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Background: Patients with atrial septal defect (ASD) exhibit distinctive
electrocardiogram (ECG) patterns. However, ASD cannot be diagnosed solely
based on these differences. Artificial intelligence (AI) has been widely used for
specifically diagnosing cardiovascular diseases other than arrhythmia. Our study
aimed to develop an artificial intelligence-enabled 8-lead ECG to detect ASD
among adults.
Method: In this study, our AI model was trained and validated using 526 ECGs from
patients with ASD and 2,124 ECGs from a control group with a normal cardiac
structure in our hospital. External testing was conducted at Wuhan Central
Hospital, involving 50 ECGs from the ASD group and 46 ECGs from the normal
group. The model was based on a convolutional neural network (CNN) with a
residual network to classify 8-lead ECG data into either the ASD or normal
group. We employed a 10-fold cross-validation approach.
Results: Statistically significant differences (p < 0.05) were observed in the cited
ECG features between the ASD and normal groups. Our AI model performed
well in identifying ECGs in both the ASD group [accuracy of 0.97, precision of
0.90, recall of 0.97, specificity of 0.97, F1 score of 0.93, and area under the
curve (AUC) of 0.99] and the normal group within the training and validation
datasets from our hospital. Furthermore, these corresponding indices performed
impressively in the external test data set with the accuracy of 0.82, precision of
0.90, recall of 0.74, specificity of 0.91, F1 score of 0.81 and the AUC of 0.87.
And the series of experiments of subgroups to discuss specific clinic situations
associated to this issue was remarkable as well.
Conclusion: An ECG-based detection of ASD using an artificial intelligence
algorithm can be achieved with high diagnostic performance, and it shows great
clinical promise. Our research on AI-enabled 8-lead ECG detection of ASD in
adults is expected to provide robust references for early detection of ASD,
healthy pregnancies, and related decision-making. A lower number of leads is
also more favorable for the application of portable devices, which it is expected
that this technology will bring significant economic and societal benefits.
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1. Introduction

Atrial septal defect (ASD) is a common congenital heart

disease characterized by direct communication between the atrial

chambers. While many young adults with ASD may not exhibit

symptoms, the condition can lead to serious complications such

as arrhythmias, right heart failure, thromboembolism, and

pulmonary arterial hypertension (PAH). The early detection and

treatment of ASD is crucial for improving patient outcomes and

survival rates (1, 2).

ASD can be classified into several types, including secundum,

primum, sinus venosus, and coronary sinus defects. The majority

of ASD cases (about 80%) are secundum ASD, located in the

region of the foramen ovale, while 15% are primum ASD located

in the lower portion of the atrial septum. In this study, we will

focus on the secundum and primum defects as they account for

95% cases of ASD (3).

The standard diagnostic methods for ASD are transthoracic

echocardiography or transesophageal echocardiography (TTE),

which require specialized medical expertise and can be costly

and difficult to implement widely. Previous studies have

shown that patients with ASD exhibit different ECG patterns

compared to individuals with normal cardiac structure,

with typical findings including atrial tachyarrhythmias,

incomplete right bundle branch block, a tall P-wave indicative

of right atrial enlargement, right ventricular hypertrophy,

and a notched R wave in leads II, III, and AVF (4).

However, ASD cannot be diagnosed solely based on these

differences.

Artificial Intelligence (AI) is a general term that implies the

use of a computer to model intelligent behavior with minimal

human intervention (5). Deep learning allows computational

models that are composed of multiple processing layers to learn

representations of data with multiple levels of abstraction (6).

Convolutional Neural Network (CNN) is the widely used deep

learning framework. CNN is made of convolutions having

learnable weights and biases similar to neurons (nerve cells) of

the animal, which has been widely used in artificial intelligence-

ECG (AI-ECG) for specifically diagnosing cardiovascular

diseases other than arrhythmia. The residual network which is

an improvement of the traditional CNN is developed to

increase the layers of the network (7, 8). In this study, we

aimed to develop an AI-ECG algorithm for detecting ASD

among adults, which contained a CNN with a residual network.

Comparing to the previous studies by Moris et al. (9) and Kai

Liu et al. (10) and Kotaro et al. (11), the novelty of our

study lay in the utilization of artificial intelligence-enabled

8-lead ECG signal classification (with a lower computational

load compared to 12-lead) for screening congenital heart

disease in adults with comprehensive demographic and

electrocardiographic data. And we also did a series of

experiments of subgroups to discuss specific clinic situations

associated to this issue. Meanwhile, dual-center validation

yielded excellent results and increased the robustness of the

model.
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2. Patients and methods

2.1. Data collection

Our dataset consisted of retrospective data from patients aged

≥18 years who had an ECG at the Cardiac Function

Examination Center of Tongji Hospital and the Wuhan Central

Hospital (Huazhong University of Science and Technology,

Wuhan, China).

