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Endothelial damage and vascular pathology have been recognized as major
features of COVID-19 since the beginning of the pandemic. Two main theories
regarding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
damages endothelial cells and causes vascular pathology have been proposed:
direct viral infection of endothelial cells or indirect damage mediated by
circulating inflammatory molecules and immune mechanisms. However, these
proposed mechanisms remain largely untested in vivo. In the present study, we
utilized a set of new mouse genetic tools developed in our lab to test both the
necessity and sufficiency of endothelial human angiotensin-converting enzyme
2 (hACE2) in COVID-19 pathogenesis. Our results demonstrate that endothelial
ACE2 and direct infection of vascular endothelial cells do not contribute
significantly to the diverse vascular pathology associated with COVID-19.
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Introduction

The most common clinical feature reported in patients with COVID-19 is respiratory

symptoms (1, 2). In addition to primarily causing pulmonary symptoms, COVID-19

disease is accompanied by vascular pathology, endothelial damage, and vascular

coagulopathy (3–5). Reports emerged around the world confirming a disproportionate

prevalence of abnormal thrombotic events and vascular pathology in patients with

COVID-19, even in those not in intensive care units (6–14). Theories regarding the

mechanism of vascular disease observed in patients with COVID-19 have been proposed,

including direct infection of endothelial cells and systemic inflammatory responses

(15–22). However, these hypotheses remain largely untested, and the cellular basis of

vascular pathology remains controversial. In this study, we used a set of new mouse

genetic tools (23) to rigorously test endothelial contribution to COVID-19-associated

vascular pathology.
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Materials and methods

Mice

hACE2fl/y mice and LSL-hACE2+/0 mice have been generated

through CRISPR/Cas9-assisted mouse embryonic stem cell

targeting and have been described (23). Briefly, for loss of function

mouse line, the human ACE2 cDNA sequence was inserted after

the ATG-start codon of mouse Ace2 in exon2, flanking the polyA

cassette with loxP sites, to achieve Cre-mediated cell type-specific

deletion of ACE2. For gain of function mouse line, the human

ACE2 cDNA sequence was targeted to Rosa26 locus with

Lox-STOP-Lox cassette to permit tissue-specific gain of expression

of ACE2. Tie2-Cre transgenic mice have been used for tissue-

specific drivers as previously described (24). All mice were

maintained on a mixed genetic background, including C57BL/8

and other strains, at the University of Pennsylvania animal facility.

Mice were genotyped by PCR as described (23). The number of

male mice used in each experiment ranged from three to nine.
Viral inoculation and tissue harvest

Viral inoculations were performed as described previously (23).

Briefly, mice were anesthetized with isoflurane and then intranasally

infected with SARS-CoV-2 (Isolate USA-WA1/2020; BEI resources:

NR-52281) that was obtained from BEI Resource. Mice were

monitored and weighed daily, then euthanized at a humane

endpoint when they lost 20% of their starting weights. Mice studies

were combined results from Penn ABSL3 laboratory and Cornell

ABSL3 laboratory in accordance with protocols approved by the

IACUC at the University of Pennsylvania and Cornell University.

For tissue harvest, mice were euthanized with ketamine/xylazine.

Lungs were gently inflated with PBS infusion via trachea

cannulation. Then lungs were fixed in 4% paraformaldehyde with a

minimum of 72 h to ensure viral inactivation. Tissues were removed

from the animal BSL3 facility, followed by ethanol dehydration and

embedding in paraffin blocks for histology. Hematoxylin and eosin

staining was performed on paraffin sections.
Immunofluorescence staining and analysis

Immunohistochemistry staining was performed as previously

described (23) with control and experimental samples on the same

slide and under identical staining conditions. Primary antibodies

were as follows: pan-ACE2 (goat, 1:1,000, R&D AF933), hACE2

(rabbit, 1:200, Abcam ab108209), SARS-CoV-2 nucleocapsid

(rabbit, 1:500, Rockland 200-401-A50), ICAM-1 (rabbit, 1:500,

Abcam ab179707), vWF (rabbit 1:1,000, Novus Biologicals NB600-

586), and PECAM (goat 1:500, R&D AF3628). Fluorescence-

conjugated Alexa Fluor secondary antibodies were used (1:500,

Invitrogen) according to the primary antibody species and

counterstained with DAPI (1:1,000). ICAM1 and vWF

fluorescence intensity were calculated by integrated fluorescence

intensity. All images were analyzed using ImageJ/FIJI software.
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Statistics

