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Relationships between body
composition, anthropometrics,
and standard lipid panels in a
normative population
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Introduction: More than one third of adults in the United States (US) meet the
clinical criteria for a diagnosis of metabolic syndrome, but often diagnosis is
challenging due to healthcare access, costs and discomfort with the process
and invasiveness associated with a standard medical examination. Less invasive
and more accessible approaches to collecting biometric data may have utility in
identifying individuals at risk of diagnoses, such as metabolic syndrome or
dyslipidemia diagnoses. Body composition is one such source of biometric data
that can be non-invasively acquired in a home or community setting that may
provide insight into an individual’s propensity for a metabolic syndrome
diagnosis. Here we investigate possible associations between body composition,
anthropometrics and lipid panels in a normative population.
Methods: Healthy participants visited the Lab100 clinic location at a hospital
setting in New York City and engaged in a wellness visit led by a nurse
practitioner. Blood was analyzed at point-of-care using the Abbott Piccolo
Xpress portable diagnostic analyzer (Abbott Laboratories, IL, USA) and produced
direct measures of total cholesterol (TC), high density lipoprotein (HDL-C), low
density lipoprotein (LDL-C), very-low density lipoprotein (VLDL-C), and
triglycerides (TG). Body composition and anthropometric data were collected
using two separate pieces of equipment during the same visit (Fit3D and
InBody570). Regression analysis was performed to evaluate associations
between all variables, after adjusting for age, sex, race, AUDIT-C total score
(alcohol use), and current smoking status.
Results: Data from 199 participants were included in the analysis. After adjusting
for variables, percentage body fat (%BF) and visceral fat levels were significantly
associated with every laboratory lipid value, while waist-to-hip ratio also showed
some significant associations. The strongest associations were detected between
%BF and VLDL-C cholesterol levels (t = 4.53, p = 0.0001) and Triglyceride levels
(t = 4.51, p = 0.0001).
Discussion: This initial, exploratory analysis shows early feasibility in using
body composition and anthropometric data, that can easily be acquired in
community settings, to identify people with dyslipidemia in a normative
population.
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Introduction

Independent of geographic, demographic and socioeconomic

characteristics, approximately 1 in 3 adults in the United States

(US) will avoid medical appointments that they deem to be

necessary due to low health efficacy, difficulty accessing care, the

cost of care, and the general dislike or discomfort of typical

medical examinations (1). In addition, result turnaround in the

primary care setting can be slow and an estimated 3.5%–20% of

the US population (2) are needle phobic, which may lead to

avoidance of medical evaluations or treatment. As health

technology continues to progress, there is an increasing interest

in using non-invasive biometrics that can be acquired in non-

traditional medical settings to predict health status and overall

health risk. These emerging technologies may be able to address

a critical public health need to develop fast, accessible, and less

invasive ways to capture actionable health data for modern

healthcare consumers. Use of technologies for more accessible

health testing has the potential to be applied to many conditions

that currently impose important health concerns nationwide. For

example, in 2012 more than a third of adults in the US met the

clinical criteria for a metabolic syndrome diagnosis (3), setting

the scene for a major public health issue. A significant challenge

associated with addressing metabolic syndrome on a population

health level is the fact that many patients are often unaware of

their diagnosis and risk. For instance, as an important dimension

of the metabolic syndrome diagnosis, regular monitoring of

dyslipidemia is recommended (4), but since blood tests are the

only way to gather information about dyslipidemia, many people

do not engage in the necessary testing. A potential solution to

address these barriers is to explore less invasive and more

accessible ways to capture important biometric data, such as

regional body composition, which has shown strong associations

with metabolic syndrome (5).