Our research included two datasets from two centers: Tongji

Hospital, affiliated with Tongji Medical College, Huazhong

University of Science and Technology (Wuhan Tongji Hospital);

and Wuhan Central Hospital. The ECGs from the former were

standard 10 s, 12-lead recordings at a sampling rate of 500 Hz,

obtained using a GE-Marquette ECG machine (GE MAC5500,

GE Healthcare, Milwaukee, WI, USA). The ECGs from the latter

were standard 10 s, 12-lead recordings at a sampling rate of

500 Hz, obtained on a Philips–Amsterdam machine or a Nihon

Kohden-Tokyo ECG machine. In order to ensure the training

speed of the model, we selected an 8-lead (III, avR, avL and avF

were deleted in the standard 12-lead raw) as the input to the model.

As shown in Figure 1, from the two centers, there was a total of

2,880 participants, and 3,005 ECGs were retrieved. Data from

Tongji Hospital, included 2,903 ECGs and 2,778 participants.

After excluding cases of patent foramen ovale (PFO), less

common types such as coronary sinus-type and sinus venosus-

type ASD, and postoperative ECGs, our center included 401

participants with premium and secundum ASD and their

corresponding 526 preoperative ECGs. The control group

consisted of 2,124 participants and 2,124 ECGs, all of whom had

normal cardiac structure confirmed via transthoracic

echocardiogram. These two sets of data comprised the training

and validation sets. Data from Wuhan Central Hospital included

102 ECGs and 102 participants. After excluding 2 ECGs with

ASD and 4 ECGs with normal cardiac structure, a total of 50

participants with ASD and their corresponding 50 ECGs, as well

as 46 participants with normal cardiac structure confirmed via

transthoracic echocardiogram and their corresponding 46 ECGs,

were included in the external test set, which consisted of a total

of 96 ECGs.

We conducted a series of experiments to explore specific

scenarios in our study. As shown in Table 1, the ASD group in

the training-validation dataset included 121 normal ECGs, 224

ECGs with incomplete right bundle branch block (IRBBB),

86 ECGs with complete right bundle branch block (CRBBB), and

67 ECGs with right ventricular hypertrophy (RVH). After

excluding the multi-label ECGs, our experimental group

consisted of 191 ECGs with IRBBB only, 72 ECGs with CRBBB

only, or 22 ECGs with RVH only. Meanwhile, we identified

specific subgroups within the normal control group that

displayed electrocardiogram patterns similar to those observed in

the ASD group. These subgroups consisted of 1,514 normal

ECGs, 30 ECGs with CRBBB, 53 ECGs with IRBBB, and 9 ECGs

with RVH. We then proceeded to compare each of these

subgroups from the normal control group with their
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FIGURE 1

Study sample selection. Medical record database and ECGs database were obtained from Tongji Hospital, Tongji Medical College of Huazhong University
of Science and Technology and Wuhan Central Hospital in 2012.01-2022.09. ASD, atrial septal defect; ECG, electrocardiogram.

TABLE 1 Differential analysis of the ECG features in the training-validation dataset and test dataset.

Training-validation dataset Test dataset

ASD group
(n = 526)

Normal group
(n = 2,124)

P value ASD group
(n = 50)

Normal group
(n = 46)

