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weighted gene co-expression
network analysis for human aortic
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Background: Human aortic valve stenosis (AS) and insufficiency (AI) are common
diseases in aging population. Identifying the molecular regulatory networks of AS
and AI is expected to offer novel perspectives for AS and AI treatment.
Methods: Highly correlated modules with the progression of AS and AI were
identified by weighted genes co-expression network analysis (WGCNA). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed by the clusterProfiler program package.
Differentially expressed genes (DEGs) were identified by the
DESeqDataSetFromMatrix function of the DESeq2 program package. The
protein‐protein interaction (PPI) network analyses were implemented using the
STRING online tool and visualized with Cytoscape software. The DEGs in AS and
AI groups were overlapped with the top 30 genes with highest connectivity to
screen out ten hub genes. The ten hub genes were verified by analyzing the
data in high throughput RNA-sequencing dataset and real-time PCR assay using
AS and AI aortic valve samples.
Results: By WGCNA algorithm, 302 highly correlated genes with the degree of AS,
degree of AI, and heart failure were identified from highly correlated modules. GO
analyses showed that highly correlated genes had close relationship with collagen
fibril organization, extracellular matrix organization and extracellular structure
organization. KEGG analyses also manifested that protein digestion and
absorption, and glutathione metabolism were probably involved in AS and AI
pathological courses. Moreover, DEGs were picked out for 302 highly correlated
genes in AS and AI groups relative to the normal control group. The PPI
network analyses indicated the connectivity among these highly correlated
genes. Finally, ten hub genes (CD74, COL1A1, TXNRD1, CCND1, COL5A1,
SERPINH1, BCL6, ITGA10, FOS, and JUNB) in AS and AI were found out and
verified.
Conclusion: Our study may provide the underlying molecular targets for the
mechanism research, diagnosis, and treatment of AS and AI in the future.
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Introduction

Heart failure is a severe terminal stage of all kinds of

cardiovascular diseases, which include hypertension (1), coronary

heart disease (2), myocardial infarction (3), valvular heart disease

(4), and cardiomyopathy (5). As the important cause of heart

failure, valvular heart diseases consist of stenosis or insufficiency

with specific pathophysiology among the four cardiac valves

(aortic valves, mitral valves, tricuspid valves and pulmonary

valves) (6). In the globe, valvular heart diseases have increasingly

become the important contributor to cardiovascular morbidity

and mortality according to the epidemiologic studies, which have

resulted in serious social burden and economical cost on valvular

heart diseases diagnosis and treatment (7). The prevalence of

valvular heart diseases gradually increases with age of clinical

patients (8). In terms of aortic valve lesion, aortic valve stenosis

(AS) and aortic valve regurgitation (AR) are the highly popular

valve lesions among various valvular heart diseases (9), the

morbidities of AS and AR were 0.7% and 0.2% with the age 55–

64 years, 1% and 1.3% for the age-bracket of 65–74 years, and

2% and 2.8% after 75 years old, respectively (8). Thus, due to the

large aging population around the world, the aortic valvular

heart diseases are still the important public health problem.

AS and AR are a kind of common aortic valve diseases,

characterized by aortic valve opening area reduction or aortic

valve insufficiency (AI), respectively. Currently, numerous studies

have reported the pathological features and molecular

mechanisms about aortic valve damage (10–13). The well-known

etiologies for AS include aortic valve degeneration, rheumatic

aortic stenosis, congenital valve defects, systemic inflammatory

diseases, endocarditis, and many other conditions (10). Whereas,

the major causes of AI are made up of various pathological

changes of aortic valves, such as leaflet abnormalities, rheumatic

fever, myxomatous degeneration, infective endocarditis, etc (12).

Although, the current available reports have uncovered the

molecular mechanisms for pathological processes of AS and AI,

which include but not limit to fibro-calcific remodeling,

osteogenic differentiation, lipid accumulation, inflammation,

angiogenesis and hemorrhage, disorganization and remodeling of

the valvular extracellular matrix (ECM) (10, 13). The vital

molecules for the regulation and indication of AS and AI

pathological courses still need to be further investigated. Hence,

using high throughput sequencing techniques and identifying the

key regulatory or indicative molecules for AS and AI may

provide a feasible strategy for the diagnosis and treatment of AS

and AI from the microscopic molecular viewpoints.