Traditionally, clinical anthropometry consists of performing

systematic measurements of the human body to detail both its

size and shape (6). Similarly, body composition analysis uses

technologies such as dual energy x-ray absorptiometry

(DEXA) to return metrics such as relative percentages of

bone mass, muscle mass, visceral fat and other types of soft

tissue that make up total body mass (7). Dyslipidemia has

been studied previously in relation to regional body

composition namely, android (central adiposity) and gynoid

(adiposity at the hips). One such study using DEXA found

that a higher android to gynoid fat ratio was predictive of

CVD and dyslipidemia (8). While DEXA has proven to be a

valid and reliable gold-standard for gathering both body

composition and anthropometric data, the required

technology is expensive, occupies a large physical footprint,

and requires significant training and expertise to operate

regularly. Two alternatives to the DEXA apparatus are 3D

body scanning and Bioelectrical Impedance Analysis (BIA)

technologies. Both of these modalities are of comparable

accuracy (9, 10), less invasive, less expensive, require less

training and credentials to operate while providing
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instantaneous results. However, the utility of such low-cost

and non-invasive technologies for predicting conditions such

as dyslipidemia has not been adequately explored.

Thus, while standard blood chemistries have traditionally

been used as the primary indicators of metabolic disease,

there are many access barriers for members of the general

population which leads to delays in identification and diagnosis

of life-threatening conditions. If more individuals could be

rapidly and less-invasively screened for indicators of metabolic

disease, there would be great potential to prevent serious

morbidity and mortality in the general population. The goal of

this exploratory work is to evaluate whether meaningful

associations between body composition, anthropometrics and

blood lipid levels exist in a normative population, with the

hopes of advancing predictive capabilities for serious health

conditions through inexpensive, scalable, and minimally

invasive technologies.
Methods

Ethics statement

All study procedures and analyses were fully approved by the

Mount Sinai Program for the Protection of Human Subjects

(IRB#: 17-00952).
Data collection

Participants visited the Lab100 clinic location at a hospital

setting in New York City. Each study visit was conducted by a

nurse practitioner. A standard venipuncture blood draw was

performed by the provider, which included testing for a full

lipid panel. Participants were instructed to fast for at least

10 h prior to the blood draw and to consume a minimum of

12 ounces of water before arrival. The blood was analyzed at

point-of-care using the Abbott Piccolo Xpress portable

diagnostic analyzer (Abbott Laboratories, IL, USA) and

produced direct measures of total cholesterol (TC),

high density lipoprotein (HDL-C), low density lipoprotein

(LDL-C), very-low density lipoprotein (VLDL-C), and

triglycerides (TG).

Body composition and anthropometric data were collected

using two separate pieces of equipment during the same visit

(Fit3D and InBody570). The anthropometric assessment was

completed using the Fit3D ProScanner (Fit3D, CA, USA).

Following instructions to empty their bladder, participants

changed into minimal tight-fitted clothing without shoes, socks,

or jewelry and completed a scan. The scanner provided values

for body geometrics including lengths, circumferences, areas,

and volumes of the limbs, trunk and head. The Fit3D

ProScanner’s utility to produce body volume and composition

metrics has been previously validated against a gold standard

of Air Displacement Plethysmography (ADP) (9). Using data
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1280179
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 1 Study population demographics and variables of interest
including results of standard lipid panels.

Total participants (n) 199

Age [mean (SD)] 39.76 (11.02)

Gender = Female (%)
=Male (%)

101 (50.8)
98 (49.2)

Race =White (%) 165 (82.9)

ABSI score [mean (SD)] 0.08 (0.00)

SBSI score [mean (SD)] 0.11 (0.01)

Waist-to-hip ratio [mean (SD)] 0.87 (0.07)

Body fat percentage [mean (SD)] 24.03 (9.66)

Skeletal muscle mass [mean (SD)] 31.24 (7.46)

Visceral fat level [mean (SD)] 7.54 (4.76)

AUDIT-C score [mean (SD)] 5.27 (1.53)

Current smoking status = current smoker (%) 13 (6.5)

Cholesterol levels (mg/dl) [mean (SD)] 185.63 (31.08)

HDL-C levels (mg/dl) [mean (SD)] 63.97 (15.64)