P value

Mean age 41.9 ± 13.7 48.6 ± 15.3 <0.001 54.8 ± 16.3 44.3 ± 13.1 0.002

Female 307 (76.6) 1,173(55.2) <0.001 37 (74.0) 31 (67.3) 0.508

Normal ECGs 121 (23.0) 1,514 (71.3) <0.001 19 (38.0) 38 (82.6) <0.001

Abnormal ECGs 405 (77.0) 610 (28.7) <0.001 31 (62.0) 8 (17.4) <0.001

Sinus rhythm 462 (87.8) 2,110 (99.3) <0.001 43 (86.0) 46 (100.0) 0.013

Atrial rhythm 64 (12.2) 14 (0.7) <0.001 7 (14.0) 0 0.013

1°AVB 30 (5.7) 11 (0.5) <0.001 – – –

IRBBB 224 (42.6) 55 (2.6) <0.001 9 (18.0) 1 (2.2) 0.017

CRBBB 86 (16.3) 34 (1.6) <0.001 8 (16.0) 0 0.006

RVH 67 (12.7) 13 (0.6) <0.001 1 (2.0) 0 >0.999

LVH 8 (1.5) 140 (6.6) <0.001 0 1 (2.2) 0.479

ELLA 18 (3.4) 24 (1.1) <0.001 2 (4.0) 0 0.496

ELRA 10 (1.9) 6 (0.3) <0.001 1 (2.0) 0 >0.999

APB 17 (3.2) 35 (1.6) 0.019 2 (4.0) 0 0.496

VPB 24 (4.6) 35 (1.6) <0.001 6 (12.0) 0 0.027

ASD, atrial septal defect; ECG, electrocardiogram; atrial rhythm, atrial fibrillation, atrial flutter, and atrial tachycardia; 1°AVB, first-degree atrioventricular block; IRBBB,

incomplete right bundle branch block; CRBBB, complete right bundle branch block; RVH, right ventricular hypertrophy; LVH, left ventricular hypertrophy; ELLA,

enlargement of the left atrium; ELRA, enlargement of the right atrium; APB, atrial premature beat; VPB, ventricular premature beat.

The bold values indicate statistically significant difference between the two groups.
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corresponding electrocardiogram diagnostic subgroups in the ASD

group.

In addition, Figures 2, 3 depict imaging criteria for the basic

materials. Meanwhile, Figure 2 shows the echocardiogram of

secundum (Figure 2A), and primum (Figure 2B) ASD, in which

doppler ultrasound shows the direction and location of atrial
Frontiers in Cardiovascular Medicine 03
shunting and the defect location. The defect of the primum ASD

is closer to the ventricle.

Meanwhile, Figure 3 shows the electrocardiograms of the

participants of the ASD group (Figure 3A) and the normal

group (Figure 3B). Figure 3A shows first-degree atrioventricular

block, complete right bundle branch block, right ventricular
frontiersin.org
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FIGURE 2

Echocardiograms of two kinds of ASD. The echocardiogram of secundum (A), and primum (B) ASD. Doppler ultrasound shows the direction and location
of atrial shunting and the defect location. ASD, atrial septal defect.

FIGURE 3

Electrocardiograms of the participants of the ASD group and the normal group. (A) Is the electrocardiogram of a participant of the ASD group. (B) Is the
electrocardiogram of a participant of the normal group. ASD, atrial septal defect.

Luo et al. 10.3389/fcvm.2023.1279324
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hypertrophy and rightward deviation of the electrical axis.

Meanwhile, Figure 3B displays a normal ECG.
2.2. Overview of the artificial intelligence
model

2.2.1. Distribution of the training–validation set
and test set

After the AI algorithm from the training–validation set had

been developed, this study included a total of 2,650 ECGs from

Tongji Hospital, comprising 526 ECGs from 401 patients with

ASD and 2,124 ECGs from the 2,124 subjects in the normal

group. To create a combined training–validation set, we used

ten-fold cross-validation, where each fold consisted of 1/10 of the

data as the validation set and the remaining 9/10 as the training

set. This approach generated independent algorithm results for

each fold, and the scores were then summed to obtain the final

score for AI-ECG performance. After that, the external test,

which consisted of 96 subjects and 96 ECGs, was used to

evaluate the performance of the model (12).

2.2.2. CNN with residual networks
The basic algorithm for this research, which achieved binary

classification between the ASD group and the normal group,

could be summarized as a CNN with residual networks, as

shown in Figure 4.
FIGURE 4

Demonstration of AI model of the CNN with residual networks. (A) Shows the s
2-D convolutional layers in (A,C) shows the structure of the 1 × 3, 1 × 5, and 1 ×
convolution; Concat, concatenate; ReLU, rectified linear unit; BatchNorm: ba
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In Figure 4A, after preprocessed and transformed, the collected