In this study, we analysed the expression profiles of human

aortic valve samples of aortic valve stenosis (AS) and aortic

insufficiency (AI) by systematic bioinformatics approaches of

weighted gene co-expression network analysis (WGCNA). We

constructed the gene co-expression modules by WGCNA

algorithm and screened the highly correlated modules with the

degree of AS, degree of AI, and heart failure, which included

orange, steelblue, darkgreen, and grey60 modules. Furthermore,

we selected highly correlated genes in indicated modules and

performed Gene Ontology (GO) and Kyoto Encyclopedia of
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Genes and Genomes (KEGG) pathway enrichment analyses. The

differentially expressed genes (DEGs) were identified and

intersected with those 30 genes possessing high connectivity

among the highly correlated genes from various modules to

screen out hub genes. Finally, the mRNA expression values of

ten hub genes (CD74, COL1A1, TXNRD1, CCND1, COL5A1,

SERPINH1, BCL6, ITGA10, FOS, and JUNB) were validated by

analyzing results of high throughput RNA sequencing from AS

and AI aortic valve samples and by examining the mRNA

expression levels of human AS and AI aortic valve tissues. These

results may provide an avenue for the diagnosis and treatment of

AS and AI in the future.
Materials and methods

High-throughput data acquisition and
preprocessing

The high-throughput RNA-sequencing datasets were acquired

from the public Gene Expression Omnibus (GEO) database with

the accession number GSE153555, which contained the gene

expression data from 5 human normal control (NC) aortic

valves, 5 human aortic stenosis (AS) aortic valves, and 5 human

aortic insufficiency (AI) aortic valves, each individual contained 2

biologically repeated aortic valve high-throughput RNA-

sequencing results. The gene expression Fragments Per Kilobase

of transcript per Million mapped reads (FPKM) values and count

values were analysed by R software (Version 4.1.2). Clinical

traits, including age, sex, body mass index (BMI), degree of AS

and AI, left ventricular ejection fraction (LVEF), and disease

history (diabetes, hypertension, coronary heart disease, and heart

failure), for each sample were collected from the Series Matrix

Files in the GEO database with GSE153555 number (14). The

average gene expression FPKM values of 30 samples were

calculated and ranked by size, and the top 6,000 genes with the

highest average expression were screened out and used for

weighted gene co-expression network analysis (WGCNA)

computation. The FPKM values of the 6,000 genes from 30

samples were subjected to log2(FPKM + 1) conversion followed

by samples hierarchical clustering to eliminate 2 outlier samples

(GSM4647040 and GSM4647041) using the hclust function in

the R software (Version 4.1.2).
Co-expression module construction of AS
and AI by WGCNA algorithm

The WGCNA co-expression module construction was

conducted as previously described (15). The soft threshold β

power value for WGCNA module construction was computed by

pickSoftThreshold function in the WGCNA program package.

The adequate β value 16 was picked out once Scale Free

Topology Model Fit, signed R2 value was ≥0.8. Then, the

adjacency matrix and topological overlap matrix (TOM) were

constructed using the power value 16. The co-expression
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modules were constructed and merged for those modules with

similar expression profiles by step-by-step network construction

methods. The correlation analysis among the indicated modules

were performed by calculating the eigengenes, which were

defined as the principal component 1 (PC1) of principal

component analysis (PCA) for gene expression values in the

indicated modules.
Correlation analysis between co-expression
modules and clinical traits

The correlation analyses between modules and clinical traits

were performed using the eigengenes of the corresponding

modules and clinical traits data to screen out the highly

correlated modules with indicated clinical traits. To screen the

highly correlated genes in AS and AI pathological courses, these

modules relevant to degree of AS, degree of AI, and heart failure

were further analysed. These modules with correlation coefficient

more than 0.6 and P value less than 0.05 were regarded as highly

correlated modules. The correlation coefficients of 6,000 genes

expression values and indicated clinical traits were defined as

gene significance (GS). For the associations of each module with

the genes involved in the WGCNA process, module membership

(MM) was defined as the correlation of module eigengenes and

gene expression levels. The scatterplot of Gene Significance vs.

