataset, comprising 40 patients with good or

medium quality images and 10 patients with poor quality images.

While the CAC (Context Aware Consistency Network) method

demonstrates strong performance in natural images segmentation,

it falls short when it comes to accurately delineating cardiac

structures in echocardiography (15). In certain cases, it may even

incorrectly segment certain regions. Despite these limitations,

CAC remains a widely employed semi-supervised technique for

various image segmentation tasks, including those involving

cardiac structures in echocardiography. Therefore, we compared
TABLE 2 Segmentation performance comparison of IoU and DSC between th

Method 2CH

IoU D(IoU) DSC D(DSC) IoU
DeeplabV3+ 0.673 0.190 0.796 0.170 0.67

0.70 0.014 0.816 0.012 0.71

0.786 0.005 0.876 0.003 0.81

U-net 0.780 0.007 0.872 0.005 0.79

0.805 0.006 0.888 0.004 0.83

0.832 0.004 0.906 0.002 0.85

CAC 0.780 0.006 0.872 0.004 0.81

0.784 0.005 0.875 0.003 0.82

0.787 0.004 0.877 0.002 0.83

Ours 0.819 0.004 0.898 0.002 0.82

0.838 0.003 0.911 0.002 0.85

0.849 0.002 0.917 0.001 0.86

N represents the ratio of labeled images that we used. The D(IoU) and D(DSC) repres

The best results are achieved and highlighted by the bold values.
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the performance of our proposed method with CAC in order to

demonstrate the superiority of our approach for cardiac

segmentation. In addition, we compared our method with some

supervised methods, including u-net and DeeplabV3+ with

Resnet50 backbone, using all the labeled images available. To

guarantee a fair comparison, we implemented all methods under

the same conditions, including the same data augmentations and

the same learning rate adjustment strategy.

The performance of each method has been presented in

Tables 2 and 3, showcasing the results for the proposed
e proposed method and other techniques.

4CH N Params

D(IoU) DSC D(DSC)
1 0.012 0.794 0.009 1/4 40.347MB

3 0.011 0.825 0.009 1/2

8 0.003 0.896 0.002 Full

6 0.006 0.882 0.003 1/4 17.267MB

5 0.006 0.907 0.003 1/2

4 0.003 0.919 0.002 Full

1 0.002 0.892 0.001 1/4 40.348MB

4 0.002 0.900 0.001 1/2

6 0.003 0.908 0.001 Full

9 0.003 0.903 0.002 1/4 17.268MB

7 0.003 0.921 0.001 1/2

8 0.002 0.928 0.001 Full

ent the variance of the IoU and DSC scores, respectively.
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TABLE 3 Segmentation performance comparison of precision and recall between the proposed method and other techniques.

Method 2CH 4CH N

P D(P) R D(R) P D(P) R D(R)
DeeplabV3+ 0.809 0.010 0.953 0.002 0.847 0.005 0.950 0.001 1/4

0.829 0.007 0.956 0.001 0.874 0.005 0.971 0.001 1/2

0.896 0.002 0.965 0.001 0.908 0.002 0.957 0.001 Full

U-Net 0.847 0.004 0.870 0.004 0.881 0.004 0.926 0.002 1/4

0.882 0.004 0.907 0.003 0.904 0.002 0.938 0.001 1/2

0.902 0.002 0.924 0.002 0.911 0.002 0.939 0.001 Full

CAC 0.864 0.003 0.926 0.002 0.891 0.002 0.937 0.001 1/4

0.880 0.002 0.927 0.002 0.903 0.001 0.940 0.001 1/2

0.881 0.002 0.935 0.002 0.897 0.002 0.932 0.001 Full

Ours 0.894 0.002 0.927 0.002 0.905 0.002 0.961 0.001 1/4

0.908 0.001 0.938 0.001 0.921 0.001 0.959 0.001 1/2

0.923 0.001 0.948 0.001 0.924 0.001 0.962 0.001 Full

N represents the ratio of labeled images that we used. P represents precision and R represents recall. The D(P) and D(R) represent the variance of the precision and recall,

respectively.

The best results are achieved and highlighted by the bold values.

TABLE 4 Segmentation performance of the proposed method on LV, LA and myocardium.

N 2CH 4CH

IoU D(IoU) DSC D(DSC) IoU D(IoU) DSC D(DSC)
1/4 LV 0.824 0.007 0.904 0.003 0.832 0.008 0.908 0.003

LA 0.806 0.014 0.893 0.007 0.837 0.012 0.911 0.011

Myocardium 0.694 0.012 0.819 0.007 0.697 0.013 0.809 0.008

1/2 LV 0.836 0.007 0.911 0.003 0.865 0.005 0.928 0.002

LA 0.830 0.011 0.907 0.005 0.843 0.014 0.915 0.012

Myocardium 0.726 0.009 0.841 0.005 0.748 0.008 0.856 0.004

Full LV 0.848 0.003 0.917 0.001 0.877 0.004 0.934 0.002

LA 0.842 0.010 0.915 0.005 0.854 0.015 0.921 0.012

Myocardium 0.744 0.005 0.851 0.002 0.766 0.006 0.867 0.003

N represents the ratio of labeled images that we used.