ECG data was input the model with the shape of 1 × 8 × 4,000,

where 1 represented the number of channel, 8 corresponded to

the height, and 4,000 corresponded to the width. After inputting

it into the model, the model captured features from multi-lead

signals using a 2-D convolution layer with a 1 × 50 convolution

kernel initially. And then this layer output a 3-D tensor with the

shape of 32 × 8 × 1,976, where 32 represented the number of

channels, 8 corresponded to the height, and 1,976 corresponded

to the width. This was followed by a 2-D convolutional layer

with a 1 × 16 convolution kernel. And then this layer output a

3-D tensor with the shape of 32 × 8 × 242, where 32 represented

the number of channels, 8 corresponded to the height, and 242

corresponded to the width. Subsequently, parallel 2-D

convolutional layers with different kernel sizes (1 × 3, 1 × 5, and

1 × 7, representing different scales) were employed to extract

multi-scale features from various leads. It was noticed that there

were 6 1 × 3 2-D convolution layers, 5 1 × 5 2-D convolution

layers, and 4 1 × 7 2-D convolution layers in this stage. And the

shape of all of these convolution layers was 32 × 8 × 242 due to

the different paddings. Each parallel feature obtained from the

convolution layers was flattened into a 1-dimensional feature,

and a 1-D block, utilizing the same kernel size, was applied to

further extract features. During the process of being flattened, the

corresponding parameters was 256 × 242, where 256

corresponded to the height, and 242 corresponded to the width.

It was noticed that there were 4 3 1-D convolution layers, 4 5
tructure of the network. (B) Shows the structure of the 1 × 50 or the 1 × 16
7 2-D convolution layers and 3, 5, and 7 1-D convolution layers in (A) Cov,
tch normalization.
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1-D convolution layers, and 4 7 1-D convolution layers in this

stage. An average pooling layer was then utilized after the 1-D

block. Subsequently, we concatenated all the features extracted

from the different parallel blocks and employed a fully connected

layer as the classifier to yield the final outcome.

Reports indicated that in the early phases of signal extraction,

the use of larger convolution kernels was advantageous since they

had the capacity to encompass multiple facets of the signal in a

single cycle (13). As the feature length decreased, the feasibility

of employing smaller convolution kernels to capture finer details

increased. Therefore, we implemented feature extraction by

combining 3 different sizes of 2-D convolution layers and

corresponding sizes of 1-D convolution layers in this model.

In Figure 4B, there were 2 kinds of convolution layers applied

in this model. The upper layer was the convolutional layer applied

to the 1 × 50 2-D convolution layer and 1 × 16 2-D convolution

layer. In this block, from front to back, they were: batch

normalization, rectified linear unit, max-pooling, convolution,

max-pooling. Batch normalization was a technique that

normalized the input to a neural network layer during training

to improve convergence and reduce overfitting (14). Rectified

linear unit was an activation function that introduced non-

linearity in a neural network by setting negative values to zero,

allowing the network to learn complex patterns (15). Max-

pooling was a down-sampling operation that extracted the most

significant information from a region of the input by selecting

the maximum value, reducing the spatial dimensions of the data

(16). Convolution was an operation that extracted features from

input data by applying a set of learnable filters to create feature

maps, which were essential for image and pattern recognition

tasks (17). The lower layer was the convolutional layer applied to

the 1 × 3, 1 × 5, and 1 × 7 2-D convolution layers and 3, 5, and 7

1-D convolution layers. In this block, from front to back, they

were: convolution, batch normalization, rectified linear unit,

convolution, batch normalization, convolution, batch

normalization, dropout. Dropout was a neural network

regularization method that randomly deactivated a portion of

neurons during training to enhance model generalization and

prevent overfitting (18). From the input end to the output end,

there was a short connection, which was a residual network.

Our framework was implemented based on PyTorch and ran on

the NVIDIA Corporation GV100GL (Tesla V100 SXM2 32GB)

graphics card. An effective optimization method named Adam was

adopted to achieve efficient computing (19). A weighted loss

function named cross entropy was adopted during the training to

achieve better performance by focusing on the samples that were

not easily classified (20). The hyperparameters of our proposed

CNN were set to {53, 0.001, 500}, which denoted the batch size,

learning rate, and training epoch respectively. More details were in

the Supplementary Excel S1.
2.3. Statistical method

We utilized non-parametric tests including the Chi-square test

and Fisher’s precision test to assess the association between
Frontiers in Cardiovascular Medicine 06
qualitative data presented in our tables. Additionally, we analysed

quantitative data, such as age, using the Mann–Whitney U test.

SPSS Statistics 26 was used as the statistical software, with

significance defined as P < 0.05. To evaluate the performance of

our AI model, we assessed the prediction accuracy, specificity,

sensitivity, precision, area under the receiver operating

characteristic curve (AUC), and F1 score (harmonic mean of the

predictive positive value and sensitivity). Confusion matrices

were utilized to illustrate the details of the calculation process,

with prediction accuracy, sensitivity, specificity, and F1 score for

each class determined by accuracy, true-positive (TP), true-

negative (TN), false-positive (FP), and false-negative rates (FN),

using the following formulas. Further information regarding

these methods is available in our previous study (21):

Accuracy ¼ TPþ TN
TPþ TNþ FNþ TP

(1)

Precision ¼ TP
TPþ FP

(2)

Sensitivity(Recall) ¼ TP
TPþ FN

(3)

Specificity ¼ TN
FPþ TN

(4)

F1 score ¼ 2� sensitivity � precision
sensitivity þ precision

(5)
3. Results

We summarized the basic characteristics of the ASD patients in

the training–validation dataset in Table 2. Females accounted for

76.6% of patients, average age was 41.9 ± 13.7 years old. In the

normal heart group, females accounted for 55.2% of patients.