Mice were inoculated with SARS-CoV-2 in a blinded fashion

without knowledge of genotypes, and infections were performed

in two different ABSL-3 facilities with independent

experimenters. Statistical tests used to determine significance are

described in the figure legends. GraphPad Prism 9.5.1 was used

to generate graphs and statistical analyses. Survival curve

statistics were performed with log-rank Mantel-Cox tests. All

t-tests performed were two-tailed.
Results and discussion

Cellular expression of ACE2 is indispensable for SARS-CoV-2

infection in pneumocytes (25, 26), but SARS-CoV-2 is unable to

bind mouse ACE2. To determine if endothelial cells directly

contribute to lethal infection, we generated animals that express

human ACE2 (hACE2) from the mouse Ace2 locus in a manner

that enables cell-specific loss of hACE2 using Cre recombinase

(hACE2fl/y mice) (23). We crossed hACE2fl/y mice onto a Tie2-

Cre transgenic mouse line that drives Cre expression in

endothelial cells (ECs) to generate mice that express hACE2 in

all cells except vascular ECs. hACE2fl/y; Tie2-Cre+ mice and

control littermates were exposed to 105 PFU of SARS-CoV-2

virus via nasal inhalation. hACE2fl/y; Tie2-Cre+ mice showed no

significant difference in survival after exposure to SARS-CoV-2

compared with the littermate controls (Figure 1A). Histological

analysis revealed the presence of alveolar infiltrates and

pulmonary vascular thrombi in the lungs of infected hACE2fl/y;

Tie2-Cre+ mice that were indistinguishable from findings

observed in control hACE2fl/y mice (Figure 1B). Histological

analysis using hematoxylin-eosin staining of tissue sections from

the small intestine, kidney, liver, and heart also failed to identify

any vascular pathology (Supplementary Figure S1). Next, we

evaluated the expression of inflammation-induced protein

intracellular adhesion marker 1 (ICAM1) and the pro-coagulant,

inflammation-induced protein Von Willebrand factor (vWF) in

the mice following the SARS-CoV-2 infection, given both

ICAM1 and vWF have been closely associated with COVID-19

induced vascular damage (27, 28). Expression of ICAM1 and

vWF were also similar in the lung capillary endothelial cells of

SARS-CoV-2-infected hACE2fl/y and hACE2fl/y; Tie2-Cre+ mice

(Figures 1C,D).

The studies described above suggested that endothelial cell

infection is not required for vascular COVID-19 pathology when

hACE2 is expressed at endogenous levels. In fact,

immunostaining of lung sections using anti-ACE2 antibodies was

able to detect ACE2 expression in epithelial but not endothelial

cells (23) (Figure 1E). To more rigorously test the role of

endothelial hACE2, we next crossed Tie2-Cre onto a recently

described Cre-activated gain of function hACE2 allele (loxP-stop-

loxP-hACE2 or LSL-hACE2+/0) (23) to over-express hACE2 in

vascular endothelial cells. Tie2-Cre;LSL-hACE2+/0 animals

exhibited very high endothelial-specific expression of hACE2,

assessed by immunostaining of tissue sections compared with
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FIGURE 1

Loss or gain of endothelial hACE2 does not alter SARS-CoV2 infection. (A) Survival of hACE2fl/y and hACE2fl/y; Tie2-Cre+ male mice (12 to 16-week-old
males) after infection with 105 PFU of SARS-CoV-2 via intranasal administration. This viral inoculation method was used in all experiments. n=6 (hACE2fl/y)
and 9 (hACE2fl/y; Tie2-Cre+); ns, non-significant; data are from two independent experiments. (B) H&E staining of hACE2fl/y and hACE2fl/y; Tie2-Cre+ lung
tissue 6 days after infection. The asterisk indicates intravascular thrombosis. Scale bars: 100 μm. (C) Immunofluorescent staining of the lung from hACE2fl/y

