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Heart rate (HR) is closely related to heart rhythm patterns, and its irregularity can
imply serious health problems. Therefore, HR is used in the diagnosis of many
health conditions. Traditionally, HR has been measured through an
electrocardiograph (ECG), which is subject to several practical limitations
when applied in everyday settings. In recent years, the emergence of
smartphones and microelectromechanical systems has allowed innovative
solutions for conveniently measuring HR, such as smartphone ECG,
smartphone photoplethysmography (PPG), and seismocardiography (SCG).
However, these measurements generally rely on external sensor hardware or
are highly susceptible to inaccuracies due to the presence of significant levels
of motion artifact. Data from gyrocardiography (GCG), however, while largely
overlooked for this application, has the potential to overcome the limitations
of other forms of measurements. For this scoping review, we performed a
literature search on HR measurement using smartphone gyroscope data. In
this review, from among the 114 articles that we identified, we include seven
relevant articles from the last decade (December 2012 to January 2023) for
further analysis of their respective methods for data collection, signal
pre-processing, and HR estimation. The seven selected articles’ sample sizes
varied from 11 to 435 participants. Two articles used a sample size of less than
40, and three articles used a sample size of 300 or more. We provide
elaborations about the algorithms used in the studies and discuss the
advantages and disadvantages of these methods. Across the articles, we
noticed an inconsistency in the algorithms used and a lack of established
standardization for performance evaluation for HR estimation using
smartphone GCG data. Among the seven articles included, five did not
perform any performance evaluation, while the other two used different
reference signals (HR and PPG respectively) and metrics for accuracy
evaluation. We conclude the review with a discussion of challenges and future
directions for the application of GCG technology.

KEYWORDS
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Introduction

Heart rate (HR) measurement is essential for detecting

pathological irregularities, indicative of heart-related conditions

such as arrhythmia (i.e., atrial fibrillation (AFib)), myocardial

ischemia, and heart failure (1–7). These conditions often

manifest through pathological irregularities in HR, underscoring

the importance of HR monitoring in cardiovascular health.

Cardiovascular diseases account for approximately 32% of all

global deaths annually (8), necessitating effective monitoring and

early intervention. Regular HR monitoring is pivotal for the

timely treatment and prevention of various cardiovascular risk

factors (9).

Beyond cardiovascular health, HR measurement also plays a

role in assessing mental activities and stress disorders, useful in

gauging mental workload (10) and diagnosing stress-related

conditions (11). HR monitoring is increasingly utilized for fitness

tracking and exercise intensity monitoring, making it an integral

part of both physical and mental health assessments.

Traditionally, HR measurement often involves

electrocardiography (ECG), a direct method for HR detection.

However, the interpretation of ECG data requires specific

expertise, distinguishing it from other sensors like MEMS gyro

(12). ECG measurements are not ideal for long-term daily HR

monitoring due to practical challenges like irritation from

electrode gels and signal quality issues with dry/capacitive

electrodes. This has led to the emergence of various commercial

non-invasive HR monitors (13).

The widespread prevalence of smartphones (14) has spurred

innovations in smartphone-based heart rate (HR) estimation systems

(15, 16). Smartphone-based ECG systems often involve electrodes,

which have been noted for causing skin irritation in some cases (17).

In contrast, smartphone-based photoplethysmography (PPG)

operates in a non-invasive manner without the risk of skin irritation

(18). Commonly used in wearable devices, PPG measures heart rate

by detecting changes in blood volume within peripheral arterioles

during each cardiac cycle. It utilizes a light source and a

photodetector placed on the skin to capture variations in light

absorption due to pulsatile blood flow, thereby facilitating accurate

heart rate measurement (19–21).

PPG, however, has its limitations in HR measurement accuracy

due to noisy signals and susceptibility to motion artifacts and

environmental light variations. Furthermore, PPG provides

limited insight into the mechanoelectrical feedback and

biomechanics of cardiac electromechanical coupling (22, 23).