The average age was 47.3 ± 17.7 years old. The secundum ASD

group consisted of 387 individuals, accounting for 98.7% of the

total. Primum ASD was more likely to be associated with mitral

and tricuspid valve insufficiency than secundum ASD.

Meanwhile, in the external test dataset, female participants

accounted for 74% of the ASD group. The average age was

54.8 ± 16.3 years old. The secundum ASD group consisted of 49

individuals, accounting for 98% of the total, while in the normal

heart group, females accounted for 67.3%. The average age was

44.3 ± 13.1 years old.

Out of 401 cases in the training-validation dataset, 202 (50.3%)

experienced dyspnea on exertion, 123 (30.6%) were asymptomatic,

103 (25.6%) had palpitation, 51 (12.7%) had dizziness or headache,

38 (9.4%) experienced chest pain, 37 (9.2%) reported fatigue, 22

(5.4%) had lower limb edema, and 15 (3.7%) were pregnancy-

related. Additionally, 11 (2.7%) experienced syncope. Among

these cases, 187 (46.7%) underwent surgery via a thoracic

incision, 179 (44.6%) received trans-peripheral venous

intervention, and 35 (8.7%) did not undergo any surgery.
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TABLE 2 Characteristics of the sample, ASD group in the training-validation group.

Total
(N = 401)

Secundum ASD
(n = 387)

Primum ASD
(n = 14)

P value

Age, mean (SD) 41.9 ± 13.7 41.8 ± 13.7 43.3 ± 13.8 0.701

Female, n (%) 307 (76.6) 298 (77.0) 9 (64.3) 0.099

Tricuspid incompetence, n (%) 46 (11.5) 37 (9.6) 9 (64.3) <0.001

Hypertension, n (%) 29 (7.2) 28 (7.2) 1 (7.1) 0.99

Mitral incompetence, n (%) 25 (6.2) 17 (4.4) 8 (57.1) <0.001

Cerebrovascular disease, n (%) 12 (3.0) 12 (3.1) 0 0.649

Coronary heart disease, n (%) 11 (2.7) 10 (2.6) 1 (7.1) 0.327

NYHY III–IV, n (%) 9 (2.2) 9 (2.3) 0 0.724

Diabetes, n (%) 7 (1.7) 6 (1.6) 1 (7.1) 0.222

Hyperthyroidism, n (%) 3 (0.7) 3 (0.8) 0 0.899

Aortic incompetence, n (%) 1 (0.2) 1 (0.3) 0 0.965

Dilated cardiomyopathy, n (%) 1 (0.2) 1 (0.3) 0 0.965

Hypertrophic cardiomyopathy, n (%) 1 (0.2) 1 (0.3) 0 0.965

ASD, atrial septal defect; NYHY III–IV, New York Heart Association classification of heart failure III–IV.

The bold values indicate statistically significant difference between the two groups.

FIGURE 5

Distribution of symptoms and treatments of the ASD group in the training-validation dataset. ASD, atrial septal defect.

Luo et al. 10.3389/fcvm.2023.1279324
Figure 5 provided a systematic description of symptoms and

treatments in the ASD group in the training–validation dataset.

Meanwhile, we also summarized the ECG characteristics of the

ASD group and normal group, which were shown in Table 1. In

the training-validation dataset, we found significant differences

between the two groups in terms of sinus rhythm(p < 0.001),

atrial rhythm (p < 0.001), first-degree atrioventricular block (1°

AVB) (p < 0.001), incomplete right bundle branch block (IRBBB)

(p < 0.001), CRBBB (complete right bundle branch block) (p <

0.001), enlargement of the left atrium (ELLA) (p < 0.001),

enlargement of the right atrium (ELRA) (p < 0.001), and RVH

(right ventricular hypertrophy) (p < 0.001), atrial premature beat

(APB) (p < 0.05) and ventricular premature beat (VPB) (p <

0.001). In the external test dataset, we found significant

differences in sinus rhythm (p < 0.05), atrial rhythm (p < 0.05),

CRBBB (p < 0.05), IRBBB (p < 0.05), and VPB (p < 0.05).
Frontiers in Cardiovascular Medicine 07
Table 3 showed the AI performance for the ASD group and

normal group. In the training–validation dataset, the accuracy of

identification for the AI-ECGs of the ASD group was 0.97, with

a precision of 0.90, recall of 0.97, specificity of 0.97, F1 of 0.93,

and AUC of 0.99. Meanwhile, in the test dataset, the accuracy of

identification for AI-ECG of the ASD group was 0.82, with a

precision of 0.90, recall of 0.74, specificity of 0.91, F1 of 0.81,

and AUC of 0.87.