Module Membership in the indicated module was plotted. These

scatterplots with correlation coefficients more than 0.5 and P

value less than 0.05 were selected. These 302 genes in indicated

scatterplot with MM> 0.8 and GS > 0.8 were regarded as the

highly correlated genes with corresponding module or trait,

respectively, and were selected for subsequent analysis.
Gene ontology (Go) and Kyoto
encyclopedia of genes and genomes
(KEGG) enrichment analyses

We performed GO and KEGG enrichment analyses for the

highly correlated genes identified by the above procedures using

the clusterProfiler program package. Firstly, the ENSEMBL

number for each gene was transformed into the ENTREZID

number using the bitr function. GO analyses including biological

processes (BP), molecular functions (MF), and cellular components

(CC) terms were conducted. These terms in GO and KEGG

enrichment analyses with P value less than 0.05 were screened out

and considered as significant terms in AS and AI pathological

processes. The top ten terms in GO and KEGG enrichment

analyses were selected for visualization and further analyses.
Identification of differentially expressed
genes (DEGs)

The DEGs analysis using the high throughput RNA-

sequencing data was performed to evaluate the gene expression
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situation among the indicated groups using the

DESeqDataSetFromMatrix function of the DESeq2 program

package. Firstly, the results of DEGs analyses for total genes in

high throughput RNA-sequencing data were obtained from the

AS and AI group. The indicated DEGs results for the 302 highly

correlated genes were screened out. These genes in AS or AI

group with |log2FoldChange|≥ 1 and adjust P value <0.05

relative to the normal control group, were considered as the

DEGs. These genes with log2FoldChange≥ 1 were defined as

upregulated (UP) genes. These genes with log2FoldChange ≤−1
were defined as downregulated (DOWN) genes. These genes with

−1 < log2FoldChange < 1 were defined as unchanged (NOT)

genes. The volcano plots and heat maps were plotted to visualize

DEGs.
Protein-protein interaction (PPI) network
analysis

PPI network analysis was performed using an online network

tool STRING (https://cn.string-db.org/, version 11.5) (16). The

302 highly correlated genes were imported into STRING. The

TSV file contained 302 highly correlated genes was downloaded

and the PPI network was visualized by Cytoscape software

(version 3.9.0) (17). The CytoHubba plug-in was used for

identifying genes with high connectivity ranked by Betweenness

(18). The top 30 genes with highest connectivity were picked out

for further analysis. The DEGs of AS and AI group were

intersected concurrently with the top 30 genes from PPI network

analysis to identify these genes with significantly changed

expression and high connectivity. These genes (CD74, COL1A1,

TXNRD1, CCND1, COL5A1, SERPINH1, BCL6, ITGA10, FOS,

and JUNB) that met the above conditions were identified as the

hub genes.
Human aortic valves sample collection and
grouping

Human aortic valve samples were obtained from patients with

pure AS or AI. These aortic valves samples from heart

transplantation receptors or aortic dissection patients without

definite lesions in aortic valves were used as normal control

(NC) and mild aortic valve samples. A total of 35 aortic valve

samples including 5 samples from normal control (NC) patient,

15 samples from aortic stenosis (AS) patient and 15 samples

from aortic insufficiency (AI) patient were included in this study.

Doppler echocardiography was used for evaluation of AR or AS

severity (19, 20). The specimens were classified into 4 groups

containing normal control, mild, moderate, and severe. The

characteristics of aortic valves used in this study are shown in

Table 1. All procedures involving human aortic valves samples

conformed to the principles outlined in the Declaration of

Helsinki. Exemption from informed consent for patients and

human sampling procedures were approved by the Human
frontiersin.org
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TABLE 1 Characteristics of clinical samples used in this study.

Group Age
(years)

Sex Body weight
(kg)

Height
(cm)

Degree of aortic Valve
lesion

LA diameter
(mm)

LV diameter
(mm)

