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Heart failure with preserved ejection fraction (HFpEF) is the largest unmet
clinical need in cardiovascular medicine. Despite decades of research, the
treatment option for HFpEF is still limited, indicating our ongoing incomplete
understanding on the underlying molecular mechanisms. Non-coding RNAs,
comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and
circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are
implicated in various cardiovascular diseases. However, their role in the
pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs,
lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF,
namely microvascular dysfunction, inflammation, diastolic dysfunction and
cardiac fibrosis. We interrogated clinical evidence and dissected the molecular
mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro
models that mimic the co-morbidities in patients with HFpEF. Finally, we
discuss the potential of ncRNAs as biomarkers and potential novel therapeutic
targets for future HFpEF treatment.

KEYWORDS

HFpEF, HFpEF pathophysiology, non-coding RNAs: miRNAs, lncRNAs, circRNAs,

biomarkers, therapeutic targets

Introduction

Heart Failure with preserved Ejection Fraction (HFpEF), defined as heart failure (HF)

with a left ventricular ejection fraction (LVEF) of ≥50%, represents a single largest unmet

clinical need in cardiovascular medicine given the high prevalence and health care burden,

and limited effective treatments. In comparison to its counterpart HF with reduced EF

(HFrEF), patients with HFpEF are generally older, display a higher proportion of

females and higher prevalence of comorbidities, including diabetes, obesity,

hypertension, chronic kidney disease, and atrial fibrillation, with less likelihood to have

a myocardial infarction (1). In addition to the symptoms and signs of volume overload

and a preserved EF, the diagnostic criteria of HFpEF include evidence of (1) structural

LV remodeling as assessed by left atrial (LA) volume index or LV mass; (2) diastolic

LV dysfunction assessed by early diastolic mitral inflow velocity (E), early diastolic

mitral annular tissue velocity (e’), and their ratio (E/e’); (3) pulmonary hypertension

indicated by peak tricuspid regurgitation velocity; and (4) increased myocardial wall

stress indicated by increased plasma natriuretic peptide levels (2). Currently, either

H2FPEF or HFA-PEFF scoring systems provides a reliable diagnostic algorithm to
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estimate the probability of the occurrence of HFpEF in patients that

is applicable in clinical practice and trials settings (3, 4).

HFpEF constitutes a substantial portion of HF cases, ranging

from 50% to 70% of all HF patients (5, 6), and currently affects

9% of people older than 60 years, with >6 million patients suffer

from HFpEF in the US and EU combined (7). While there is a

trend towards decreasing incidence of HFrEF (8), the incidence

of HFpEF increases over time due to aging populations and

rising co-morbidities, contributing to a substantial public health

challenge (1). HFpEF incidence varies from 50% to 60%

depending on the study cohorts, ranging from 250,000 to

300,000 cases annually (9, 10).

Patients with HFpEF face significant morbidity and mortality,

with one-year mortality rates range from 10% to 30% (11), while

five-year mortality rates raises to approximately 75% (12).

Unfortunately, there is limited evidence-based effective treatment

for HFpEF, which is attributed to the ongoing lack of

understanding of HFpEF underlying mechanisms. The treatment

for HFrEF has been proven inefficient to improve primary

outcome in HFpEF patients, indicating different underlying

pathophysiology. It is then imperative to further our understanding

on the pathomechanisms of HFpEF to elucidate pathways or genes

that can potentially be used as novel therapeutic targets.
Pathomechanisms of HFpEF: current
understanding

Compared to HFrEF, HFpEF patients are older and exhibit a

higher burden of non-cardiac comorbidities (13), with the most

prevalent ones being DM, obesity, hypertension, and renal

dysfunction (14). These comorbidities contribute to cardiac

remodeling through systemic inflammation and microvascular

damage (15, 16). Pro-inflammatory state in HFpEF is indicative

from the higher plasma levels of several inflammatory markers,

including TNFα, IL1β, IL6 and C-reactive protein (17, 18). This

chronic inflammation promotes damage on endothelium as the

frontline of the vasculature, leading to systemic endothelial

dysfunction, which is prevalent in HFpEF patients (19, 20) and

underlining the potential of microvascular dysfunction as a

therapeutic target in HFpEF.

Impaired cardiac microvascular function contributes to

reduced coronary perfusion, promoting development of diastolic

dysfunction (21). It also reflects dysfunction of cardiac

microvascular endothelial cells (CMECs) and its paracrine

signaling to cardiomyocytes. CMECs exhibit direct regulatory

function on cardiomyocyte relaxation (22, 23). Inflammatory

insults, such as TNFα and IL1β (23), and uremic sera from

patients with renal insufficiency (22), impaired the endothelial-

enhancement of cardiomyocyte relaxation. Improving endothelial

function with SGLT2 inhibitor led to improvement of diastolic

function (22, 23). Nitric oxide (NO) plays an important role to

mediate the regulatory effect of endothelium. Nevertheless,

endothelial-cardiomyocyte cross-talk goes beyond NO, as various

other endothelial-derived molecules contribute to this cellular

interaction (24, 25). Endothelial dysfunction leads to the
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imbalance between reduced availability of protective molecules

and increased secretion of detrimental factors. Addressing

endothelial dysfunction in HFpEF requires a comprehensive

approach aiming at restoring equilibrium among these factors,

and should not be limited only to targeting of a single

endothelial-derived factor.

Cardiomyocyte remodeling in HFpEF involves cardiomyocyte

hypertrophy, altered calcium handling, changes in myofilament

properties, and imbalance myocardial energetics, which

contribute to impaired diastolic function (5). Cardiomyocyte

hypertrophy is one of the most common structural abnormalities

associated with HFpEF. Ventricular myocardium from patients

displays increased resting or diastolic tension due to an increase

in actin-myosin cross-bridge activation as a result of elevated

diastolic cytosolic calcium concentration, which is due to reduced

sarcolemmal calcium extrusion due to sodium-calcium exchanger

abnormalities (26). At the cellular level, isolated cardiomyocytes

from HFpEF patients showed increased resting tension or passive

stiffness (27), which is also dependent on titin, a large

sarcomeric protein that functions as a molecular spring. The

stiffness of titin is dependent on expression and phosphorylation

of its compliant N2BA and stiff N2B isoforms (28–30). Titin

phosphorylation is mediated by multiple enzymes, including

PKA, PKC, CAMKII, as well as ERK-2, which is regulated by

endothelin-1, and PKG, which is activated by NO (31),

underlining multiple links of the contribution of endothelial cells

on cardiomyocyte diastolic function.

Diastole is an active process that utilizes ATP. Increased energy

consumption is associated with elevated diastolic tension in HFpEF

(26). Myocardial phosphocreatine/ATP ratio was shown to be lower

in patients with HFpEF as compared to control and was associated

with diastolic dysfunction (32). These can be worsened by the

presence of microvascular dysfunction and increased myocardial

extracellular matrix (ECM) deposition, which increases the oxygen

diffusion distance between the capillary and cardiomyocytes (33).

Excessive deposition of ECM proteins leads to cardiac fibrosis,

contributing to diastolic stiffness and impaired relaxation in HFpEF

patients (34). The accumulation of ECM is preceded by the

formation of myofibroblasts through activation of resident cardiac

fibroblasts or mesenchymal transition of other cell types, including

epicardial and endothelial cells. In addition, ECM synthesis can

occur in the absence of myofibroblasts in hyperglycemic condition,

which increases collagen production directly from fibroblasts (35).

Several molecular drivers of the fibrotic process have been shown

upregulated in HFpEF, including TGFβ, a potent inducer of

fibroblasts-myofibroblasts switch, IL11 and Galectin-3. In addition,

there were altered plasma levels of biomarkers that reflect collagen

degradation, such as lower matrix metalloproteinase (MMP) and

higher tissue inhibitor metalloproteinase (TIMP) (36), further

underlining the involvement of fibrotic pathway dysregulation in

HFpEF pathophysiology.

Collagen deposition in the HFpEF heart is associated with

microvascular inflammation, which permits higher infiltration of

monocytes and activation of cardiac resident macrophages due to

reduced NO levels. These inflammatory cells express profibrotic

factors, such as TGFβ, IFNγ, Galectin-3 and CTGF, which
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induce proliferation and activation of cardiac fibroblasts into

myofibroblasts, promoting ECM deposition (35, 37) (Figure 1).
Non-coding RNAs in pathophysiological
processes leading to HFpEF

With the advancement of the sequencing technologies, it is revealed

that ∼98% of our genome is non-coding, and merely −2% are coding

for proteins. These non-coding RNAs (ncRNAs) function as

epigenetic regulators of gene expression and are involved in biological

processes through various distinct molecular mechanisms. The

abundance of ncRNAs in the cardiovascular system and the aberrant

expression of ncRNAs in cardiac development and cardiac diseases

indicate their significance in cardiovascular physiology and pathology.