Advancements in microelectromechanical systems (MEMS)

(24), now common in modern smartphones, have led to the

utilization of MEMS sensors in smartphone-based HR

monitoring systems (25, 26). Mechanocardiography (MCG),

which includes gyrocardiography (GCG), seismocardiography

(SCG), and ballistocardiography (BCG), measures cardiac

mechanics induced by heartbeats (27). GCG measures vibrations

of the chest wall due to cardiac activity using gyroscopes (28),

while SCG and BCG use accelerometers (ACCs) to measure

cardiac vibrations (29) and the recoil forces of ejected blood (30),
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respectively. The increase in MCG studies in recent years (31–34)

highlights its potential in cardiac performance assessment.

However, most smartphone-based HR monitoring algorithms

overlook GCG signals. Despite the significant contribution of

gyration signals to cardiac vibrational energy (35) and their

independence from gravity’s effects (36), few studies have

explored GCG for HR estimation. This lack of standardization in

reference signals and metrics for GCG performance evaluation

presents a gap in the literature.

This work presents a scoping review of publications concerning

HR estimation using smartphone GCG data, aiming to assess the

current literature and guide future research in this field.
Methods

Search terms

A literature search was done using six different search

engines: Springer, Embase (Elsevier), Cochrane Library (Wiley),

EBSCOhost, IEEE Xplore, and PubMed. The search followed the

PRISMA guidelines for scoping reviews (37). In addition to using

the search terms combined with logical operators such as “OR”

for union, “AND” (“&”) for intersection, and “�” for negation,

we also searched the reference lists of the relevant articles to

perform a more thorough literature search. To capture the latest

developments in this area, we limited our search to results

published between December 2012 and January 2023. The search

terms used and search results are summarized in Table 1 below.

The employment of six different databases was necessitated by

the diverse range of publications and the varying scope of each

database. Due to the unique search functionalities and limitations

inherent to each database, distinct constraints were judiciously

applied to each to maximize the relevance and quality of the

search results. This approach was designed to ensure a thorough

and exhaustive coverage of the literature in the rapidly evolving

field of gyrocardiography. Furthermore, the search of the

reference lists was conducted in an iterative manner. Initially, we

performed a primary review of the references from the first

round of results. Subsequent rounds of review were then

conducted, with each round delving deeper into the references of

the previously identified studies. This iterative process allowed us

to capture a broader spectrum of relevant studies, thereby

enriching the comprehensiveness of our review and ensuring that

key contributions in the field were not overlooked. By adopting

this meticulous and multi-faceted search strategy, we aimed to

address the complexities of research dissemination in this

specialized area of study, thereby providing a robust and

comprehensive overview of the current state of gyrocardiography

research.
Results

We identified 7 potential studies out of 114 studies retrieved

and assessed in full-text according to our inclusion criteria as
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TABLE 1 Summary of search terms used.

Search engine Search term Constraints #
Results

Springer (((vibrational cardiography) OR (gyroscope) OR (gyrocardiography) OR (gcg) OR
(mechanocardiogram)) AND ((heartrate) OR (heart rate) OR (cardio) OR (cardiography))
AND ((smartphone) OR (phone) OR (mobile)))

Title must contain ’phone’, 2012–
2023

4

Embase (Elsevier) (((vibrational cardiography) OR (gyroscope) OR (gyrocardiography) OR (gcg) OR
(mechanocardiogram)) AND ((heartrate) OR (heart rate) OR (cardio) OR (cardiography))
AND ((smartphone) OR (phone) OR (mobile)))

2012–2023 28

Cochrane Library
(Wiley)

(((vibrational cardiography) OR (gyroscope) OR (gyrocardiography) OR (gcg) OR
(mechanocardiogram)) AND ((heartrate) OR (heart rate) OR (cardio) OR (cardiography))
AND ((smartphone) OR (phone) OR (mobile)))