LVEF

NC-1 67 M 68 170 Normal 32 46 70%

NC-2 30 F 50 168 Normal 26 37 71%

NC-3 43 F 60 163 Normal 28 40 68%

NC-4 51 M 69 173 Normal 30 46 72%

NC-5 44 M 70 170 Normal 28 43 69%

AS-1 51 M 70 173 Mild AS 29 48 68%

AS-2 34 F 55 157 Mild AS 30 48 72%

AS-3 57 F 56 158 Mild AS 33 44 69%

AS-4 45 F 60 163 Mild AS 29 43 71%

AS-5 81 M 68 167 Mild AS 31 46 74%

AS-6 55 M 71 168 Moderate AS 28 45 71%

AS-7 54 F 65 163 Moderate AS 30 46 68%

AS-8 68 F 75 170 Moderate AS 35 48 68%

AS-9 58 F 56 157 Moderate AS 34 44 68%

AS-10 56 M 70 170 Moderate AS 31 53 60%

AS-11 48 F 46 156 Severe AS 25 38 63%

AS-12 59 F 76 163 Severe AS 35 48 68%

AS-13 41 M 75 171 Severe AS 36 58 67%

AS-14 70 M 80 168 Severe AS 36 47 67%

AS-15 50 F 46 151 Severe AS 27 43 60%

AI-1 56 M 70 173 Mild AI 25 49 67%

AI-2 60 F 56 156 Mild AI 30 52 65%

AI-3 53 F 46 153 Mild AI 26 48 66%

AI-4 66 M 68 168 Mild AI 29 47 68%

AI-5 50 F 55 160 Mild AI 26 38 70%

AI-6 58 F 60 160 Moderate AI 35 52 65%

AI-7 51 F 56 156 Moderate AI 36 51 68%

AI-8 59 F 46 153 Moderate AI 27 43 74%

AI-9 60 F 66 159 Moderate AI 36 58 63%

AI-10 60 M 68 170 Moderate AI 33 70 42%

AI-11 69 M 67 167 Severe AI 37 70 45%

AI-12 59 M 73 172 Severe AI 49 60 63%

AI-13 61 M 70 169 Severe AI 33 60 61%

AI-14 41 M 95 181 Severe AI 30 64 55%

AI-15 58 F 80 170 Severe AI 35 78 50%

A total of 35 aortic valve samples were included in the study, with 5 from normal control (NC) patients, 15 from aortic stenosis (AS) patients, and 15 from aortic insufficiency

(AI) patients. F, female; M, male; LA, left atrial; LV, left ventricular; LVEF, left ventricular ejection fraction.

Yang et al. 10.3389/fcvm.2023.857578
Research Ethics Committees of Tongji Hospital of Huazhong

University of Science and Technology (21).
Real-time PCR

Real-time PCR analyses of mRNA levels in human aortic valve

samples were performed as previously described (21). Briefly, the

total RNA was extracted from 5 normal control aortic valve

samples, 15 AS aortic valve samples, and 15 AI aortic valve

samples using TRIzol reagent (15596018, Thermo Fisher

Scientific) and reverse transcribed into cDNA using the

Transcriptor HiScript III RT SuperMix for qPCR (+gDNA wiper)

(R323-01, Vazyme). The quantitative analyses of ten hub genes

mRNA expression levels were determined by real-time PCR assay

using SYBR (Q311-02, Vazyme). Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) was used for the internal reference.

Primers used in this study were listed in Table 2.
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Statistical analysis

Statistical analysis was conducted by SPSS 23.0 software. All

data are presented as the mean ± SD. Non-parametric Kruskal-

Wallis H test was used for comparisons among multiple groups.

P value <0.05 was considered to be statistically significant.
Results

Construction of WGCNA co-expression
modules

The data analysis process used in this study was depicted in the

flow diagram (Figure 1A). High throughput RNA-sequencing data

were preprocessed using the R software (Version 4.1.2). The average

FPKM expression values for a total of 48,162 genes were calculated

and ranked by size. The top 6,000 genes with the highest average
frontiersin.org
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TABLE 2 Primers for the real-time PCR assays in this study.