Extensive research has highlighted the significant involvement of

ncRNA in the development of cardiac diseases. However, our

knowledge on their contribution to the evolution of HFpEF is still

at its infancy. This is partly due to the lack of animal models that

can sufficiently recapitulate human HFpEF. Preclinical modeling of

HFpEF should ideally comply with a preserved EF of ≥50%,
diastolic dysfunction, exercise intolerance, pulmonary edema and

concentric cardiac hypertrophy, the characteristics compatible to

the patients (38). Several pre-clinical models have been used to

study HFpEF pathomechanisms. Single hit in vivo models, which

integrate only single co-morbidity, display some typical signs of

HFpEF, and therefore may approximate subsets of HFpEF

patients. Several single hit models used to study HFpEF are:
FIGURE 1

Pathophysiology of HFpEF. HFpEF patients are older, mostly female, and exh
hypertension and renal dysfunction. These comorbidities lead to systemic
dysfunction, leading to reduced NO levels, higher infiltration of monoc
profibrotic factors TGFβ, IFNγ, Galectin-3 and CTGF, leading to proliferation
proteins and collagen. Endothelial dysfunction also impairs paracrine sign
evident from cardiomyocyte hypertrophy, altered calcium handling, increas
leads to diastolic dysfunction and HFpEF. DM, diabetes mellitus; CRP, C
cardiomyocyte; ECM, extracellular matrix; NO, nitric oxide; HFpEF, heart fai
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(1) hypertension model induced by Angiotensin-II (Ang-II)

infusion or genetic sensitivity to salt (39–46), (2) aging model,

induced by natural aging or genetically accelerated (senescence

accelerated mouse, SAM) (47–51), (3) obesity or diabetes, induced

by high fat or western type diet, leptin receptor (db/db) or leptin

(ob/ob) deficiency (52–61). Most of the single hit models comply to

some extent with H2FPEF or HFA-PEFF scoring systems. In some

cases systolic dysfunction and reduced LVEF still develops, or other

clinical signs are lacking, such as decreased exercise tolerance (62).

Most multi hit models are based on obesity induced by high fat

diet (HFD) in combination with other stressors, including

hypertension (L-NAME, Ang-II, DOCP), both aging and Ang-II, or

both aging and DOCP, to induce the HFpEF phenotype (63–66).

Multi hit animal models better resemble the human HFpEF and

should be advocated for future research in pre-clinical HFpEF

study, as HFpEF is a multifactorial disease with diverse phenotypes.

In this review, we gather the current knowledge of the role of

ncRNA, including microRNAs (miRNAs), long noncoding RNAs

(lncRNAs), and circular RNAs (circRNAs) in several

pathophysiological pathways associated with HFpEF, such as

microvascular inflammation, cardiac hypertrophy, diastolic

dysfunction and interstitial fibrosis (summarized in Figure 2 and

Table 1). We look at the clinical as well as subsets of relevant pre-

clinical models, e.g., diabetic, obese or systemic hypertensive, to

understand the role of ncRNA that may play a role in HFpEF

pathophysiology. Harnessing this knowledge will provide novel

insights into HFpEF pathomechanisms and offer a novel and

innovative class of therapeutic targets for HFpEF.
ibit a higher burden of non-cardiac comorbidities, such as DM, obesity,
inflammation, causing microvascular damage. This drives endothelial

ytes and activation of cardiac resident macrophages, which express
and activation of cardiac fibroblasts, promoting the deposition of ECM

aling of CMECs to cardiomyocytes. Cardiomyocyte remodeling is also
ed energy consumption and increased passive stiffness. Eventually, this
-reactive protein; CMEC, cardiac microvascular endothelial cell; CM,
lure with preserved ejection fraction.
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FIGURE 2

Involvement of ncRNAs in HFpEF pathophysiology. miRNA, microRNA; lncRNA, long non-coding RNA; circRNA, circular RNA; ⊣, inhibition; →, activation.
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miRNAs in the pathophysiology of HFpEF

MicroRNAs (miRNAs) are small, single stranded, non-coding

RNA molecules of around 22–25 nucleotides long (118, 119).

miRNA biogenesis can proceed via the canonical or the non-

canonical pathway, where it is not processed by the RNase III

endonuclease Dicer in the cytoplasm (118, 119). The mammalian

genome codes for more than 2000 miRNAs, and around 60% of

coding genes are regulated by miRNAs (120). They regulate

translational repression or mRNA degradation by binding to mRNAs

in the miRNA response elements (MREs), usually located in the

3’untranslated region (UTR). One miRNA can target multiple target

mRNAs and one mRNA can be targeted by multiple miRNAs (118).

miR-1
In a mouse model of type-1 diabetes mellitus (DM) induced-

cardiomyopathy induced by streptozotocin (STZ), the mice displayed

signs of diastolic dysfunction with preserved ejection fraction, and

miR-1 expression was upregulated in the left ventricle (LV) and

intensified as the diabetes progression continued. Pim-1 was shown to

be a target of miR-1 and overexpression of Pim-1 alleviated diastolic

dysfunction (67). In an in vitro model of rat cardiomyocytes and
Frontiers in Cardiovascular Medicine 04
murine cardiac progenitor cells subjected to high glucose, Pim-1

expression was reduced. miR-1 inhibition led to the restoration of

Pim-1 expression and the activation of the upstream regulator Akt.

This resulted in an increase of survival signaling through upregulation

of pBad and Bcl-2 expression and reduction of caspase activity.

Interestingly, in rat aortic banding model of HFrEF with

predominant systolic dysfunction, downregulation of miR-1 was

observed (121). miR-1 overexpression reduced cardiac dysfunction

and the expression of hypertrophic gene markers and restored the

expression and activity of calcium homeostasis genes, reduced

fibrosis and pro-fibrotic genes and decreased apoptosis. These

contradictory findings of miR-1 regulation could possibly be

explained by the different disease models used, reflecting the

different pathomechanisms between HFpEF and HFrEF.
miR-21
Circulating miR-21 levels were upregulated in old, frail, type-2

diabetes mellitus HFpEF patients, compared to age-matched healthy

controls, and was reduced after 3-month treatment with SGLT-2

inhibitor empagliflozin (122). Elevated levels of circulating miR-21

were also observed in obese patients, which exhibited a correlation
frontiersin.org
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TABLE 1 Specific function of ncRNAs in HFpEF pathophysiology.

Type of
ncRNA

ncRNA Dysregulation of the
ncRNA in HFpEF

Target Specific pathologies induced by the ncRNA
in HFpEF

Reference

miRNA miR-1 Up Pim-1 Mitochondrial dysfunction/oxidative stress in EC/CM/CF (67)

miR-21 Down/up PTEN Endothelial dysfunction (68)

miR-29 down PGC1α Fibrosis (69)

miR-30 Down/up Fatty acid metabolism Endothelial dysfunction (70)

miR-34 Down EIF-4e/ULK-2 Hypertrophy (71)

miR-92 Down/up Cytochrome-b Mitochondrial dysfunction/oxidative stress (72)

miR-133a Up Igf1r Mitochondrial dysfunction/oxidative stress (73)

miR-181 Up PRKN/SMAD7 Fibrosis (74)

miR-193 Up MAPK10/Grb10 Mitochondrial dysfunction/oxidative stress (73)

miR-200c Up Migration and proliferation Endothelial dysfunction (75)

miR-208 Up Myh7 Hypertrophy (76)

miR-671-5p Up SEPP1 Myocardial inflammation (77)

let7 Down Cytochrome-b Mitochondrial dysfunction/oxidative stress (72)

lncRNA FENDRR Up p53/COP1 Mitochondrial dysfunction/oxidative stress (78)

CARMEN Up SUZ12/EZH2 Hypertrophy (79)

MHRT Up Brg1 Hypertrophy (80)

SENCR Up miR-1 Myocardial inflammation (81)

LIPCAR Up TGF-β/Smad Fibrosis (82)

MIAT Up miR-24/TGF-β1 Fibrosis (83)

CASC7 Up miR-30c/IL-11 Fibrosis (84, 85)