These results were shown in receiver operating characteristic

(ROC) curves and confusion matrices, which could be found in

Figures 6, 7, providing details of the AI model based on 8-lead

ECG. Figure 6A demonstrated the ROC curve of the

classification for the ASD group in the training-validation dataset

with the AUC of 0.99. And the AUC of the normal group was

0.99 shown in the Figure 6B. Meanwhile, Figure 6C

demonstrated the ROC curve of the classification of the ASD
frontiersin.org
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TABLE 3 Demonstration of the AI-ECG performance in the ASD group and normal group.

Training-validation dataset Test dataset

ASD group (n = 526) Normal group (n = 2,124) ASD group (n = 50) Normal group (n = 46)
Accuracy 0.97 0.97 0.82 0.82

Precision 0.90 0.99 0.90 0.76

Sensitivity/recall 0.97 0.97 0.74 0.91

Specificity 0.97 0.97 0.91 0.74

F1 0.93 0.98 0.81 0.83

AUC 0.99 0.99 0.87 0.87

ASD, atrial septal defect; AI, artificial intelligence; AUC, area under curve.

FIGURE 6

ROC curve of the ASD group and the normal group based on the 8-lead ECG; (A,B) demonstrated the ROC curve of the classification of the ASD group
and the normal group in the training-validation dataset; (C,D) demonstrated the ROC curve of the classification of the ASD group and the normal group in
the test dataset. ROC, receiver operating characteristic; ASD, atrial septal defect.
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group in the external test dataset with the AUC of 0.87. And the

AUC of the normal group was 0.87 shown in the Figure 6D.

Figure 7 showed the confusion matrix of the ASD group and

normal group. Figures 7A,C showed the overall predicted results

of the model with the 10-fold cross-validation. Figures 7B,D

showed the F1 scores of corresponding parts in Figures 7A,C

which were consistent with Table 3.
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Table 4 presented a comparative analysis of AI performance

between subgroups of the ASD group and the normal group. In

the subgroup analysis represented in Table 4, the classification of

two subgroups with the electrocardiographic features of IRBBB

and CRBBB, where the F1 score was 0.98, demonstrated the best

F1 score. The matrices were shown in the Supplementary

Figure S1, which supported our results.
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FIGURE 7

Confusion matrix of the ASD group and the normal group based on the 8-lead ECG; (A,B) shows the confusion matrix of the predicted number and the F1
score in the training-validation dataset; (C,D) shows the confusion matrix of the predicted number and the F1 score in the test dataset. ASD, atrial septal
defect.

TABLE 4 AI -ECG performance comparison between subgroups of the ASD group and the normal group.

Normal
(n:121, 1,514)

RVH
(n:22, 9)

IRBBB
(n:191, 53)

CRBBB
(n:72, 30)

Training-validation dataset
(n:526, 2,124)

Accuracy 0.97 0.94 0.97 0.97 0.97

Precision 0.70 0.95 0.98 0.96 0.90

Sensitivity/recall 0.92 0.95 0.98 1.00 0.97

F1 0.80 0.95 0.98 0.98 0.93

AUC 0.99 0.99 0.99 0.99 0.99

The number of electrocardiograms indicating atrial septal defect is represented before the comma in parentheses, and the number of electrocardiograms in the normal

group is represented after the comma. ASD, atrial septal defect; AI, artificial intelligence; AUC, area under curve; IRBBB, incomplete right bundle branch block; CRBBB,

complete right bundle branch block; RVH, right ventricular hypertrophy.
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4. Discussion

In this study, we presented an AI model for detecting ASD

based on ECG data. Our study involved a total of 3,005 ECGs

and 2,880 participants aged 18 and older, collected from two
Frontiers in Cardiovascular Medicine 09
medical centres. Specifically, Wuhan Tongji Hospital contributed

2,903 ECGs and 2,778 participants. After excluding 253 ECGs

and 253 participants from Tongji Hospital, our dataset consisted

of 526 ECGs from 401 individuals with ASD and 2,124 ECGs

from a control group of 2,124 individuals with normal cardiac
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structures. Our method demonstrated a strong discriminatory

ability in distinguishing between ASD cases and those with

normal heart structures, achieving an AUC of 0.99 and an F1

score of 0.93. In an external test dataset, which included 50

ECGs from 50 participants with ASD and 46 ECGs from 46

participants with normal heart structures, our model achieved an

AUC of 0.87 for distinguishing ASD cases and an F1 score of 0.81.