Gene Species Sequence 5′-3′
CD74 Human F CAGCGCGACCTTATCTCCAA

R GGTACAGGAAGTAGGCGGTG

COL1A1 Human F AAGAACAGCGTGGCCTACAT

R TTCAATCACTGTCTTGCCCCA

TXNRD1 Human F TGGCCATTGGAATGGACGAT

R TGGACCCAGTACGTGAAAGC

CCND1 Human F GAGTGATCAAGTGTGACCCG

R CAGATGTCCACGTCCCGC

COL5A1 Human F ACAACAACCCCTACATCCGC

R TGACGCTTCACCGAAGTCAT

SERPINH1 Human F CCTCTCGAGCGCCTTGAAAA

R CTGACATGCGTGACAAGTCG

BCL6 Human F TTTCCGGCACCTTCAGACTC

R TGCACCTTGGTGTTGGTGAT

ITGA10 Human F AGACCCGGCCTATCCTCATC

R TTTCTTATGGGCAAAGAAGCCA

FOS Human F GGAGGGAGCTGACTGATACAC

R ATCAGGGATCTTGCAGGCAG

JUNB Human F GTCAAAGCCCTGGACGATCT

R TTGGTGTAAACGGGAGGTGG

GAPDH Human F CATCACCATCTTCCAGGAGCGAGA

R TGCAGGAGGCATTGCTGATGATCT

Yang et al. 10.3389/fcvm.2023.857578
FPKM expression values in the datasets of the 30 samples were

chosen for WGCNA computation. Sample hierarchical clustering

was performed with hclust function and the height 60 was set as

the threshold to screen outlier samples (Figure S1A). Two outlier

samples GSM4647040 and GSM4647041 were identified and

eliminated from all samples (Figure S1A). Before network

construction and module detection, the clinical traits related to

the sample dendrograms were visualized as the heatmap in

Figure S1B. Finally, 28 samples with 6,000 genes were selected

for WGCNA module construction. To screen out the suitable soft

threshold power value used for WGCNA algorithm, we set an

indicated range for power values and the power value 16 was

picked out by pickSoftThreshold function in WGCNA package

(Figure 1B). The WGCNA module construction was conducted,

and those modules with similar expression profiles were merged.

As depicted by the gene dendrograms, total eight modules were

finally constructed, which included darkgrey (1,978 genes),

lightcyan (1,158 genes), darkorange (242 genes), orange (170

genes), steelblue (35 genes), darkgreen (706 genes), grey60 (649

genes), and grey (1,062 genes) modules (Figure 1C). Those genes

uncorrelated with other modules were assigned to grey module.

The eigengene dendrogram and eigengene adjacency heatmap

were plotted to exhibit the associations among the modules by

eigengenes (Figure 1D).
Identification of highly correlated modules
connected with AS or AI

PCA for gene expression values in the indicated modules were

computed. The PC1 for indicated genes was defined as eigengene.

The correlation analyses for modules and clinical traits were
Frontiers in Cardiovascular Medicine 05
performed by eigengenes from various modules and clinical traits

data of 28 samples (Figure 2A). To find the highly correlated

genes with AS and AI pathophysiologic mechanisms, these

modules (correlation coefficient >0.6 and P value <0.05)

associated with the degree of AS, degree of AI, and heart failure

were subjected to further analyses (Figure 2A).

To further study the relationship between modules and clinical

traits, the associations of gene expression values with degree of AS,

degree of AI, and heart failure were analysed, the correlation

coefficients were defined as gene significances (GS). The

correlations of gene expression values with the modules (orange,

steelblue, darkgreen, and grey60 modules) screened out in

Figure 2A were calculated, which were marked as module

memberships (MM). The scatter plots for MM and GS in the

indicated modules were plotted, these plots (module membership

vs. gene significance) with correlation coefficients more than 0.5

and P value less 0.05 were regarded as highly correlated for MM

and GS (Figures 2B–G). These plots were used to screen highly

correlated genes in AS and AI pathogenesis. These genes with

GS > 0.8, MM > 0.8, and P value <0.05 were singled out in the

plots. There were 30, 108, 133, 29, 77, and 5 genes in indicated

modules screened out by the pre-set parameters (Figures 2B–G).

Finally, 302 highly correlated genes were identified after

removing duplicates.
GO and KEGG enrichment analysis for
highly correlated genes

In order to parse the molecular functions involved by these

302 highly correlated genes, gene function enrichment analyses

of GO and KEGG were conducted using clusterProfiler

program package. The results of GO enrichment analyses

including BP, MF, and CC were obtained. These terms of GO

and KEGG enrichment analyses were ranked by ascending P

value and descending gene counts. We selected top 10 highly

correlated terms with AS and AI as significantly enriched terms

in GO and KEGG analyses.