TUG1 Down/up miR-145a/b/Cfl2 Fibrosis (86)

miR-499-5p Hypertrophy (87)

MALAT1 Down p38/MAPK/migration Endothelial dysfunction (88)

NLRP3 Mitochondrial dysfunction/oxidative stress (89)

Meg3 Up MMP2 Fibrosis (90)

PI3k/AKT Endothelial dysfunction (91)

miR-9 Endothelial dysfunction (92)

TGF-β/Wnt/B-catenin Endothelial dysfunction (92, 93)

HOTAIR Down/up Nrf2/NLRP3 Endothelial dysfunction (94)

VE-cadherin Endothelial dysfunction (95)

VEGFA Endothelial dysfunction (95)

miR-34a/SIRT1 Mitochondrial dysfunction/oxidative stress (96)

KCNQ1OT1 Down miR-30e-5p/ADAM9 Hypertrophy (97)

SARRAH Down NRF2 Mitochondrial dysfunction/oxidative stress (98)

H19 Up miR-148b-3p/NOX4/eNOS/NO Endothelial dysfunction (99)

miR-29a/b/VEGFA/TGF-β Fibrosis (100)

DUSP5/ERK1/2 Fibrosis (101)

miR-675/VDAC1 Mitochondrial dysfunction/oxidative stress (102, 103)

PI3K/AKT/mTOR Mitochondrial dysfunction/oxidative stress (104)

NFAT Hypertrophy (105)

miR-145-3p/SMAD4 Hypertrophy (103)

circRNA circRNA_010567 Up miR-141/DAPKI Fibrosis (106)

circRNA_000203 Up miR-26b-5p/Col1a2/3a1/α-SMA Fibrosis (107)

miR-26b-5p/Gata4 Fibrosis (108, 109)

miR-140-3p/Gata4 Fibrosis (108, 109)

circFoxo3 Up ID-1 Fibrosis (110, 111)

E2F1 Fibrosis (110, 111)

HIF1α Fibrosis (110, 111)

FAK Fibrosis (110, 111)

circHIPK3 Down miR-29b-3p/Col1a2/3a1/α-SMA Fibrosis (112, 113)

miR-152-3p/TFG-β Fibrosis (114)

circBPTF Up miR-384/LIN28B Endothelial dysfunction (115)

circ_0071269 Up miR-145/GSDMA Mitochondrial dysfunction/oxidative stress (116, 117)

miRNA, microRNA; lncRNA, long non-coding RNA; circRNA, circular RNA.
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with diastolic dysfunction and concomitant with increased plasma

levels of TGF-β and Smad3 and decreased Smad7. miR-21

upregulation was also linked to increased fibrosis markers, including
Frontiers in Cardiovascular Medicine 05
elevated mRNA plasma levels of α-SMA, Collagen-I and Collagen-

III (123). Interestingly, cardiac miR-21 levels were shown to be

downregulated in type-2 DM db/db mouse model, leading to
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diastolic dysfunction with preserved ejection fraction (124). Decreased

expression of miR-21 resulted in increased ROS formation, decreased

NO bioavailability, and enhanced cardiac hypertrophy, leading to

impaired cardiac diastolic function. At cellular level, exosomes

derived from cardiac stromal cells from HF patients with reduced

miR-21-5p levels reduced endothelial tubulogenesis, increased

cardiomyocyte apoptosis and promotes transition of fibroblasts to

myofibroblasts. The discrepancy between circulating and cardiac

miR-21 levels may be due to miR-21 disposal out of cells upon

injury, leading to increased plasma levels and reduced tissue

expression. The therapeutic potential of miR-21 was shown as

treatment with a miR-21 mimic decreased levels of PTEN, increased

Akt activation and reduced levels of Caspase-3 and PCD4, leading to

mitigation of cardiac dysfunction (68). In contrast, cardiac miR-21

increased in pressure overload mouse model induced by transverse

aortic constriction (TAC) (125), which better resembles HFrEF. This

is similar to miR-1 which is differently regulated in HFpEF vs.

HFrEF model, again underlining different molecular pathways

driving the development of these diseases.

miR-29
miR-29 is mostly known for its role in cardiac fibrosis and its

plasma level changed in HF patients (126–128). miR-29 expression

is downregulated in type-1 DM rat model with diastolic

dysfunction and preserved ejection fraction (129). Deletion of

miR-29 in mice led to the development of HFpEF, characterized

by a fibrotic LV, diastolic dysfunction, pulmonary congestion,

systemic hypertension and vascular remodeling (69). PGC1α, a

driver of metabolic pathways in the cardiovascular system and

important in mitochondrial biogenesis, was found to be the main

target of miR-29, as it is upregulated in miR-29 KO mice, as well

as in diabetic patients with dilated cardiomyopathy (DCM).

Hypertension and HFpEF induced by miR-29 deficiency can be

rescued by PGC1α haploinsufficiency, which reduces pathological

cardiac mitochondrial accumulation and increases survival (69).

miR-30
miR-30b plasma levels were found downregulated in HFpEF

patients (130, 131). In combination with 6 other miRNA plasma

levels (let-7a-5p, miR-107, miR-125a-5p, miR139-5p, miR-150-5p

and miR-342-3p), miR-30b-5p levels were able to discriminate

between HFpEF and HFrEF patients, where miR-30b-5p levels

were reduced in HFpEF compared to HFrEF (131), showing the

potential of this miRNA as a biomarker of HFpEF. Plasma levels

of miR-30c were also found to be lower expressed in HF, and in

combination with BNP, miR-221, miR-328, and miR-375 plasma

levels, was able to differentiate between HFpEF and HFrEF

patients, where miR-30c levels tend to be lower in HFrEF

compared to HFpEF (132).

miR-30 may drive HFpEF through its regulatory role on

endothelial function. It was shown in db/db mouse and Goto-

Kakizaki rat model for type-2 DM-associated diastolic dysfunction

that miR-30d-5p and miR-30e-5p levels in circulating extracellular

vesicles (EVs) were upregulated (70). Both miRNAs were also

upregulated in the LV and microvascular endothelial cells in vivo,

as well as in an in vitro culture of HUVECs upon senescence.
Frontiers in Cardiovascular Medicine 06
Their overexpression in HUVECs induced oxidative stress and

endothelial dysfunction, while the inhibition in vivo decreased

oxidative stress and DNA damage in microvascular endothelial

cells, potentially via the regulation of fatty acid metabolism,

showing their potential as a therapeutic target for endothelial-

driven pathogenesis of HFpEF (70).

miR-34
Lower levels of miR-34a were found in DM patients with LV

diastolic dysfunction (LVDD) as compared to DM patients

without LVDD, and in women with kidney dysfunction with

LVDD as compared to women with kidney dysfunction without

LVDD (133). Further, there was a positive association between

plasma miR-34a levels in patients with LVDD with microvascular

injury marker Angiopoietin-2. Interestingly, progression to HFpEF

increased miR-34a as well as Angiopoietin-2 levels in women with

DM (133). Similarly, in a rat model of HFD and STZ-induced

diabetic cardiomyopathy with diastolic dysfunction, miR-34a-5p

levels in the myocardium were elevated, along with increased

collagen deposition, apoptosis and decreased Bcl-2 levels (134).

Another study linked miR-34a expression to aging, the main risk

factor for HFpEF, and a role in aging-induced apoptosis of

cardiomyocytes via the inhibition of PNUTS protein levels (135).