Comparatively, a previous study by Moris et al. (9) reported an

AUC of 0.96, assessing 1,192 ECGs (828 from individuals with

normally structured hearts and 364 with ASD) involving 792

participants under the age of 18. Another study by Liu et al. (10)

achieved an AUC of 0.88, identifying ASD in 1,196 patients of

all age ranges with secundum ASD, along with a control group

of 21,430 individuals, using a CNN-based model. In contrast, our

study, conducted by Miura et al. (11), successfully identified ASD

across three medical institutions on two continents, using

671,201 ECGs from 80,947 patients aged 18 and older,

incorporating a CNN-based model with an AUC ranging from

0.85 to 0.90.Moris et al. (9) focused on image classification in the

pediatric population. Additionally, while Liu et al. (10) focused

exclusively on secundum ASD, our study also included premium

ASD other than secundum ASD in the model development

process. Miura et al (11). definitely did excellent work which

involving 3 centres from 2 continents. However, all these studies

utilized 12-lead ECG data. Therefore, the novelty of our study lay

in the utilization of artificial intelligence-enabled 8-lead ECG

signal classification, which offered a lower computational load

compared to 12-lead ECGs, for ASD screening in adults. While it

was worth noting that AI-ECG models for ASD detection had

been developed by researchers worldwide in recent years, only

the model developed by Miura et al. (11). and our model

involved multiple medical centres to validate their robustness.

Table 2 demonstrated that premium ASD patients had a

significantly higher likelihood of associated with mitral and

tricuspid insufficiency compared to secundum ASD patients (p <

0.05), which might be due to the difference in the anatomical

characteristics of the two types of ASD (1). This physiological

change provided hope and potential for the classification of

subtypes of ASD based on the AI-ECG. Our study displayed the

basic data and electrocardiogram data of the experimental

group’s two types of ASD (Supplementary Table S1).

Nonetheless, as the majority of cases involved secundum ASD,

their higher incidence limits the scope of development for the

AI-ECG model for the subgroups of ASD. If there are larger

sample sizes for the two types of ASD, more meaningful

classification criteria, and the availability of multimodal data, it

may also be possible to achieve classification of the subtypes of

ASD.

Detecting and treating ASD at an early stage is significantly

important for delaying the associated heart failure and

pulmonary hypertension, preventing malignant arrhythmias and

related complications, and ultimately improving patient prognosis

(1, 2). Figure 5 showed the distribution of symptoms and

treatments of the ASD group in the training-validation dataset.

Although the description of symptoms was influenced by

subjective factors, these symptoms were often associated with the
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severity of the atrial defect. Therefore, the statistical results of

this study served as a reminder of the severity of the ASD group

in this training–validation set. Meanwhile, the gold standard for

diagnosing ASD—echocardiography—is difficult to implement as

a screening tool in some regions and institutions due to financial

reasons. In comparison, ECG has the advantages of being non-

invasive and inexpensive. Studies have shown that patients with

ASD display ECG changes, such as 1°AVB, RBBB, and RVH,

when compared to the normal population (4). However, ASD

cannot be solely diagnosed based on these electrocardiographic

features. Our study utilized the network to extract ECG features

from the training set and then make predictions for the

remaining ECGs. The results showed that AI-ECG had excellent

performance in classifying the ASD group and the normal group,

providing strong theoretical support for applying AI-ECG in

ASD screening. Moreover, congenital heart disease is a condition

that can increase circulatory load and is a risk factor for high-

risk pregnancies. Therefore, detection of ASD in adults has

significant implications for successful pregnancy and delivery.

Hence, the related results could serve as an efficient reference for

clinical decision-making (4). With the application of relevant

research worldwide, using AI-ECG as an automated screening

tool for ASD, whether in routine examinations or wearable

intelligent devices, is bound to bring significant economic and

social benefits.