Among these terms in BP analysis, our results showed that

genes highly correlated with AS and AI were mainly enriched in

collagen fibril organization (GO:0030199), extracellular matrix

organization (GO:0030198), extracellular structure organization

(GO:0043062), external encapsulating structure organization

(GO:0045229), cell-substrate adhesion (GO:0031589), response to

oxidative stress (GO:0006979), negative regulation of cellular

protein localization (GO:1903828), negative regulation of

interleukin-2 production (GO:0032703), pentose metabolic

process (GO:0019321), and regulation of cell morphogenesis

(GO:0022604) (Figure 3A). For MF analysis, the enrichment

analysis results mainly included extracellular matrix structural

constituent (GO:0005201), extracellular matrix structural

constituent conferring tensile strength (GO:0030020), and kinds

of molecular binding (GO:0005518, GO:0048407, GO:0019001,

GO:0032561, GO:0005525, GO:0032550, GO:0030246,

GO:0001883) (Figure 3B). In CC enrichment analysis, the

significantly enriched terms mainly contained extracellular matrix
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FIGURE 1

Construction of WGCNA co-expression modules. (A) The flow diagram for our WGCNA modules construction procedure in this study. (B) Analysis of
scale-independence index (left panel) and mean connectivity for various soft threshold β power values, the most suitable β power value 16 was
screened out. (C) Clustering dendrograms of 6,000 genes and module construction and merging according to the similar expression profiles by
WGCNA algorithm. Total of eight co-expression modules were obtained including darkgrey, lightcyan, darkorange, orange, steelblue, darkgreen,
grey60, and grey modules. The grey module is reserved for unassigned genes. (D) Cluster analysis for eigengenes dendrogram (Top) and correlation
degree heatmap (Bottom) of eigengenes in each co-expression modules.

Yang et al. 10.3389/fcvm.2023.857578
(GO:0062023), endoplasmic reticulum lumen (GO:0005788),

collagen (GO:0005583, GO:0098643, GO:0005581, and

GO:0098644), focal adhesion (GO:0005925), cell-substrate

junction (GO:0030055), cell division site (GO:0032153), and

actin filament bundle (GO:0032432) (Figure 3C). These results

indicated that the highly correlated genes mainly functioned in

these courses.

To investigate the enriched pathways of these highly correlated

genes, the KEGG enrichment analyses were conducted. As shown

in Figure 3D, the significantly enriched pathways included

protein digestion and absorption (hsa04974), glutathione

metabolism (hsa00480), Th17 cell differentiation (hsa04659), Th1

and Th2 cell differentiation (hsa04658), ferroptosis (hsa04216),

phagocytosis (hsa04658), mitophagy (hsa04137), valine, leucine

and isoleucine degradation (hsa00280), hippo signaling pathway
Frontiers in Cardiovascular Medicine 06
(hsa04392), and pentose phosphate pathway (hsa00030). These

results revealed that these pathways may be important in the

development of AS and AI.
Identification of DEGs for highly correlated
genes

To understand the expression of the 302 highly correlated

genes in the AS and AI groups, we performed DEGs analyses

using the DESeq2 package. These genes with |log2FoldChange|≥
1 and adjust P value <0.05 were considered as the DEGs. As

depicted in Figures 4A–D, there were 31 downregulated genes,

229 unchanged genes, and 42 upregulated genes in the AI group

and 35 downregulated genes, 190 unchanged genes, and 77
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FIGURE 2

Identification of highly correlated modules connected with AS or AI. (A) The correlation heat map for various modules and clinical traits (age, sex, BMI,
degree of AS, degree of AI, LVEF, diabetes, hypertension, coronary heart disease, and heart failure). Each cell contains the corresponding correlation
coefficients and P value. (B–G) Scatterplot of Gene Significance (GS) for indicated clinical traits vs. Module Membership (MM) in the indicated modules.