Search terms applied to title, abstract,
and keyword, 2012–2023

5

EBSCOhost ((vibrational cardiography) OR (gyroscope) OR (gyrocardiography) OR (gcg) OR
(mechanocardiogram)) Abstract AND ((heartrate) OR (heart rate) OR (cardio) OR
(cardiography)) Title AND ((smartphone) OR (phone) OR (mobile))

Search terms applied to title, 31 Dec
2012 to 01 Jan 2023

1

IEEE Xplore Digital
Library database

(“Abstract”:vibrational cardiography OR “Abstract”:gyroscope OR “Abstract”:gyrocardiography
OR “Abstract”:gcg OR “Abstract”:mechanocardiogram) AND (“Document Title”:heartrate OR
“Document Title”:heart rate OR “Document Title”:cardio OR “Document Title”:cardiography)
AND (“Document Title”:smartphone OR “Document Title”:phone OR “Document Title”:
mobile)

2012–2023 4

PubMed (((vibrational cardiography) OR (gyroscope) OR (gyrocardiography) OR (gcg) OR
(mechanocardiogram)) & ((heartrate) OR (heart rate) OR (cardio) OR (cardiography)) &
((smartphone) OR (phone) OR (mobile)))

2012–2023 20

Searching the reference
lists

N.A. 2012–2023 52

# Results, number of results; N.A., not applicable.
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shown in Figure 1. During the screening process, 30 duplicates and

20 articles with incompatible formats were excluded. The

remaining 64 articles were assessed for eligibility. A set of

exclusion criteria was used to select the articles to be included in

the review. Among the 64 articles, 57 were considered irrelevant

due to the following reasons: 23 did not use smartphone sensors

in their data collection process, 16 did not derive HR using the
FIGURE 1

PRISMA flow chart. This figure illustrates the search process, which consis
articles, where n stands for the number of articles at each step. After our se
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MCG signals, five did not use GCG, one used additional signals

along with MCG, and one conducted experiments concerning the

HR of non-human subjects (pet dogs). Finally, a further 11

articles without full-text access were excluded. As a result of the

filtering process, we included seven articles in our detailed analysis.

An overview of the selected publications is provided in the

publication’s subsection below. The subsection on demographic
ted of the identification, screening, eligibility checking, and inclusion of
arch, seven articles were included for further analysis.
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data describes the subjects involved in the data acquisition process

of the experiments. The methodology subsection scrutinizes the

different methodologies used, as well as the evaluation metrics

used for HR extraction. Finally, the discussion summarizes the

results, describes challenges, and proposes directions for future

research.
Publications

Seven publications were included for further analysis. Table 2

summarizes the essential aspects of the included publications.

Only two (38, 39) of these publications focused precisely on HR

estimation using MCG data and conducted performance

evaluations for the estimations, while the other five (22, 40–43)

derived HR from MCG data but used HR as a feature for

downstream classification of heart conditions such as AFib.

Therefore, these five articles did not provide any evaluation

metrics for HR estimation. Nevertheless, these articles were

included because they describe in detail the processing and

methodology required to obtain HR from MCG data. Six of the

included articles (22, 38, 40–43) were authored by a consistent

group of individuals. Consequently, an inquiry into the

dissimilarities pertaining to the datasets and methodologies

employed in the articles to estimate HR was conducted and the

results are presented in the dataset demographics section below

(for the datasets) and the discussion section (for the

methodologies).
Demographics of the datasets

This section analyzes the articles in terms of their

demographics, including sample size, age distribution, gender

distribution, and comorbidities. Some of the articles (22, 40–43)

reused previous contributions to the datasets as shown in Figure 2.