In addition, in vitro culture of H9c2 rat cardiomyocyte cell line

under high glucose treatment showed increased apoptosis and

miR-34a expression, and decreased expression of Bcl-2, the

downstream target of miR-34a, whereas inhibition of miR-34a

reduced apoptosis (134). In addition to miR-34a-5p, miR-34b-3p

was shown to be decreased in ventricular heart biopsies of rats

with sensory neuropathy-induced diastolic dysfunction, with EIF-

4e and ULK-2 were found as the possible downstream targets

(71). These studies show two related miRNAs, namely miR-34a-5p

and miR-34a-3p that are differently regulated by aging and in 2

different HFpEF-related pre-clinical models, suggesting their

specific regulation by different HFpEF-inducing factors.

miR-92
In old, frail, type-2 diabetes HFpEF patients, circulating miR-

92 levels were upregulated compared to age-matched healthy

controls, and the levels were reduced 3 months after treatment

with SGLT-2 inhibitor empagliflozin (122). In a type-2 diabetic

cardiomyopathy model of db/db mice, miR-92a-2-5p expression

in cardiac mitochondria was reduced (72). Furthermore, cardiac

ROS levels were increased due to decreased mitochondrial

Cytochrome-b gene expression. Overexpression of miR-92a-2-5p

in the db/db mice increased Cytochrome-b expression, reduced

ROS production and lipid deposition, and improved cardiac

diastolic dysfunction. Similarly, miR-92a-2-5p overexpression in

neonatal rat ventricular cardiomyocytes (NRVMs) increased

Cytochrome-b levels and decreased mitochondrial ROS levels

and cardiomyocyte apoptosis (72).

miR-133a
Single-nucleotide polymorphisms (SNPs) in the gene for miR-

133a are associated with impaired cardiac diastolic function in type-

2 DM patients (136). In a C57BL/6J mouse model for type-1 DM-
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induced cardiomyopathy, miR-133a-3p expression was upregulated

(73). Expression levels of miR-133a-3p were also upregulated in

NRVMs under high glucose treatment. It was shown that the target

for miR-133a-3p was Igf1r, a component of the IGF1R/PI3K/AKT

signaling pathway, which is important for cell survival (73). In

contrast, cardiac miR-133a was reduced in TAC mouse model and

an in vitro fibrosis model using neonatal rat primary ventricular

fibroblasts treated with Ang-II (137), again indicating that miRNAs

can be differently regulated in diastolic vs. systolic HF.

miR-181
Circulating miR-181c levels were found to be upregulated in

HFpEF patients that respond poorly to exercise training (138)

and in patients diagnosed with HFpEF and DM, as compared to

healthy age-matched controls (74). In line, miR-181a-2-3p was

upregulated in the hearts of a rat model for diastolic dysfunction

induced by sensory neuropathy (71). It was shown in adult

human cardiac fibroblasts that miR-181c targets PRKN and

SMAD7, indicating that miR-181 might be important in the

development of fibrosis during HFpEF (74).

miR-193
In a mouse model for type-1 DM-induced cardiomyopathy, the

expression of both miR-193a-3p and miR-193b-3p was upregulated

(73). miR-193a-3p was also upregulated in NRVMs under high

glucose treatment. miR-193a-3p binds to MAPK10 and Grb10,

integral components of the IGF1R/PI3K/AKT signaling pathway

important for cell survival. miR-193b has been also shown

upregulated in obese ZSF-1 leptin-receptor knockout rat HFpEF

model, particularly in the pulmonary arteries (PAs) and PA vascular

smooth muscle cells (PAVSMCs) (139). In line, miR-193b expression

was also heightened in the PAVSMCs from DM patients. miR-193b

expression in rat PAVSMCs was increased by H2O2 treatment and

directed towards the targeting of Nuclear factor Y α subunit

(NFYA). The increased miR-193b expression is possibly due to ROS-

dependent H3K9 acetylation, thereby enhancing NFYA transcript

degradation and reducing NFYA expression, leading to reduced

sGCβ1 promoter activation and transcription, an enzyme important

for smooth muscle relaxation and vasodilation (139).

miR-200c
Circulating miR-200c was upregulated and positively correlated

with diastolic dysfunction indices, LV mass and LV relative wall

thickness in patients with psoriasis, which is characterized by

chronic inflammation (140). miR-200c-3p levels were increased

in EVs derived from primary NRVMs with induced hypertrophic

phenotype (75). Furthermore, exposure to hypertrophic

cardiomyocyte-derived EVs and direct overexpression of miR-

200c-3p in HUVECs impaired endothelial angiogenic capacity.

Silencing of miR-200c-3p in mice subjected to chronic pressure

overload resulted in attenuated hypertrophy, a smaller fibrotic

area, and higher capillary density. miR-200c-3p affects

endothelial function by targeting genes that directly affect

endothelial cell proliferation and migration (75), suggesting that

miR-200c contributes to the regulation of cardiac diastolic

function, possibly by targeting cardiac endothelial function.
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miR-208
Circulating levels of miR-208a were upregulated in HFpEF

patients as compared to healthy controls (141). In line, miR-208b

was expressed higher in isolated peripheral blood mononuclear

cells from HFpEF patients with hypertension compared to

hypertension patients without HFpEF (142). The therapeutic

potential of miR-208a was shown in Dahl salt-sensitive rat model

for HF with diastolic dysfunction, where administration of

antimiR-208a lead to cardiomyocyte hypertrophy and fibrosis,

improved cardiac function, and increased survival (76).
miR-212
miR-212 was found upregulated in the LV tissue from patients

with end-stage HF (143). In a rat model of chronic kidney disease

(CKD)-induced HFpEF, miR-212 was overexpressed in the LV

compared to healthy controls (144). Similarly, in rat model of

radiation-induced diastolic dysfunction with preserved ejection

fraction, cardiac miR-212 was upregulated (145). While FoxO3

was shown to be the target of miR-212 in HFrEF mouse model

(146), it is not the case in HFpEF (144, 145), leading to poor

understanding on molecular mechanism by which miR-212

influences hypertrophy in this model.
miR-671-5p
miR-671-5p was found to be a modulator of fibrosis (77). In an

Ang-II infusion mouse model for diastolic dysfunction and LV

hypertrophy, miR-671-5p was increased in fibroblasts, but not in

endothelial cells or cardiomyocytes. Overexpression of miR-671-

5p in HCFs activated fibrosis marker α-SMA and pro-

inflammatory cytokines IL-6 and IL-8 via targeting Selenoprotein

P1 (SEPP1). Antifibrotic treatment in Ang-II-induced diastolic

dysfunction mouse model and in a Dahl salt-sensitive rat model

for hypertension-induced diastolic dysfunction improved the

diastolic function (77).
let-7
Plasma levels of let-7a-5p were downregulated in patients with

chronic HF, and combined with the levels of 6 other miRNAs

(miR-107, miR-125a-5p, miR139-5p, miR-150-5p, miR-30b-5p

and miR-342-3p) can be utilized to discriminate HFpEF from

HFrEF patients (131). Similarly, in a sensory neuropathy rat

model for diastolic dysfunction, let-7a-5p was downregulated in

the heart (71). Further, let-7b-5p was found to be downregulated

in the mitochondria of a mouse diabetic cardiomyopathy model.

Treatment of NRVMs with a let-7b-5p mimic increased

Cytochrome-b expression, a negative regulator of mitochondrial

ROS. Overexpression of let-7b-5p decreased mitochondrial ROS

levels and apoptosis in cardiomyocytes (72). Contrary to let-7a

and let-7b, let-7f-5p levels were upregulated in the hearts of mice

with type-1 DM-induced cardiomyopathy (73). Furthermore,

SNPs in the gene for let-7f were associated with impaired cardiac

diastolic function in type-2 DM patients (136).
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lncRNAs in the pathophysiology of HFpEF

lncRNAs make up the largest and functionally most diverse

group within the non-coding transcriptome (147). Much like

protein-coding transcripts, many lncRNAs undergo post-

transcriptional modifications, including alternative splicing, 5’-

capping, and polyadenylation (119, 147). Additionally, some

lncRNAs are formed through backsplicing events of linear

mRNA, resulting in more stable circular RNAs (148). LncRNAs

can be transcribed from various genomic locations in relation to

protein-coding genes, including intergenic regions, intronic

regions, overlapping with a specific gene on the same or opposite

strand, the opposite strand of the promoter region, and enhancer

regions (148, 149). While lncRNAs may have a lower degree of

sequence conservation between different species, they often

exhibit a high level of structural conservation (148, 150, 151).

Furthermore, lncRNAs have been identified in syntenic genomic

regions across species, known as locus-conserved lncRNAs,

which typically serve conserved functions (150). Although

lncRNAs are usually less abundant than mRNAs, they tend to

display stronger tissue-specific expression patterns (152).

The sub-cellular localization of lncRNAs plays a crucial role in

determining their functions (152). The majority of lncRNAs are

found within the nucleus, where they associate with chromatin,

while some fractions localize to the cytoplasm (147). Nuclear

lncRNAs participate in various processes where they form

complexes with DNA, proteins, and other RNAs (147, 152).

These interactions allow them to organize the chromosomal

architecture, facilitate the formation of ribonucleoprotein

complexes, regulate gene transcription, and influence post-

transcriptional modifications. Nuclear lncRNAs achieve these

functions by mobilizing transcription factors, guiding chromatin

remodeling complexes to promote histone modifications, acting

as enhancers, regulating the nuclear-cytoplasmic translocation of

transcription factors, and controlling the splicing of pre-mRNAs.