LDL-C levels (mg/dl) [mean (SD)] 99.47 (28.85)

Triglyceride levels (mg/dl) [mean (SD)] 110.82 (62.49)

VLDL-C levels (mg/dl) [mean (SD)] 22.20 (12.48)

ABSI, a body shape index; SBSI, surface-based body shape index; AUDIT-C, Alcohol
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from the Fit3D, a body shape index (ABSI), surface-based body

shape index (SBSI) and waist-to-hip ratio (WtHR) were

calculated for each participant. Calculations for these variables

are as follows:

SBSI ¼ (H7=4)(WC5=6)
(BSA)(VTC)

ABSI ¼ WC

(BMI2=3)(H1=2)
WtHR ¼ WC:HC

Where H = Height; WC =Waist Circumference; BSA = Body

Surface Area; VTC = Vertical Trunk Circumference; BMI = Body

Mass Index; and HC = Hip Circumference.

Next, participant body composition was analyzed per

manufacturer instructions on the InBody570 (InBody USA,

Cerritos, CA). The InBody 570 has been validated against DEXA,

which is a gold standard of body composition measurement (10).

InBody570 allows percentage quantification of body fat (%BF),

visceral fat level (VFL), skeletal muscle mass (SMM), water and

bone in participants.
Use Disorders Identification Test; HDL-C, high density lipoprotein cholesterol;

LDL-C, low density lipoprotein cholesterol; VLDL-C, very low density lipoprotein

cholesterol.

Variables with no designated units were treated as unitless variables.
Statistical analysis

Descriptive statistics are reported for survey respondent

demographics. Distributions were examined for normality using

histograms and Q-Q plots. Results for all continuous variables

are presented as mean (SD), categorical variables are as n (%).

Linear regression was used to measure the associations of

anthropometric variables on lipid panel biomarkers. Regression

analysis was performed in two stages, first, to estimate zero-

order associations, and second, to examine those same

associations but also adjusting for age, sex, race, AUDIT-C

total score (alcohol use), and current smoking status. The

selection of variables used for the adjusted models was based

on previous research which examined the relationship between

body metric parameters and/or lipid panel values (11–16). All

model assumptions were verified (17). When there were

significant associations at the zero-order level, a comparison

was made between the zero-order estimates and the adjusted

estimates. A 10% change in the estimate indicated the

presence of confounding as calculated via the following

formula: d ¼ zero-order�adjusted
zero-order . Model performance for the zero-

order models was assessed to indicate the quality of the

anthropometric factors on predicting lipid panel biomarkers.

Specifically, the R2 and Akaike information criterion (AIC)

were used to assess model performance with the best model

having the highest R2 and the lowest AIC. Due to multiplicity

concerns a family-wise false discovery rate p-value correction

was applied, raw p-values were not interpreted; “families”

corresponding to each table’s p-values as well as the group of

p-values for the regression analysis. All hypothesis tests were

two-tailed, and pFDR < 0.05 was considered statistically

significant. In the regression analysis, only significant estimates

were interpreted and had their change scores calculated. All

analyses were conducted using R (18).
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Results

Study group characteristics

A total of 347 participants completed the Lab100 assessment

protocol, and following our screening process that eliminated

those with an incomplete dataset or were actively taking

medication for dyslipidemia, a total of 199 participants were

included in this analysis. Study population demographics, body

composition measurements, anthropometrics, and confounding

variables used in the adjusted model are reported in Table 1.
Specific body composition metrics are good
predictors of lipid levels

In the unadjusted, zero-order effects, only WtHR was

correlated with every laboratory value measured, while ABSI was

not found to be correlated with any. VFL, %BF, SMM, and SBSI

were all associated with some metrics but not others. The most

significant zero order effect was seen between SMM and HDL-C

as for every 1-unit increase in SMM there is a 0.81-unit decrease

in the average HDL-C levels (t =−5.91, p < 0.0001). Table 2

details all zero-order associations found.