The selected articles’ sample sizes varied between 11 and 435

participants, with two studies (39, 40) having a sample size of

fewer than 40 participants and three studies (22, 41, 43) having a

sample size of 300 participants or more. All articles reported the

gender distribution of the subjects. Two articles (38, 40) used

samples with skewed gender ratios where more than 80% of the

subjects were male. Among the included articles, four (22, 40, 42,

43) provided the body mass index (BMI) statistics of the

subjects, which may offer insights into the relationship between

obesity and cardiovascular health conditions (44). However, BMI

alone is regarded as a weak indicator of the percent of body fat

and its negative influence on health (45). More effective

anthropometric indicators such as chest circumference, waist-to-

hip ratio, waist circumference measurement, hip circumference

measurement, and waist-to-height ratio better gauge the health

risk grade of obesity of individuals. Only one article (22)

reported chest circumference as a clinical characteristic of its

subjects. All included articles provided information about the

subjects’ age distribution. Amongst the included articles, two

articles (41, 43) only included elders as their subjects (mean age
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of 74.8), three articles (22, 40, 42) included both elders and

young adults in their studies (in these three studies, all elders

had comorbidities and all young subjects were healthy), and two

articles (38, 39) included only subjects who were relatively young

(10–60 years old). Six articles (22, 38, 40–43) provided health

information about the subjects. While one of these six articles

considered only healthy subjects (38), the other five (22, 40–43)

included subjects with different combinations of comorbidities,

which may have affected the morphology of the MCG signals

collected compared to those of healthy patients.

It is important to consider the presence of different

combinations of comorbidities when interpreting MCG signals,

as comorbidities can introduce confounding factors that may

affect the accuracy and reliability of the measurements and

therefore the downstream HR predictions based on these

measurements.

Only two studies (38, 39) reported accuracy/error rates of their

HR estimations, one of which only included healthy subjects (38),

while the health information of the subjects was not reported in the

other (39). Therefore, for that study, we do not have information

about whether any comorbidities were present to introduce

irregularities to the signals and affect the accuracy of the HR

estimations.
Gyrocardiography setup and data

All the included studies adopted a similar experimental system

setup. Figure 3 shows the visualization of the setup and the

pipeline of the model, starting with data collection and data pre-

processing, followed by HR derivation, and finally diverging

either to perform downstream classification of heart conditions

such as AFib or to directly assess the accuracy of the HR

detection using evaluation metrics.

As shown in the smartphone model and the built-in sensors

columns of Table 2, most of the studies (22, 38, 40–43) used

both a tri-axial ACC and a tri-axial gyroscope with a sampling

frequency of 200 Hz in a Sony Xperia smartphone. Only

Mohamed et al. (39) conducted experiments using only a tri-

axial gyroscope. In their study, Mohamed et al. (39) explored

different smartphone models (Samsung Note II, Samsung S5, and

Sony Z2) and found that Sony smartphone data, due to higher

chip accuracy, provided the lowest error rate when used for HR

estimation. One article (38) did not report the smartphone

model used for data collection.

In terms of subject selection and measurement protocols, two

articles (40, 42) provided details about the health criteria for

participant inclusion and exclusion, and five studies (22, 40–43)

declared that they had obtained approval for their research

protocols from the ethical committees of the respective hospitals

where patients’ data was collected.

All studies obtained their data through a dedicated data

collection application. The data was all collected using

smartphones placed on subjects’ chests in the supine position.

Only Mohamed et al. (39) considered more than one measuring

position, comparing the error rate of experiments in a supine
frontiersin.org
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FIGURE 2

Dataset information used in the five included studies. This figure presents details of the datasets used in the articles, including the number of subjects,
subjects’ comorbidities, and the relationships among the datasets in each publication. The symbol “m” denotes the number of subjects in each
respective category. The average age of each cohort is presented beneath the cohort name, with the age range given in parentheses “()” below
the average age. Abbreviations used in the figure include atrial fibrillation (AFib), coronary artery disease (CAD), acute decompensated heart failure
(ADHF), and not reported (N/R). The downward arrow # signifies the reuse of a dataset in subsequent studies.
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position to those conducted holding the smartphone close to the