Cytoplasmic lncRNAs, on the other hand, have distinct roles

(152). They regulate the stability of mRNAs, control mRNA

translation, act as scaffold molecules to stabilize

ribonucleoprotein complexes, mediate protein phosphorylation,

and activate signaling pathways.
FENDRR
lncRNAs FOXF1 Adjacent Noncoding Developmental

Regulatory RNA (FENDRR) was found to be upregulated in the

isolated peripheral blood mononuclear cells (PBMCs) from

hypertensive patients with HFpEF as compared to healthy

controls (153). FENDRR was discovered as a lncRNA essential

for heart development in mice, which acts by binding the

histone-modifying complexes polycomb repressive complex 2

(PRC2) and TrxG/MLL, suggesting its role as a chromatin

modifier (154). FENDRR has been shown to have a protective

role to the heart. It promotes the ubiquitination and degradation

of p53 by increasing its binding to E3 ubiquitin ligase COP1,

leading to cardiomyocyte survival in hypoxia-induced

cardiomyocyte apoptosis (78) and H2O2-induced cardiomyocyte
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injury model (155). In contrast, it exhibited a pro-fibrotic role in

a pressure overload TAC mouse model via the Fendrr/miR-106b/

Smad3 pathway (156), suggesting different regulatory

mechanisms of FENDRR in HFpEF vs. HFrEF.
CARMEN
Similar to FENDRR, Cardiac Mesoderm Enhancer-associated

Noncoding RNA (CARMEN) was elevated in PBMCs of

hypertensive patients with HFpEF and there was a strong

positive correlation of CARMEN levels with peak VO2 and VE/

VCO2 slope in HFpEF patients (153). CARMEN expression was

induced during pathological remodeling in mouse and human

hearts. It is essential for the differentiation of cardiac precursor

cells into cardiomyocytes, and interacts with SUZ12 and EZH2,

components of the chromatin-modifying complex PRC2 (79).
MHRT
SNPs in the lncRNA myosin heavy-chain-associated RNA

transcript (MHRT) gene were associated with a risk for chronic

HF (157), and was shown to be an independent predictor for HF

(158). Circulating levels of MHRT were shown upregulated in

hypertensive patients with HFpEF (153). In contrast, MHRT

levels were downregulated in the plasma of patients with HFrEF,

and patients with lower expression levels of lncRNA MHRT had

worse survival compared to patients with higher expression levels

(159), showing another example of the different regulatory

mechanism of lncRNAs in diastolic and systolic HF. MHRT was

identified as a myocardium-specific, nuclear-enriched lncRNA

antisense of Myh7 with increased expression upon aging (80).

Cardiac MHRT levels were decreased upon pressure overload

and restoring expression of MHRT protected the animals from

hypertrophy and heart failure by alleviating cardiac hypertrophy

and fibrosis. MHRT executes its function by antagonizing Brg1,

part of the pathological stress-activated Brg1-Hdac-Parp

chromatin repressor complex in TAC mice (27-gauge needle)

(80) and by promoting SUMOylation of SIRT1, leading to the

activation of the PGC1-α/PPAR-α pathway in Ang-II treated

neonatal rat cardiomyocytes as a model for hypertrophy (160).
SENCR
In a study with type-2 DM patients, serum levels of smooth

muscle and endothelial cell-enriched migration/differentiation-

associated long noncoding RNA (SENCR) were inversely

associated with diastolic function (161). SENCR was directly

associated with LV mass to LV end-diastolic volume ratio

(LVMV-ratio), a marker of cardiac remodeling. SENCR was

discovered as a cytoplasm-enriched lncRNA regulating smooth

muscle cell contractility and migration (162). It was also found

downregulated in coronary endothelial cells isolated from

patients with premature coronary artery disease (CAD) (163).

Reduction of SENCR levels were also found in circulating

endothelial cells from early-onset coronary artery disease

(EOCAD) patients, whereas an upregulation was found in

circulating monocytes (164). SENCR alleviates endothelial-to-

mesenchymal transition by targeting miR-126a (165) and reduces
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1300375
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Jalink et al. 10.3389/fcvm.2023.1300375
hypoxia/reoxygenation-induced cardiomyocyte apoptosis and

inflammatory response by sponging miR-1 (81).

LIPCAR
Circulating levels of long intergenic non-coding RNA predicting

cardiac remodeling (LIPCAR) was inversely correlated with diastolic

function and positively associated with grade I diastolic dysfunction

(161). LIPCAR was found upregulated in both HFpEF and HFrEF

patients (166). Plasma levels of LIPCAR were also increased in

coronary artery disease (CAD) patients with HF compared to

patients with normal cardiac function (167) and were found to be

a predictor for HF and cardiovascular death (168). Although the

molecular mechanism of LIPCAR in HFpEF is not known, a study

with atrial tissue and fibroblasts from atrial fibrillation patients, one

of the most prevalent comorbidities in HFpEF, suggests that

LIPCAR has a role in cardiac fibrosis via modulating the TGF-β/

Smad pathway (82).

MIAT
Similar to SENCR, serum levels of myocardial infarction

associated transcript (MIAT) were an independent predictor for

increased LV mass to LV end-diastolic volume ratio (161). MIAT

was first described as a risk gene for predicting AMI and a

predictor for LV dysfunction with reduced EF (169, 170). In vivo

silencing of MIAT reduced cardiac fibrosis and improved cardiac

function, potentially by targeting miR-24 and therefore regulates

the expression of fibrosis-related regulators Furin and TGF-β1

(83). In a STZ-induced DM mouse model, knockdown of MIAT

partially restored systolic and diastolic function and alleviated

cardiac fibrosis and inflammation (171). In another STZ-induced

model for DM using male Sprague–Dawley rats, MIAT was

found to function as a sponge for miR-22-3p and regulate the

expression of death-associated protein kinase 2 (DAPK2) (172),

promoting cardiac fibrosis through the PI3K/Akt signaling

pathway (173). Overall, in both diastolic and systolic HF models,

MIAT appears to mediate similar pathophysiological responses,

namely fibrosis and inflammation.

CASC7
Cancer susceptibility candidate 7 (CASC7), a lncRNA

frequently linked to cancer, was shown to be also associated with

HF (174–176). Elevated expression levels of CASC7 were

observed in both plasma samples and peripheral blood

monocytes derived from HF patients, including the HFpEF

patient group. Given its high diagnostic value, CASC7 was

considered a promising biomarker for HF (176). Mechanistically,

CASC7 was observed to be a competing endogenous RNA for

miR-30c in H92C cells which subsequently inhibits IL-11

expression. It is known that elevated IL-11 expression promotes

cardiac fibrosis by activating cardiac fibroblasts-mediated

ECM synthesis (84, 85).

TUG1
Another lncRNA suggested as a promising biomarker for

HFpEF is taurine upregulated 1 (TUG1). First identified as a

regulator in the developing retina and brain, multiple reports
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currently describe TUG1 involvement in cardiovascular disease,

including its possible role in HFpEF (177–182). TUG1 was

increased in the serum of elderly hypertensive HFpEF patients

and was confirmed to be suitable for the diagnosis of HFpEF

(183), showing its diagnostic potential. TUG1 inhibition

improved diastolic dysfunction in a diabetic cardiomyopathy

model of db/db mice. Here, TUG1 inhibition did not interfere

with diabetes-induced metabolic characteristics, implicating its

direct effect on cardiac function. Knockdown of TUG1 mitigated

cardiac hypertrophy and decreased cardiac fibrosis in vivo, and

attenuated the hypertrophic response in cardiomyocytes treated

with high glucose in vitro (86, 87). Furthermore, Chitinase-3-like

protein 1 (CHI3L1) was found to promote cardiac fibrosis

through upregulation of TUG1 in mice treated with Ang II

(184). In summary, lncRNA TUG1 emerges as a multifaceted

regulator with potential implications in both cardiac

hypertrophy and fibrosis, suggesting its potential as a driver for

HFpEF pathogenesis.