and hACE2fl/y; Tie2-Cre+ mice with antibodies against ICAM1 or vWF (green), and PECAM (red). Images are representative of four animals per genotype.
Scale bars: 100 μm. (D) Quantification of ICAM1 and vWF fluorescent intensity. The error bars represent mean ± s.d; statistical analyses were performed
using an unpaired two-tailed t-test; ns, non-significant. (E) Immunofluorescent staining of hACE2fl/y lung tissue using pan-ACE2 antibodies (grey) that
recognize both hACE2 and mACE2 proteins and co-stained with PECAM (magenta). Images are representative of three animals. Scale bars 50 μm.
(F) Immunofluorescent staining of the lung from hACE2fl/y; LSL-hACE2+/0 and Tie2Cre+; hACE2fl/y; LSL-hACE2+/0 mice is performed using anti-hACE2
antibody or anti-SARS-CoV-2 nucleocapsid (red) and costained with PECAM (green) 5 days after infection with SARS-CoV-2. The hACE2fl/y allele
enables these mice to be productively infected intranasally. Representative of three animals per genotype. Scale bars 100 μm.
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hACE2fl/y mice (Figure 1F). To ensure that Tie2-Cre;LSL-hACE2+/0

animals would be productively infected following SARS-CoV-2

exposure, we generated Tie2-Cre;LSL-hACE2+/0;hACE2fl/y animals

that support robust infection of the nasal and respiratory

epithelium (23) (Figure 1F). Despite high levels of endothelial

hACE2 expression, we failed to detect nucleocapsid protein that

colocalized with PECAM+ endothelial cells following nasal SARS-

CoV-2 infection (Figure 1F). In contrast, we have previously

shown that this gain of function allele is sufficient to drive

hACE2 expression and support SARS-CoV-2 infection in both

neuronal cells and lung epithelial cells (23). These studies

support the conclusion that SARS-CoV-2 does not confer

endothelial cell damage and vascular thrombosis through direct

viral infection of those cells. They further demonstrate that the

levels of circulating virus are too low to infect even endothelial

cells that express very high levels of hACE2, and therefore that

most COVID-19 pathology arises due to aerosol infection of the

nasal and pulmonary epithelium.

It has been debated whether direct viral infection of

endothelial cells or indirect damage from systematic

inflammation underlie COVID-19-associated vascular pathology

(3). Our murine vascular endothelial loss and gain of function

studies reported here provide strong in vivo evidence that

endothelial ACE2 and direct infection of vascular endothelial

cells do not contribute significantly to the diverse vascular

pathology associated with COVID-19. These findings are

consistent with previously reported in vitro studies that showed

human endothelial cells are not readily infected by SARS-CoV-2

(21). Together with our recently reported studies, these findings

strongly support a mechanism in which SARS-CoV-2 infection

of nasal epithelial and neuronal cells stimulates a powerful

inflammatory response that is the cause of COVID-19 vascular

pathology.
Limitations of the study

In the present study, we utilized both loss of function and gain

of function hACE2 mouse lines and demonstrated that direct

endothelial viral infection does not contribute to COVID-19-

associated vascular pathology. Future studies are needed to

define the cytokines that likely drive secondary vascular

inflammation and thrombosis and to understand the molecular

mechanism by which systemic inflammation damages

endothelium following SARS-CoV-2 infection. We used the

original isolate SARS-CoV-2 USA-WA1/2020 strain in our study

because that isolate is the best characterized regarding vascular

complication. Omicron BA.1 variant failed to confer lethal

disease and associated vascular phenotypes in our mouse models

(23). Future studies testing the impact of other variants on the

vascular system will be needed. We performed our studies on

male mice due to the Ace2 allele being located on the X

chromosome, enabling a straightforward comparison. Mouse

models are not humans, and our mouse model hACE2fl/y

expresses a higher level of hACE2 as previously reported (23).

Thus there are likely to be differences in pathogenic mechanisms
Frontiers in Cardiovascular Medicine 04
identified using our model compared to human studies.

However, this difference should bias toward rather than against a

direct endothelial infection mechanism and it does not weaken

our negative conclusions. Future studies looking at longer-term

vascular events in mice with lower levels of hACE2 expression

will be needed to address non-acute mechanisms of COVID-19-

related cardiovascular disease.
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