chest in a sitting position, and concluded that the sitting position

benefited the measurements more. None of the articles explored

other vertical postures, such as standing or walking, which can

lead to varied autonomic regulation of cardiovascular function

and therefore different HR patterns to those of supine postures

(46–48) due to an increase in the hydrostatic pressure of the

thigh (49). All experiments, including the ones performed in the

additional sitting position, involved placing the smartphone on

or close to the chest. While placing the smartphone on the chest,

whether in a sitting or supine position, is a reasonable position

since the chest is the closest measuring site to the heart, this

placement could also limit the usefulness of the application as it

would be impractical for continuous ambulatory HR monitoring.

The subjects were also instructed to remain still while lying in

the supine position, which is very difficult in practical scenarios.

In addition, it was required that the phone be put either on a

bare chest or only light clothing, which makes convenient usage

in cold weather conditions impossible.
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For HR ground truth data, Huranen et al. (38) derived the

reference HR from synchronized PPG signals collected by an

externally synchronized sensor (sampling frequency ¼ 50 Hz),

and Mohamad et al. (39) measured reference HR using an

Omron HEM-432C blood pressure and pulse rate monitor.

Jaakkola et al. (41), Tadi et al. (22), Iftikhar et al. (42) and

Mehrang et al. (43) also collected synchronized ECG as their

reference signal data, but these data were not utilized to obtain

HR or assess HR prediction accuracy. Lahdenoja et al. (40) did

not report any reference signal used in their studies.
Signal processing

As illustrated in Figure 3, there are two main stages for HR

detection using GCG: signal pre-processing and HR detection.

Data pre-processing was applied for noise removal and data

cleaning. The methods for these steps differ greatly in the

different studies.
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FIGURE 3

Experimental setup and signal processing pipeline in reviewed studies. This figure illustrates the generalized experimental setup and the signal
processing steps employed in the seven articles analyzed in this review. Of these, two studies (38, 39) concluded their process at the Heart Rate
(HR) detection stage post signal processing, while the remaining five (22, 40–43) proceeded to extract additional features for downstream
classification, using the HR data alongside other features. The figure depicts the typical subject positioning (supine) during data collection using a
smartphone, followed by the stages of raw signal pre-processing (scaling, shifting, filtering, and smoothing). The subsequent HR derivation
predominantly involved techniques like short-term auto-correlation and peak detection. For performance evaluation, the same two studies (38,
39) focused on analyzing the accuracy and error rate of HR estimation compared to reference signals, while the others used the derived HR for
further classification tasks related to conditions such as atrial fibrillation (AFib).
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Pre-processing
Lahdenoja et al. (40) and Jaakola et al. (41) initiated their signal

processing by individually pre-processing the six channels of the

signals using a bandpass brick-wall Fast Fourier Transform (FFT)

passband filter (1–45 Hz). This filtering step was crucial to remove

noise and bias and to accentuate the cardiac motions in the signal.

Building upon a similar need for precise signal preparation,

Mohamed et al. (39) took a different approach. They began by

segmenting each gyroscope channel into fixed-size windows, each

with a width “w”. Following this segmentation, they applied a

local mean removal algorithm in each window, specifically

targeting the elimination of the direct current component and

enhancing the smoothness of the signal.

In a slightly varied technique, Hurnanen et al. (38) employed a

second-order Butterworth Infinite Impulse Response bandpass
Frontiers in Cardiovascular Medicine 07
filter (5–30 Hz) for each of the six channels of the MCG signal.

Their aim was to eradicate high-frequency noise, signal offset,

and trend. Additionally, they utilized a triangle-shaped finite

impulse response filter (0.5s in length, 100 samples) to filter the

absolute value of the signal, considering the roughly triangular

envelopes of the heartbeat wavelets. The dynamic range of the

signals was then balanced using the Successive Mean

Quantization Transform (SMQT) algorithm, set at a quantization

level of L ¼ 8, to facilitate peak detection by reducing the

variance in peak amplitudes.