MALAT1
One of the most widely studied lncRNAs is metastasis

associated lung adenocarcinoma transcript 1 (MALAT1), also

referred to as noncoding nuclear-enriched abundant transcript 2

(NEAT2). MALAT1 exhibits a high degree of conservation across

mammalian species and plays pivotal roles in numerous

physiological processes, often implicated in the development of

some cancers (185, 186). Similarly, MALAT1 displayed elevated

expression in CMs exposed to high glucose conditions and in

myocardial tissues from diabetic rats. Intriguingly, silencing of

MALAT1 resulted in reduced CM death, improved cardiac

function and morphological characteristics (89, 187). In addition,

MALAT1 was able to aggravate myocardial fibrosis in

hypertensive rats (188). MALAT1 also regulates the function of

endothelial cells. MALAT1 knockdown in diabetic rats improved

retinal endothelial cell viability and migration, leading to

attenuation of retinal vessel impairment and inflammation (88).

Moreover, silencing of MALAT1 was found to promote

vascularization in vivo through a reduction in endothelial cell

proliferation and an induction of pro-migratory response (189).

Overall, these studies showcase the role of MALAT1 in CMs and

endothelial cells in driving cardiac pathology induced by

diabetes, a prevalent comorbidity in HFpEF.

Meg3
Another interesting lncRNA that was found to contribute to

cardiac fibrosis and diastolic dysfunction is maternally expressed

3 (Meg3). Meg3 was found highly expressed in cardiac

fibroblasts. Meg3 was a regulator of metalloproteinase-2 (MMP-

2) production and targeting Meg3 in vivo effectively prevented

cardiac Mmp-2 induction and decreased fibrosis, which in turn

improved diastolic function by hampering cardiac remodeling

(90). Apart from its role in fibrosis, Meg3 was also described to

be involved in DM-induced endothelial dysfunction (91, 190).

Meg3 aggravated inflammation in endothelial cells via TGF-β

and Wnt/β-catenin signaling and inhibited endothelial

proliferation and angiogenesis in vitro (92, 93). In addition,
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MEG3 was positively correlated to hypertension in IVF offspring,

together with lowered levels of eNOS and VEGF expression,

inducing endothelial dysfunction (191). Together, these reports

indicate a plausible role of Meg3 in HFpEF by promoting fibrosis

and endothelial dysfunction and point to its potential as a target

for therapy in HFpEF.
HOTAIR
LncRNA HOX antisense intergenic RNA (HOTAIR) was

demonstrated to decrease in diabetic mouse hearts and its

knockdown in high glucose-induced H9c2 cells resulted in

increased oxidative injury, inflammation and apoptosis. HOTAIR

influences PTEN expression by functioning as a competitive

RNA. Cardiomyocyte-specific HOTAIR overexpression in STZ-

induced diabetic mouse hearts resulted in improved cardiac

function along with a decrease in inflammation, oxidative stress

and myocyte death (96). Moreover, HOTAIR has been implicated

in endothelial dysfunction and inflammation as a consequence of

diabetic complications (94, 95), further establishing its

involvement in diabetes-related pathophysiology of HFpEF.
KCNQ1OT1
Beyond its role in cancer, the lncRNA KCNQ1 opposite strand/

antisense transcript 1 (KCNQ1OT1) has acquired attention for its

involvement in cardiovascular disease as it regulates cardiomyocyte

apoptosis (192–196). KCNQ1OT1 expression is not only higher in

serum of DM patients, but also in high glucose-stimulated

primary cardiomyocytes and cardiac tissue from STZ-induced

diabetic mice. KCNQ1OT1 silencing led to an amelioration of

pyroptosis in cardiomyocytes and in diabetic mice through

inhibition of caspase-1 via miR-214 (197). Knockdown of

KCNQ1OT1 also reduced cell size and attenuate cardiac

hypertrophy induced by Ang-II in cardiomyocytes via targeting

miR-30e-5/ADAM9 axis (97).
SARRAH
SCOT1-antisense RNA regulated during aging in the heart

(Sarrah) is an aging-regulated lncRNA with anti-apoptotic effects

in cardiomyocytes (98). Sarrah was downregulated in

cardiomyocytes of aged mice and associated with apoptosis, as

inhibition of Sarrah reduced caspase activity in mouse and human

cardiomyocytes. Furthermore, Sarrah was downregulated in the

hearts of rats with a HFpEF phenotype. Knockdown of Sarrah in

primary neonatal rat cardiomyocytes reduced contraction

amplitude, contraction velocity and relaxation velocity, the latter

reflecting diminished cardiac function in HFpEF phenotype. In an

acute myocardial infarction mouse model, Sarrah tissue levels were

downregulated in the infarcted region and overexpression of

Sarrah had beneficial effects on recovery in these mice. Sarrah

binds to the promotor region of its target genes, thereby forming a

RNA-DNA triple helix. One of its directs targets is NRF2,

regulating cell viability and ROS levels. Sarrah levels were also

decreased in the right atrial appendage of atrial fibrillation patients

(198). However, serum levels of Sarrah were increased, suggesting

disposal of Sarrah out of cells upon injury.
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H19
Similar to KCNQ1OT1, lncRNA H19 was also reported to be a

regulator of cardiomyocyte apoptosis. A reduction of H19 expression

levels was found in a rat diabetic cardiomyopathy model.

Interestingly, H19 overexpression in the diabetic rats ameliorated

oxidative stress, inflammation, apoptosis and fibrosis, leading to

improved LV function through downregulation of apoptosis-

related gene voltage-dependent anion channel 1 (VDAC1) or

inhibiting ER stress (102, 197). Furthermore, H19 overexpression

was shown to alleviate hypertrophic response in isoprenaline-

induced hypertrophy models by regulating SMAD4 via sponging

miR-145-3p (103). Moreover, H19 knockout mice showed severe

HF upon pressure overload and cardiomyocyte-targeted murine

and human AAV9-mediated H19 therapy was able to improve

cardiac function (198). LncRNA H19 is also involved in the

development of cardiac fibrosis. H19 levels are high in cardiac

fibroblasts and fibrotic tissues, and its overexpression lowers dual

specificity phosphatase 5 (DUSP5) levels and improves

proliferation of cardiac fibroblasts (101). In addition, H19

upregulation promotes increased proliferation and synthesis of

ECM-related proteins. through inhibition of the miR-29a-3p/miR-

29b-3p-VEGFA/TGF-β axis (100). Moreover, H19 was identified

as a negative regulator of eNOS and NO signaling in endothelial

cells under hypoxic stress (99). The specific function of H19 in a

specific cell type warrants precise targeting of this lncRNA in

order to exploit its beneficial impact in treating HFpEF (149).
CRNDE
LncRNA Colorectal neoplasia differentially expressed

(CRNDE) has surfaced as another player in cardiac fibrosis

development. Overexpression of CRNDE was able to alleviate

fibrosis and improve cardiac function in diabetic cardiomyopathy

mice fed with HFD and treated with STZ. As CRNDE is

relatively highly expressed in heart tissue and conserved in

human, this lncRNA display a potential as is a considerable

intervention target for HFpEF (199).
Potential circRNA candidates in the
pathophysiology of HFpEF

Circular RNAs (circRNAs) represent a group of single-stranded

RNAs that form a covalently closed circular structure unlike

traditional linear RNAs. Their lack of a polyadenylated tail

renders circRNAs rather insusceptible to degradation by RNA

exonucleases and thus suitable as a stable biomarker (200–203).

CircRNAs are formed via back-splicing of premature messenger

RNAs (pre-mRNAs). The cyclization process can occur through

(1) intron-pairing-driven circularization, where flanking introns

contain complementary sequences (e.g., ALU) that directly align,

(2) RNA-binding protein (RBP)-driven circularization, or (3)

lasso/lariat-driven circularization (204, 205). The majority of

circRNAs originates from exons (ecircRNA) and are typically

transported to the cytoplasm. Nonetheless, a subset of circRNAs
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is formed from introns (icircRNA) or both exons and introns

(eicircRNA) and remains in the nucleus (206, 207).

CircRNAs are abundantly expressed in human cells and their

expression often much higher than of their linear host gene, as

multiple isoforms can be processed through alternative splicing

(208, 209). Furthermore, they commonly exhibit cell-specific,

tissue-specific and developmental stage-specific expression

patterns and show differential expression profiles between

physiological and pathophysiological conditions (210–213).

CircRNAs are most well-known for their function as miRNA

sponge or decoy, generally resulting in elevated expression levels

of miRNA-targeted mRNA (214–216). CircRNAs can interact

with RNA-binding proteins (RBPs), act as scaffolds or recruit

proteins to specific sites, thereby enhancing processes like

transcription, translation, splicing and more (207, 217). Although

the bulk of circRNAs are considered non-coding, a small group

of cytoplasmic circRNAs is capable of being translated (218–

220), and by definition are no longer non-coding transcripts and

are out of scope of this review. circRNAs have been found

differentially regulated in patients with DM and diabetic

cardiomyopathy (221–223). Further, circRNAs are involved in in

cardiac inflammation and endothelial dysfunction (224–229).