Following adjustments however, VFL and %BF were found to

be associated with every laboratory value. WtHR only had some

significant associations while SMM, SBSI, and ABSI had none.

%BF showed the two most significant associations with VLDL-C

(t = 4.53, p = 0.0001) and TG (t = 4.51, p = 0.0001). Of the 13

total adjusted associations that were found, 11 of them had >10%

change in estimated value as compared to the zero-order effect
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TABLE 2 All significant zero-order associations between lipid levels and body composition metrics.

Variable of interest Dependent variable Estimate Standard error Test statistic P-value
ABSI Cholesterol levels 879.5 441.2 2 0.0714

ABSI HDL-C levels 76 224.3 0.3 0.7604

ABSI LDL-C levels 727.7 410.4 1.8 0.1014

ABSI Triglyceride levels 343.5 895.8 0.4 0.7604

ABSI VLDL-C levels 67.5 178.9 0.4 0.7604

SBSI Cholesterol levels 117.2 318 0.4 0.7604

SBSI HDL-C levels 629.7 153.7 4.1 0.0001

SBSI LDL-C levels −215.4 294.8 −0.7 0.5825

SBSI Triglyceride levels −1,501.8 630.5 −2.4 0.0341

SBSI VLDL-C levels −300.6 126 −2.4 0.0341

Body fat percentage Cholesterol levels 0.6 0.2 2.8 0.0132

Body fat percentage HDL-C levels 0 0.1 0.2 0.8467

Body fat percentage LDL-C levels 0.4 0.2 1.9 0.0771

Body fat percentage Triglyceride levels 1 0.5 2.2 0.0451

Body fat percentage VLDL-C levels 0.2 0.1 2.2 0.0451

Skeletal muscle mass Cholesterol levels 0.1 0.3 0.5 0.7469

Skeletal muscle mass HDL-C levels −0.8 0.1 −5.9 <0.0001

Skeletal muscle mass LDL-C levels 0.6 0.3 2.1 0.0556

Skeletal muscle mass Triglyceride levels 1.9 0.6 3.3 0.0039

Skeletal muscle mass VLDL-C levels 0.4 0.1 3.3 0.0039

Visceral fat levels Cholesterol levels 1.4 0.5 3.1 0.0056

Visceral fat levels HDL-C levels −0.4 0.2 −1.8 0.1014

Visceral fat levels LDL-C levels 1.2 0.4 2.9 0.0120

Visceral fat levels Triglyceride levels 3.2 0.9 3.5 0.0022

Visceral fat levels VLDL-C levels 0.6 0.2 3.5 0.0022

Waist-to-hip ratio Cholesterol levels 74.3 29.2 2.5 0.0252

Waist-to-hip ratio HDL-C levels −74.9 14 −5.4 <0.0001

Waist-to-hip ratio LDL-C levels 93.6 26.8 3.5 0.0022

Waist-to-hip ratio Triglyceride levels 278.4 56.3 4.9 <0.0001

Waist-to-hip ratio VLDL-C levels 55.7 11.3 4.9 <0.0001

ABSI, a body shape index; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; VLDL-C, very low density lipoprotein cholesterol; SBSI,

surface-based body shape index.
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and thus indicated confounding was present and the adjustments

were warranted (Supplementary Table S1).
Discussion

Recent trends in preventative healthcare have shown a change

in patients’ preference towards clinical assessments in non-

traditional settings that can improve access to care, provide a

comfortable experience, non-invasive methodology and high-

accuracy data predictions with meaningful and actionable results

for their health and wellbeing. With the next generation

technology and the wealth of information, this is feasible now

more than ever. For example, important biometrics that are easy

to assess accurately with the latest instruments can be used to

give insights into one’s risk for metabolic syndrome and

dyslipidemia, predict mortality and morbidity and suggest dietary

or lifestyle changes to enhance one’s quality of life.