Echoing the methods of Lahdenoja et al. (40) and Jaakola et al.

(41), Iftikhar et al. (42) adopted a similar preprocessing strategy.

They also used a brick-wall FFT filter (1–40 Hz) for each

measurement. To address the breathing component in the signal,

they applied a mean filter (50 samples in length) to the original
frontiersin.org
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signal for estimation. This breathing component was then

subtracted from the original signal, refining the focus on the

cardiac-related aspects.

Tadi et al. (22) adopted a complex time series analysis method

for their pre-processing. The signals from each of the six channels

were first divided into segments of fixed lengths N . Instead of using

frequency domain filters with pre-defined pass-band frequency

limits, which can potentially cause the loss of vital information,

Singular spectrum analysis (SSA) (50) was performed to

decompose the signal into interpretable components such as

periodic signals, noise, and baseline trend, as well as to further

smooth the derived signals.

In addition to the SSA filter, Tadi et al. (22) performed

envelope detection by filtering the signal firstly with a mean filter

(4 samples in length), then by a triangular moving-average filter

(8 samples in length), and finally by another triangular moving-

average filter (51 samples in length). The triangular moving-

average filters smooth out local fluctuations but keep long-term

trends, therefore are able to capture stable cardiac waveforms for

further assessment of cardiac rhythms.

Mehrang et al. (43) adopted the same filtering parameters

(brick-wall FFT filter with cut-off frequencies of 1–40 Hz) as

Lahdenoja et al. (40) and Jaakola et al. (41), and incorporated

the breathing component removal step as proposed by Iftikhar

et al. (42).

Two articles further elaborated on the artifact removal process

for measurement inclusion of the acquired data. Lahdenoja et al.

(40) used a sliding window Root Mean Square filter on the ACC

Z (ACC-Z) axis to identify and eliminate artifacts because

previous studies (51, 52) have demonstrated the high quality of

the data obtained from the ACC-Z axis. The identification

process of artifacts involves checking for the number of sample

values in the filtered signal that exceed the median value of the

ACC-Z signal. If this number is higher than a predefined

threshold, the corresponding signal will be tagged artifact and

subsequently discarded. Huranen et al. (38) eliminated the 8

measurements with low-quality PPG and used the 66

measurements with high-quality reference PPG for their

experiments.
Heart rate estimation
The included articles performed HR estimation using each

individual axis either from beat-to-beat duration detection using

short-term Auto-Correlation (S-AC) (22, 40–43) or from local

peak detection (38, 39).

For S-AC, overlapping sliding windows of size 2.5s (500

samples for sampling frequency = 200 Hz) were used for each

10s segment (2000 samples for sampling frequency = 200 Hz),

resulting in 8 windows per segment. The output of each window

represents the calculated lag of one heartbeat, which is used to

calculate the corresponding HR. The median HR of the 8

estimated HR will be used as the final estimated HR for the

segment.

Whereas for local peak detection, the respective methods detect

the number of peaks in the processed signals as the number of
Frontiers in Cardiovascular Medicine 08
heartbeats in the specified interval of the segment and estimate

HR from these segments.

Post-processing
Two articles (38, 39) considered axis selection after predicting

HR using each individual axis. While Hurnanen et al. (38) merely

compared the performance of HR estimation using each axis and

briefly described that the Gyro-Y axis has the lowest error rates,

Mohamed et al. (39) adopted data post-processing which merges

the axes using a Kalman filter and filters the merged predicted

HR with an a-trimmed mean filter for more robust estimation.

After merging the three gyroscope axes and obtaining an HR

estimate for each timestamp using a Kalman filter, an a-trimmed

mean filter (30 samples in length) is used for a more robust HR

estimation, where a defines the extent to which the filter behaves

like a median filter.

Performance evaluation metrics
Only two articles (38, 39) conducted a performance evaluation

for HR estimation. The other five articles (22, 40–43) focused on

downstream classification using HR as a feature. Mohamed et al.