Moreover, circRNA microarray analysis on plasma samples from

HF patients displays differentially regulated circRNAs like

circ_0112085, circ_0062960, circ_0053919 and circ_0014010 that

are significantly higher expressed in HF patients. From this

dataset selection, circ_0062960 garnered attention as a

compelling candidate for a potential biomarker as levels

correlated with serum B-type natriuretic peptide (BNP) levels, an

established clinical indicator of possible heart failure (230, 231).

Below, we will further discuss several circRNAs that have been

described HFpEF-related pathophysiology, including cardiac

fibrosis, hypertrophy, senescence, diabetic cardiomyopathy and

endothelial dysfunction.
circRNA_010567 and circRNA_000203
circRNA_010567 was upregulated in the myocardium of diabetic

mice and cardiac fibroblasts treated with Ang II. Knockdown of

circRNA_010567 was able to suppress secretion of fibrosis-

associated proteins in vitro, like collagen I, collagen III and α-

smooth muscle actin (α-SMA), by acting as an endogenous sponge

of miR-141 that targets TGF-β1 and promoted myocardial fibrosis

(104). In addition to circRNA_010567, circRNA_000203 was

upregulated in diabetic mouse myocardium and Ang-II-treated

mouse cardiac fibroblasts and its overexpression induced expression

of Col1a2, Col3a1 and α-SMA in vitro (105). Enforced

circRNA_000203 expression also resulted in an increase in cell size

and ANP and β-MHC levels in mouse ventricular cardiomyocytes

(NMVCs). Cardiomyocyte-specific circRNA_000203 transgenic

mice presented with a further loss of cardiac function and an

aggravation of hypertrophy after Ang-II treatment.

circRNA_000203 is able to worsen cardiac hypertrophy via

targeting miR-26b-5p and miR-140-3p, resulting in higher Gata4

levels, a known regulator of cardiac hypertrophy (108, 109).
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circFoxo3
Circular RNA forkhead box protein O3 (circ-Foxo3) was highly

expressed in the hearts of old mice and patients and was correlated

with senescence markers. circFoxo3 overexpression further

deteriorated cardiomyopathy induced by doxorubicin while its

silencing improved cardiac function. In addition, circ-Foxo3

knockdown in mouse embryonic fibroblasts inhibited senescence,

while overexpression had the opposite effect. Interaction of

circFoxo3 with anti-stress proteins HIF1α and FAK, transcription

factor E2F1 and anti-senescent protein ID-1 was able to block

their effects, leading to cellular senescence and development of

cardiac fibrosis (110, 111).
circHIPK3
Another circRNA involved in cardiac fibrosis and hypertrophy

is circular RNA homeodomain interacting protein kinase 3

(circHIPK3). Silencing of circHIPK3 was able to decrease

proliferation and migration of cardiac fibroblasts and ameliorate

cardiac fibrosis both in vitro and in vivo through interaction with

miR-29b-3p (112). In a diabetic cardiomyopathy mouse model,

myocardial fibrosis was attenuated and cardiac function was

enhanced after circHIPK3 knockdown. Through suppressing

miR-29b-3p, circHIPK3 upregulated Col1a1 and Col3a1,

important for the development of cardiac fibrosis (113).

circHIPK3 overexpression promoted proliferation, migration, and

production of fibrosis-associated proteins of CFs. circ_HIPK3

knockdown in Ang-II-stimulated CFs suppressed cell

proliferation. The phenotypic transformation of CFs promoted by

circ_HIPK3 was also accomplished via the miR-152-3p/TGF-β2

axis (114). These studies altogether reflect the pro-fibrotic and

pro-hypertrophic traits of circ_HIPK3 and more research in the

context of HFpEF could provide a new and interesting angle.
circNFIB
TGF-β-treated primary adult CFs displayed elevated levels of

circular RNA nuclear factor I B (circNFIB). Furthermore,

circNFIB overexpression inhibited CF proliferation based on

TGF-β stimulation, whilst inhibition of circNFIB promoted

proliferation (232). circNFIB was found to mitigate myocardial

fibrosis induced by SO2 through suppression of the Wnt/β-

catenin and p38 MAPK signaling pathways (233). circNFIB

overexpression could lay a new foundation for a novel option in

treating HFpEF.
Circ_0018553

Endothelial progenitor cell-derived exosomal circ_0018553 was

found to be protective for cardiac hypertrophy. Enforced

expression of circ_0018553 ameliorated CM hypertrophy.

Functionally, circ_0018553 sponged miR-4731 which targets

sirtuin 2 (SIRT2) expression, a deacetylase that protects against

cardiac hypertrophy (234, 235). The anti-hypertrophic capacity of

circ_0018553 could serve as an interesting element in

treating HFpEF.
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circBPTF and circ_0071269
Circular RNA Bromodomain Finger Transcription Factor PHD

(circBPTF) was found to be highly expressed in human umbilical

vein endothelial cells (HUVECs) exposed to HG. miR-384 was

identified as a downstream target of circBPTF (115), which

subsequently targets Lin-28 Homolog B (LIN28B). Silencing of

circBPTF was able to ameliorate HG-induced adverse effects,

including oxidative stress and inflammation in vitro (236).

circ_0071269 was elevated in H9c2 after HG treatment and its

knockdown promoted cell viability and inhibited pyroptosis in

vitro. Silencing of circ_0071269 was shown to attenuate cardiac

dysfunction in mice with diabetic cardiomyopathy, by sponging

miR-145 and thereby upregulating Gasdermin A (GSDMA)

(116), an important regulator of pyroptosis (117).
circ_HECW2
circ_0118464, which corresponds to HECW2 gene, was highly

upregulated in epicardial adipose tissue of HFpEF patients, as

revealed in a genome-wide screening for circRNAs (237).

Similarly, Hecw2_0009 level increased in an in vivo mouse study

2 or 4 weeks after TAC surgery. Using a gene set enrichment

analysis, this circRNA was identified to play a role in cardiac

fibrosis and hypertrophy (238). Furthermore, studies in human

brain microvascular endothelial cells suggest a role for

circ_HECW2 in the regulation of inflammation (239, 240),

suggesting that it may also play a role in regulating inflammatory

pathway in HFpEF.
TABLE 2 Use of non-coding RNAs as biomarker for HFpEF.

ncRNA Sample Regulated in disease Reference
miR-21 Blood Up (122)

miR-29 Plasma Down (126–128)

miR-30b Plasma Down (130, 131)

miR-30c Plasma Down (132)

miR-34 Plasma Down (133)

miR-92 Blood Up (122)

miR-181 Plasma Up (74, 138)

miR-200c Plasma Up (140)

miR-208a Serum Up (141)

miR-208b Isolated PBMCs Up (142)

let-7a-5p Plasma Down (131)

CARMEN Isolated PBMCs Up (153)

CASC7 Plasma, PBMCs Up (176)

FENDRR PBMCs Up (153)

LIPCAR Serum, plasma Up (161, 166, 167)

MHRT PBMCs Up (153)

MIAT Serum Up (161)

SENCR Serum Up (161)

TUG1 Serum Up (242)
Discussion

Despite our growing understanding on the pathogenesis of

HFpEF, there are still very limited effective treatment options for

this disease, in particular when comparing it to HFrEF. Patients

with HFpEF are heterogeneous, exhibiting different clinical

phenotypes, which are associated with different

pathophysiologies. One patient group may display predominantly

inflammatory and cardiac microvascular dysfunction, while

others are characterized more by intrinsic cardiomyocyte

dysfunction and fibrosis. This heterogeneity can be determined

by age onset, disease progression, where early and late HFpEF

may display different phenotypes, or by different set of

comorbidities that patients have. Therefore, patient stratification

or phenotyping is important to identify specific treatment groups

that give the best response for a specific treatment.

The lack of treatment can also be attributed to a lack of

consensus on pre-clinical models used to study HFpEF and

dissect its molecular mechanisms. For pre-clinical in vivo models,

mimicking multiple comorbidities are encouraged for future

studies than modeling only a single risk factor. This single hit

model may still be used to interrogate the effect of individual co-

morbidity that occur in patients. As for in vitro models, single

cell model with only cardiomyocytes may not be sufficient, since

cardiac microenvironment also plays a role in the development

of the disease. Therefore, multi cell type model, using co-culture
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system or 3D heart model incorporating other cardiac cells,

including endothelial cells, immune cells and fibroblast, offer a

better mean to simulate the pathophysiology of human HFpEF.