Guo et al. 10.3389/fcvm.2023.1266260
method, CAC method, and other supervised methods in both

the 2CH and 4CH views. From the tables, it was evident that

the proposed method outperformed the other methods in
FIGURE 4

The Boxplots show the IoU values for both 2CH and 4CH images, using the fou
outcomes achieved when employing 1/2 labeled images. (A) The results obta
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terms of segmentation performance with 1/4, 1/2, and full

labeled data. We also compared the number of parameters

among u-net, DeeplabV3+, the proposed method, and the
r methods mentioned in Table 2. These boxplots specifically showcase the
ined from 2CH images. (B) The results obtained from 4CH images.

frontiersin.org

https://doi.org/10.3389/fcvm.2023.1266260
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 5

The IoU for segmentation results of the proposed method trained with different numbers of labeled images. (A) The results obtained from 2CH images.
(B) The results obtained from 4CH images.

FIGURE 6

Visual comparison of CAC method and the proposed method with 1/4labeled, 1/2labeled and full labeled data on 2CH and 4CH images. The red, green
and blue lines represent the ground truth. The value of IoU is marked on the right upper corner of each image. (A,B) The visual comparison of the
performance about discriminating the borders of myocardium on 2CH images and 4CH images. (C,D) The visual comparison of the probability of
segmentation errors in some regions on 2CH images and 4CH images. (E,F) The visual comparison of the performance about the identification of the
ventricle and myocardium location.

Guo et al. 10.3389/fcvm.2023.1266260
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CAC method in Table 2, showing that our method had fewer

parameters. Note that the values in the tables shown the

maximum of the epochs we trained. The multi-structure

segmentation performance of the proposed method has been

presented in Table 4. We can see with the increase in the

number of labeled images that take part in the training

process, the Iou and DSC are improved.

In Figure 4, boxplots have been used to visually represent the

range of variation in IoU values achieved by the four methods

mentioned earlier, where 1/2 labeled images were employed for

training. We can see our proposed method achieved lower

variation and higher mean IoU for for both 2CH and 4CH

images, in comparison to the other methods. In addition,

Figure 5 illustrated the trends of mean IoU as the number of

labeled images increases. It was observed that as the number of

labeled images utilized in the training process increased, the
FIGURE 7

Visual comparison of CAC method and the proposed method on 6 typical cha
The value of IoU is marked on the right upper corner of each image. (A–C)
images. (D) The visual comparison of the performance on images where the
of the performance on images that have no a clear border between the vent

Frontiers in Cardiovascular Medicine 10
mean IoU also improved. Notably, the proposed method

consistently outperformed the other three methods in terms of

segmentation accuracy across all increments of labeled data.

The typical visual segmentation result of CAC method and

the proposed method were shown in Figure 6, where the

colorful line represents the ground truth. In Figures 6A,B, it

shown that the proposed method could discriminate the

borders of myocardium better than CAC method. Figures 6C,D

shown that the proposed method could reduce the probability

of segmentation errors in each region of the images.

Figures 6E,F shown that the proposed method achieved a

better identification of the ventricle and myocardium location

than CAC method.

In Figure 7, we shown certain challenging cases with poor

image quality. The IoU values are presented in the upper right

corner of each segmentation result. It becomes evident that the
llenging images. The red, green and blue lines represent the ground truth.
The visual comparison of the performance on some typical low contrast
complete cardiac structures are not present. (E,F) The visual comparison
ricle and the atrium.
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proposed method surpassed limitations of echocardiography more

effectively. Specifically, Figures 7A–C demonstrate that the

proposed method outperformed the CAC method in mitigating

the disadvantage of low contrast in echocardiography.

Additionally, Figure 7D showcases that the proposed method

achieved superior heart location identification compared to the

CAC method in images where complete cardiac structures are

not present. Moreover, Figures 7E,F indicate that the proposed

method reduced the likelihood of segmentation errors in regions

lacking clear boundaries between the ventricle and the atrium.
4. Conclusion

In this paper, we proposed a semi-supervised method to

segment the cardiac structures with echocardiography. The

proposed method first applied contrastive learning strategy into

cardiac structure segmentation, allowing for effective use of

unlabeled data. The network was able to mitigate the adverse

effects of low contrast, incomplete cardiac structures and unclear

boundaries in certain aspects of echocardiography. A lot of

experiments conducted on the CAMUS dataset shown that the

proposed network can effectively employ unlabeled data for the

automatic segmentation of multiple structures, resulting in

outstanding performance. This advancement contributes

significantly to the diagnosis and screening of cardiovascular

diseases (CVD), and also reduce the burden of doctors in

assessing echocardiography.
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