Yang et al. 10.3389/fcvm.2023.857578
upregulated genes in the AS group in comparison to the control

group. These differential expression profiles among AS, AI, and

control group indicated the different molecular mechanism in AS

and AI pathogenesis.
Hub genes identification by PPI analysis

Based on the above results, we next explored the important hub

genes with high connectivity among these highly correlated genes.
Frontiers in Cardiovascular Medicine 07
The interaction network for the 302 highly correlated genes with

AS and AI pathogenesis was constructed and visualized utilizing

the PPI analysis tool STRING and Cytoscape, respectively

(Figure 5A). To screen out these genes with highest connectivity,

the recognized plug-in Cytohubba of Cytoscape software was

used to select the top 30 genes with the highest connectivity

among the 302 genes by Betweenness button (Figure 5B). To

identify the functionally crucial hub genes in mediating AS and

AI common pathological processes, we overlapped the DEGs

from AS group, AI group, and the top 30 highly connected genes
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https://doi.org/10.3389/fcvm.2023.857578
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 3

Go and KEGG enrichment analysis for highly correlated genes. (A–C) The GO enrichment analyses were conducted using the 302 highly correlated
genes, the top 10 terms of from BP (A), MF (B), CC (C) were depicted. (D) The KEGG enrichment analyses were performed, the 10 significantly
enriched pathways were identified. The circle size represents gene counts in each enriched term. The different color means significance for each
enriched term.
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(Figures 5C,D). Finally, ten hub genes including CD74, COL1A1,

TXNRD1, CCND1, COL5A1, SERPINH1, BCL6, ITGA10, FOS,

and JUNB were obtained according to above-mentioned

analytical methods (Figures 5C,D). These findings indicate that

AS and AI shared the common molecular regulatory network.
Validation of hub genes expression levels

For further verifying the results acquired from above analyses,

we first investigated the expression levels of the ten hub genes in AS

and AI group by analyzing expression values in high throughput

RNA-sequencing data. The expression levels of ten hub genes

were re-analysed. The mRNA expression levels of CD74,

COL1A1, CCND1, COL5A1, SERPINH1, FOS, and JUNB were

obviously upregulated, whereas those of TXNRD1, BCL6, and

ITGA10 were evidently downregulated in AS and AI aortic valves

relative to the normal controls (Figures 6A,B). Meanwhile, we

selected 5 normal aortic valves, 15 AS aortic valves, and 15 AI

aortic valves. These diseased aortic valves were divided into mild,

moderate, and severe groups according to the degree of aortic

valves lesion, respectively. The mRNA expression levels of CD74,
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COL1A1, TXNRD1, CCND1, COL5A1, SERPINH1, BCL6,

ITGA10, FOS, and JUNB were detected. As shown in Figures 6C,

D, although there was not evident degree of lesion-dependent

trend, the mRNA expression levels of the ten hub genes were

consistent with the results in Figures 6A,B from high-

throughput sequencing. These highly consistent data suggest that

the vital function of the ten hub genes in regulating and

indicating the disease course for AS and AI.
Discussion

Herein, using the published high throughput RNA-sequencing

data (GSE153555) for AS and AI aortic valves, we conducted

WGCNA to identify the key co-expression modules and hub

genes involved in AS and AI pathogenesis. Total of eight

modules including darkgrey, lightcyan, darkorange, orange,

steelblue, darkgreen, grey60, and grey modules were constructed.

The associations of modules and clinical traits were computed,

and these modules associated with the development and outcome

of AS and AI were further analysed to screened out the highly
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FIGURE 4

Identification of DEGs for highly correlated genes. (A–D) The 302 highly correlated genes with AS and AI were used for DEGs expression analyses. These
genes with |log2FoldChange|≥ 1 and adjust P value <0.05 were regarded as the DEGs in AS and AI group in comparison to the normal control group. The
volcano plots and heatmaps were used for visualization of the DEGs for indicated group. The blue dots of volcano plots represent the downregulated
genes (DOWN) in AS (A) and AI (C) group. The gray dots of volcano plots represent the unchanged genes (NOT) in AS (A) and AI (C) group. The red
dots of volcano plots represent the upregulated genes (UP) in AS (A) and AI (C) group. The heatmaps of DEGs from (A,C) of AS (B) and AI (D) group
were depicted, the color scale bar of heatmap represents the scale (from −2 to 2) for the expression levels of genes presented in the heatmaps with
a breakpoint of zero represented by white.