The present study explored associations between readily

attainable anthropometric and compositional body metrics with

standard lipid panel values. Of note, three specific body

composition metrics, VFL, %BF, and WtHR, served as relatively

strong predictors of lipid numbers. Other studies have attempted

to determine significant associations using these metrics. In a
Frontiers in Cardiovascular Medicine 04
Taiwanese population, both TGs and blood pressure were shown

to be increased with increased VFL while there was a decrease

seen in HDL-C values with increased VFL. Higher VFL was also

associated with the presence of metabolic syndrome (19).

Additionally, body fat has been assessed in specific populations

and shown to be predictive of H-type hypertension (i.e., essential

hypertension with elevated homocysteine levels), in both men

and postmenopausal women (20, 21). Despite previous

exploration of WtHR as a metric that may be predictive of

cardiovascular disease, to date, no studies or meta analyses have

shown such strong associations between VFL, %BF and WtHR

with lipid values (22). Given that technological advances have

made it possible for these metrics to be captured in locations

such as gyms, pharmacies and other non-medical facilities, they

may have significant triage utility in identifying people who

should be referred for more invasive blood testing.

Interestingly, ABSI did not predict well in either the unadjusted

or the adjusted models. This may be due to the well-known

limitations that exist with tools such as BMI and WC, which are

both used to calculate the ABSI measurement. BMI and WC,

although used as screening tools for disease progression and

weight management, seem to infer questionable insights about

metabolic health (23). For all the predictive value that BMI has

as a screening tool, it may mistakenly characterize individuals
frontiersin.org
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who have a higher than average fat-free mass, such as athletes, as

being overweight or obese. Conversely, people with higher

relative volumes of fat mass can be seen as healthier (24).

Moreover, the sensitivity and specificity of BMI has been shown

to be poor as compared to BIA as a predictor of obesity in both

men and women with DEXA serving as the standard (25).

The variables that were used in the adjusted model were

determined based on a number of previous literature and other

studies assessing associations involving body metric parameters

and/or lipid panel values. Visceral fat levels have been shown to

increase with age in both men and particularly postmenopausal

women (11, 12). Men generally have higher TG numbers while

women have higher HDL-C levels (11, 13). Trends in

cardiovascular risk factors show that in recent decades, black

people in the US routinely have lower TC numbers despite

having higher overall cardiovascular risk profiles (14).

Additionally, alcohol consumption and cigarette smoking have

effects on various components of the lipid panel (15, 16).

Evaluation of our models pre- and post-adjustment for these

variables also showed significant effects, indicating that our

findings align with previous work that identify these variables as

confounders of blood lipid profiles.

The main limitations of this initial exploratory study were the

relatively small and homogenous nature of the study cohort. The

reduced sample size was primarily affected by the need to remove

participants who were on lipid modulating medications. This

excluding criterion was necessary to remove factors that may affect

associations between blood lipid levels and body composition/

anthropometric measurements. In addition, the study population

was rather homogenous in terms of race and ethnicity as well as

geographical location. As such, although the results and trends are

informative and statistically significant, follow-up trials that show

reproducibility in a larger, more diverse, and longitudinal sample

would be more representative of the general population. The direct

impact of using body composition parameters on the barriers to risk

stratification was not completed in this study, and is warranted to

evaluate both the positive and neagative implications for using these

methods. Finally, a healthcare cost analysis was beyond the scope of

the present work, however will potentially provide valuable

information on the financial benefits of using body composition

metrics in the diagnosis of metabolic health if performed in the future.
Conclusion

This work concludes that %BF, VFL, and WtHR are associated

with most values in a standard lipid panel. Thus, body composition

parameters have the potential to serve as an added, non-invasive,

inexpensive, and scalable screening tool for assessing metabolic

syndrome or other metabolic and lipid related health concerns.

With such measures, there is the potential to improve the

timeliness of patient diagnoses, optimize personalized treatment

plans, and increase compliance of patient medical evaluations.

Although this finding is statistically significant, larger and more

diverse sample sizes are recommended to be analyzed in order to

determine whether this proof-of-concept model is generalizable.
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