As highlighted above, ncRNAs can be detected in extracellular

fluid, including circulating plasma, and their expressions are altered

in HFpEF, underlining their diagnostic potential. ncRNAs can

enter the circulation encapsulated in extracellular vesicles or

apoptotic bodies which protect them from enzymatic

degradation. As compared to miRNAs and lncRNAs, circRNAs

are a closed-loop structure which renders a higher resistance

toward degradation by RNase. In addition, PBMCs offer another

easily accessible material to assess ncRNA expression. The

stability of ncRNAs in readily obtainable bodily fluids and their

distinct expression patterns in HFpEF as compared to control or

HFrEF render them especially intriguing as a new category of

non-invasive markers for diagnosing HFpEF. miR-21 is an

example of a miRNA that was found to be associated with

endothelial dysfunction in HFpEF patients with DM2 and its

circulating levels were downregulated after treatment with SGLT2

inhibitor. Another example of ncRNAs as a potential biomarker

is LIPCAR. Its circulating levels were identified as an

independent predictor for diastolic dysfunction in patients with

DM2. Further, lncRNA TUG1 has been confirmed to be suitable

for the diagnosis of HFpEF as it is increased in the serum of

elderly hypertensive HFpEF patients. In addition, ncRNAs can be

used as biomarkers to distinguish HFpEF from HFrEF (241), as

described above for the combination of 7 miRNAs (miR-30b, let-

7a-5p, miR-107, miR-125a-5p, miR139-5p, miR-150-5p and miR-

342-3p). An overview of ncRNAs discussed in this review with

potential use as biomarker for HFpEF is summarized in Table 2.

As emphasized earlier, modulation of ncRNAs holds promise in

improving cardiac function in HFpEF pathophysiology,

underscoring their potential as novel treatment targets (Table 3).

A particular ncRNA may play different role in HFpEF vs.

HFrEF: it may convey a protective role in one while detrimental
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TABLE 3 Non-coding RNA-based therapeutics for the treatment of HFpEF.

ncRNA Disease model Regulated in disease Treatment Target Reference
miR-21 db/db diabetes mouse Down rAAV delivery of miR-21 GSN (124)

miR-30 db/db diabetes mouse Up LNA inhibitor Fatty acid metabolism (70)

miR-92a-2-5p db/db diabetes mouse Down rAAV delivery of miR-92a-2-5p Cytochrome-b (72)

miR-208 Dahl salt-sensitive HF rat Up AntimiR-208a Myh7 (76)

let-7b-5p db/db diabetes mouse Down rAAV overexpression Cytochrome-b, IRS1 (72)

MIAT STZ-induced diabetes mouse Up Lentivirus shRNA miR-214 (171)

TUG1 db/db diabetes mouse Down Lentivirus siRNA miR-499-5p (87)

STZ-induced diabetes mouse Down Lentivirus shRNA miR-145a/b (86)

MALAT1 STZ-induced diabetes rat Down shRNA NLRP3 (89)

STZ-induced diabetes rat Down shRNA adenovirus p38/MAPK (88)

HOTAIR STZ-induced diabetes mouse Up AAV2 overexpression miR-34a/SIRT1 (96)

STZ-induced diabetes mouse Down AAV-shRNA LSD1 (95)

KCNQ1OT1 STZ-induced diabetes mouse Down Lentivirus-shRNA miR-214-3p (197)

H19 STZ-induced diabetes mouse Up Lentiviral overexpression miR-675 (102)

STZ-induced diabetes mouse Up Lentiviral overexpression PI3K/AKT/mTOR (197)

ISO-induced cardiac hypertrophic mouse Up Lentiviral overexpression miR-145-3p/SMAD4 (103)

circHIPK3 Ang II-induced cardiac fibrosis mouse Down AAV9 shRNA miR-29b-3p (112)

STZ-induced diabetes mouse Down AAV9 shRNA miR-29b-3p (113)
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in the other. It may be driven by different regulation of the

upstream pathways of the ncRNAs by the two different HF

phenotypes, and should be considered when choosing silencing

or overexpression treatment strategies. ncRNAs, lncRNAs in

particular, exhibit different functions with respect to their

subcellular localization. Moreover, ncRNAs can have different

function in different cell or tissue types. All of these factors are

crucial to consider when utilizing ncRNA-based therapies as

treatment options.

ncRNA-based therapies can be achieved by utilizing antisense

oligonucleotides (ASO), RNA interference (RNAi), or aptamers.

ASOs are 17–22 nucleotide long single-stranded DNA molecules,

which induce blockage of protein translation, mRNA degradation

or modification of transcript splicing, through complementarity

pairing. GapmeRs are a class of ASOs which consist of a DNA

core flanked by two locked nucleic acids (LNA) sequences

complementary to the target mRNA or ncRNA sequence. This

modification introduces a higher stability, target specificity and

RNase H activation resulting in enhanced silencing efficiency

(243). One ASO that has been clinically approved by EMA for

cardiovascular-related indication is Volanesorsen (244), which is

indicated for familial dyslipidemia.

RNAi can be either be achieved with siRNAs or shRNAs.

siRNAs act by mimicking the mechanism of action of endogenous

miRNAs. The difference lies in the perfect complementarity of

siRNAs with a given target mRNA, whereas miRNAs require only

short regions of homology (−7 nucleotide long seed sequence)

(245). shRNAs take advantage of the miRNA maturation pathway

by being cleaved by Dicer into a double-stranded mature product

followed by loading into RISC (246). Two siRNAs that have been

approved by FDA and EMA are Patisiran (247) and

Inclisiran (248), which is indicated for amyloidosis and

hypercholesterolemia, respectively. Another form of RNAi is anti-

microRNAs (antimiRs) which are basically ASOs that are designed

to be fully or partially complementary to an endogenous miRNA

and prevent the interaction with its target genes. AntimiRs are
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also known as antagomiRs when they are conjugated to

cholesterol to improve intracellular delivery. anti-miR-92a is now

in clinical trial to test for its efficacy to induce angiogenesis and

wound healing (249). Another ASO in clinical trial is anti-miR-

132-3p which is indicated for HF. Aptamers are ∼25–40
nucleotide RNA segments that specifically bind proteins or small

organic molecules. Aptamers exploit the secondary structure of

nucleic acids rather than the sequence complementarity for

binding. Pegaptanib was the first aptamer to reach clinical

approval to be used as an intravitreal injection and acts by

binding to an isoform of the vascular endothelial growth factor to

combat age-related neovascular macular degeneration (250).

siRNAs mainly function in the cytoplasm, and therefore may be

less effective against nuclear transcripts. GapmeRs on the other

hand are more promising for pharmacological silencing, as

they can enter the nucleus, and are therefore able to target

nuclear transcripts.

In addition to silencing of ncRNAs, therapeutic overexpression

can also be used as a ncRNA-based therapy. It requires the use of

viral-mediated gene delivery, nanoparticles, or RNA mimics. AAV

vectors are commonly used for gene therapy approaches, although

it displays relatively low packaging limit and cannot be used for

transcripts longer than 3–4 kb. While AAV9 has been commonly

used to target cardiac muscle cells, specific targeting of other

cardiac cell types are more challenging. Nevertheless, it has been

shown recently that AAV9 with PAMAM-dendrimers coating

can redirect the specificity more towards cardiac endothelial cells

(251), underscoring the possibility to target microvascular

dysfunction in HFpEF. An alternative to AAV-mediated gene

delivery is local delivery of in vitro transcribed RNA in a manner

that is similar to the recent mRNA-based vaccines. This

technology is relatively new and targeting to a certain cell type is

not yet possible. One would also need to locally apply the

liposome-encapsulated RNA molecules, since limiting delivery to

unintended organs is difficult, especially since one cannot use a

tissue-specific promoter when using in vitro-transcribed RNA (252).
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To date, no clinical trials targeting ncRNAs in HFpEF have

been performed. The field of ncRNA-based therapeutics for

HFpEF is still at its infancy and may be advanced by

improvement of pre-clinical models with in vitro multi cell type

models and in vivo multi hit models. Considering that various

ncRNAs, especially miRNAs, have been explored in clinical trials

for different cardiovascular conditions, it is plausible that

ncRNAs could become valuable additions to the HFpEF

treatment arsenal in the future.
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