When processing ECG data, imbalanced samples are often

encountered where the number of normal samples is much

higher than that of abnormal samples. This issue was observed in

the AI model for hypertrophic cardiomyopathy in an earlier

study by Ko et al. (22). In our own study, the ratio of normal to

abnormal samples was approximately 4:1, with 2,124 normal

samples and 526 abnormal samples. Given that the incidence of

ASD is 1.7 per 1,000 births (23), this imbalance is

understandable. However, it can lead to the model over-focusing

on normal samples. To mitigate the issue of overfitting, we

implemented dropout, batch normalization, and cross-validation

techniques. As for the data augmentation method, we once

experimented with the cross-sensitive approach, and the formula

was included in the code. However, we observed that the results

were similar to those of the previous experiment. To maintain

the simplicity of the model structure, we ultimately decided not

to use it. Meanwhile as shown in Table 1. We found significant

differences between the two groups in terms of atrial rhythm

(p < 0.05), 1°AVB (p < 0.05), IRBBB (p < 0.05), CRBBB (p < 0.05),

ELLA (p < 0.05), ELRA (p < 0.05), and RVH (p < 0.05). All of

these findings match the characteristics of previous studies on

ECG manifestations of ASD (24–27) which could be an

interpretation for doctors to understand the design of this study.

Furthermore, despite the sample imbalance, our study yielded

favourable classification performance both within our hospital

and at external medical institutions. Therefore, our study is still

feasible and valuable.

As you can see, we conducted subgroup analyses in Table 4.

The purpose of designing this experiment shown in Table 4 can

be summarized in two main objectives: Firstly, in real-world

medical practice, we often encounter scenarios where we need to
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TABLE 5 AI performance of different ECG leads in the external test.

12 leads 8 leads

ASD group (n = 50) Normal group (n = 46) ASD group (n = 50) Normal group (n = 46)
Accuracy 0.82 0.82 0.82 0.82

Precision 0.86 0.77 0.90 0.76

Sensitivity/recall 0.76 0.87 0.74 0.91

Specificity 0.87 0.76 0.91 0.74

F1 0.81 0.82 0.81 0.83

AUC 0.87 0.87 0.87 0.87

ASD, atrial septal defect; AI, artificial intelligence; AUC, area under curve; ECG, electrocardiogram.
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distinguish ASD from other conditions such as right ventricular

hypertrophy or complete right bundle branch block, as they may

manifest similar electrocardiographic patterns. This experiment

was designed to assess the model’s capability to accurately

differentiate between ASD and these related conditions. Secondly,

especially in the context of large-scale health screenings, a

substantial number of normal electrocardiograms are typically

present within the screened population. Our study included

sizable samples of normal electrocardiograms in both the

training-validation and test datasets. Therefore, discussing this

scenario serves as a necessary supplementary aspect of our

research. While discussions involving more medical centres and

larger sample sizes would certainly provide valuable insights, the

subgroup analysis presented in Table 4 effectively shows the

model’s classification performance in the aforementioned

scenarios. And the confusion matrix related to Table 4 was

shown in the Supplementary Figure S1.

Our AI model was based on ECG signals. It is known that the

ECG could be presented in two different forms: images and signals.

The characteristics of images were more intuitive. The

characteristics of signals were more convenient to transmit and

process. Therefore, AI-ECG based on signals had indispensable

advantages compared with the model based on images.

Moreover, to improve the efficiency of the calculation, the raw

data we fed to the model was from 8-lead ECGs rather than the

traditional 12-lead ECGs. A previous study encouraged these

attempts (28). Our study showed the application potential of AI-

enabled 8-lead ECG in this field besides traditional arrhythmia.

In addition, the results of our study shown in the Table 5,

namely the F1 values and other scores, proved the feasibility of

our attempts. And the related confusion matrix was shown in the

Supplementary Figure S2. Meanwhile, although the traditional

CNN without residual networks has already been a relatively

mature AI architecture, the previous study also proved the

advantages of CNN with residual networks (8). Therefore, we

chose the CNN with residual networks to increase the gradients

of the network to improve the performance.
4.1. Limitation

While this study involved data from two centres, having more

centres and a larger dataset could further enhance the robustness of

the model. Additionally, there was a lack of supporting
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interpretative elements such as heatmaps. Furthermore, there was

a lack of human-machine performance comparison.
5. Conclusions

An ECG-based detection of ASD using an artificial intelligence

algorithm can be achieved with high diagnostic performance, and it

shows great clinical promise. Our research on AI-enabled 8-lead

ECG detection of ASD in adults is expected to provide robust

references for early detection of ASD, healthy pregnancies, and

related decision-making. A lower number of leads is also more

favourable for the application of portable devices. As future

research delves deeper into this technology and discussions

regarding its applicability in various contexts expand, it is

expected that this technology will bring significant economic and

societal benefits.
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