(39) used HR measured from a pulse rate monitor as the

reference to evaluate the accuracy of their HR estimation, while

Hurnanen et al. (38) used a PPG signal as the reference. The

evaluation metrics used were also inconsistent among the studies.

While Mohamed et al. (39) calculated median average error

(beats per minute), Hurnanen et al. (38) calculated the numbers

and percentages of missed and false beats estimated.

Performance evaluation metrics are imperative for ensuring

that HR estimation methods are evaluated based on their

accuracy and precision. Accuracy and precision are critical when

making decisions that affect people’s health and safety. It is also

important to have consistent metrics for evaluating and

comparing the performance of different HR estimation methods

objectively. Objectivity improves the reliability of methods and

allows for the identification of the most effective and efficient

methods.
Discussion: interpretation of results,
challenges, and future directions

An important aspect of our review that warrants discussion is

the observation that a significant portion of the literature,

specifically six out of the seven articles reviewed, were authored

by a consistent group of researchers. We recognize that this

concentration of research output from a single group might raise

questions about the representativity of our review’s findings and

the generalizability of the conclusions drawn. To address this, we

have conducted a detailed analysis of the methodologies and

datasets used in these studies to uncover any underlying

dissimilarities or unique approaches that may exist. This

examination is crucial to understanding the breadth and depth of

the research conducted by this group and to ascertain whether

their findings and methodologies could be considered as

representative of the field’s current state. The results of this
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inquiry, focusing on the diversity in datasets and methodological

approaches, are discussed comprehensively in the dataset

demographics section and the methodology discussion in our

manuscript. By doing so, we aim to present a balanced and

objective view of the current research landscape in

gyrocardiography, acknowledging the contributions of this

prominent group while also critically evaluating the impact of

their dominance in the field on the overall conclusions of our

review.

Our literature search showed that HR estimation using

smartphone GCG data is feasible, with many studies taking this

further to use HR estimation for downstream classification

applications. However, it should be noted that while our

literature search began in 2012, the significant body of research

specifically focusing on gyrocardiography for HR estimation has

emerged more recently, from around 2017, indicating the novelty

of this application in the field.

First, inconsistency exists in the findings as to whether using

gyroscope data alone or combining it with ACC data produces

higher accuracy in HR detection. Lahdenoja et al. (40) and

Hurnanen et al. (38) claim that using both GCG and SCG leads

to better results, while Mohamed et al. (39) report that using

GCG alone yields better results than using both. These

inconsistencies may be due to the different data processing

methods used across the studies. In addition, different data

quality and individual physiology may play roles in HR

estimation accuracy. For example, some methods might be more

sensitive to higher HR and therefore be better able to estimate

HR in certain individuals with overall higher HR. Most

importantly, while Lahdenoja et al. (40) and Hurnanen et al. (38)

hypothesized that using all six axes (tri-axial ACC and tri-axial

gyroscope) should yield more accurate HR estimation, they did

not conduct performance evaluations on HR estimation, and the

subject pool used by Mohamed et al. (39) to support their claim

was relatively small. Therefore, additional research is needed to

fully understand the potential benefits and limitations of using

gyroscopes with and without ACCs for HR detection.

A major challenge in this field is data collection. Factors such

as subject selection, dataset size, data quality, ethical

considerations, and protocol standardization have to be taken

into account during the data collection process for holistic

research. The accuracy of HR estimation methods may vary

across different populations with different ages, genders,

ethnicities, medications, obesity levels, and comorbidities due to

differences in physiology and lifestyle. Therefore, it is important

to ensure that the methods used for HR estimation are validated

in diverse populations to guarantee applicability and accuracy

for all individuals. The diversity of the subject population

mandates that the number of subjects included in the studies

should not be too small. For example, while Mohamed et al.

(39) claimed to have achieved better than state-of-the-art

accuracy, the size of their subject pool was less than 20. Their

methods, therefore, need to be validated on a larger dataset to

prove their robustness. To ensure the reliability of the results of

a study, the data collected from smartphone sensors should be

of high quality and free from noise and artifacts to facilitate
Frontiers in Cardiovascular Medicine 09
signal processing tasks. This requires careful selection of the

smartphone model used, which would require experiments on

more smartphone models.

Furthermore, while our study focuses on the utilization of

smartphones for medical data collection, it is important to

recognize the broader context. Traditional methods of medical

data collection often involve more specialized equipment and

trained personnel, making them more expensive and time-

consuming compared to the smartphone-based methods explored

here. This comparison underscores the potential of smartphones

as a more accessible and less resource-intensive alternative for

HR data collection, which could be particularly beneficial in

resource-limited settings or for widespread population health

monitoring.

Fortunately, efforts have been made toward facilitating medical

data collection and sharing for research purposes. Hospitals are

collaborating with institutions to provide access to medical

datasets and facilitate research in various domains. As seen in

Figure 2, there has been a significant increase in dataset size

(from 39 subjects to � 300 subjects) in this area of research.

Additionally, with the increasing prevalence of smartphones,

there may be more opportunities to collect GCG signals in a

non-invasive and convenient manner. This could potentially lead

to larger and more diverse datasets for HR estimation that will

enable the development of more robust and reliable models for

HR estimation.

All included articles, except Mohamed et al. (39), used GCG

signals collected only when the user was in a supine position,

with the phone placed flat on the user’s chest. Only collecting

data from a supine position may limit the use of these collection

methods as ambulatory monitors in real-life scenarios where

subjects are less likely to remain stationary. Different postures

and physical activity patterns should be considered and studied,

as they can lead to differences in the measured GCG signals due

to changes in pressure on the chest. Future methods may need to

combine activity recognition with HR estimation to take the level

of physical activity into account.

A gold standard for performance evaluation is notably lacking

in the included articles. While in medicine, ECG is the gold

standard for HR monitoring, Jaakkola et al. (41), Tadi et al. (22),

and Mehrang et al. (43) used ECG as a reference signal,

Hurnanen et al. (38) used PPG as a reference signal, and

Mohamed et al. (39) used HR readings from a blood pressure

monitor as a reference signal. A lack of standardization in terms

of data collection, analysis methods, and performance evaluation

makes it difficult to compare results across studies. Establishing

standard protocols for data collection and analysis is therefore

essential for advancing this field.

We provide a list of recommendations for addressing

the above challenges, which will require a multidisciplinary

approach involving expertise in signal processing, physiology,

pathophysiology, medicine, and novel method development.

• Standardize the gold standard (e.g., ECG) for a fair comparison

against a reliable reference.

• Standardize the metric for convenient performance evaluation.
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• Perform methods evaluation using the standardized reference

signals and metrics.

• Compare the effect of using six-axial data vs using tri-axial

gyroscope data only.

• Collect data at different positions when the subjects are in

different postures and study the effect of postures and data

collection sites on HR detection accuracy.

• Incorporate physical pattern recognition into the algorithm.

• Include subjects with a more diverse background in terms of

gender, ethnicity, and comorbidity.

Much more research and development is needed before the use

of GCG signals can be widely adopted in healthcare settings.
Conclusions

In this scoping review, we conducted a literature search on HR

detection using smartphone gyroscope data. We have described the

data processing methods used in each article, presented challenges,

and potential approaches to these challenges, suggested future

research directions, and discussed the standardization required in

this field. Despite the potential usefulness of using gyroscopes for

HR detection, there are relatively few literature articles dedicated

to researching this purpose. This could be largely attributable to

a lack of awareness about the potential to use gyroscopes for HR

detection, as ACCs have previously been the most popular tool

for this purpose. It is hoped that this review will increase

researchers’ awareness about the potential of using smartphone

GCG for HR estimation.
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