Yang et al. 10.3389/fcvm.2023.857578
correlated genes with AS and AI pathogenesis. The 302 highly

correlated genes were obtained from the indicated modules, and

GO and KEGG functional enrichment analyses were performed

to explore the potential biological processes and signaling

pathways involved in these genes. Furthermore, the expression

profiles of the 302 highly correlated genes were used for DEGs

analyses. There were 31 downregulated genes, 229 unchanged

genes, and 42 upregulated genes in AI group and 35

downregulated genes, 190 unchanged genes, and 77 upregulated

genes in AS group, respectively. The PPI network analyses were

performed and visualized by STRING online tool and Cytoscape

software. The top 30 genes with highest connectivity were singled

out and intersected with the DEGs in AS and AI group to find

out the common functional hub molecules in AS and AI

pathogenesis. Ultimately, ten hub genes (CD74, COL1A1,

TXNRD1, CCND1, COL5A1, SERPINH1, BCL6, ITGA10, FOS,

and JUNB) were obtained and the validation of expression levels

was performed to elucidate the molecular mechanism of AS and

AI pathological processes.

By exploiting WGCNA module construction, we screened

seven significant gene modules associated with AS and AI. We
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selected highly correlated modules with AS and AI for further

analysis, and the 302 highly correlated genes were picked out.

Our study found that these highly correlated genes were mainly

implicated in the regulation of collagen fibril and extracellular

matrix (ECM) by GO analyses, which was consistent with the

previous studies (22, 23). These results indicate that the disorders

of collagen fibril and ECM may largely impact the normal

function of aortic valves. According to the results of KEGG

analyses, we enriched top 10 pathways for AS and AI affected

mechanism, which included nutrient metabolism, T cell

differentiation, ferroptosis, phagocytosis, mitophagy, and Hippo

signaling pathway. Glutathione metabolism is the pivotal

pathophysiological course for anti-oxidative stress and anti-aging

(24). We identified that glutathione metabolism pathway was the

significantly enriched term, this hinted that oxidative stress

response could be the vital molecular mechanism in regulating

the development of AS and AI. Our analysis results were similar

with those of David R. A. Reyes et al. (25) and Michael

Mahmoudi et al. (26), which manifested the highly reliability of

our study. Besides, our study uncovered Th17 cell differentiation

and Th1 and Th2 cell differentiation pathway were associated
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FIGURE 5

Hub genes identification by PPI analysis. (A) The PPI network analysis for the 302 highly correlated genes was conducted using the STRING online tool and
visualized by Cytoscape software. Each node represents the gene, the different quantity of connecting line among these nodes represents connectivity.
(B) The PPI network shown the top 30 genes with highest connectivity from (A) screened out with Cytohubba plug-in by Betweenness button, the node
size represents different connectivity. (C) Venn diagram exhibited the overlapping of the DEGs from group and the top 30 genes with highest connectivity
from (B) to screen out the hub genes. (D) These hub genes were exhibited in the gene list.
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with AS and AI pathogenesis. As the distinctly important

contributors for orchestrating adaptive immune responses, Th1,

Th2, and Th17 cells are responsible to various intracellular or

extracellular pathogens as well as organ-specific autoimmunity,

which were activated by a series of cytokines (27, 28). Further,

Immune Cell Abundance Identifier (ImmuCellAI) (29) is

introduced for precisely estimating the abundance of immune

cell types from the high throughput RNA-sequencing data

(GSE153555). As shown in Supplementary Figure S2, the box

plots demonstrated that AS and AI patients had a higher level of

cytotoxic T cells, gamma delta T cells (γδ T), iTreg, Th2 and Tr1

and a lower level of macrophages, neutrophils, and Th17. Our

findings indicated that tackling immune responses may become a

possibility for harnessing the pathogenesis of AS and AI.
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Another, we identified the other significantly enriched pathways

as the AS and AI underlying mechanisms, such as ferroptosis,

phagocytosis, mitophagy, and Hippo signaling pathway. However,

the detailed and direct functions in AS and AI for these

identified pathways still needed for investigation deeply in the

future.

To find out the important regulatory and indicative molecules

for AS and AI, we focused on the 302 genes for further analysis. By

DEGs analysis and screening these genes with high connectivity, we

found out ten hub genes including CD74, COL1A1, TXNRD1,

CCND1, COL5A1, SERPINH1, BCL6, ITGA10, FOS, and JUNB.

In terms of the expression levels for the ten hub genes, our

results manifested that CD74, COL1A1, CCND1, COL5A1,

SERPINH1, FOS, and JUNB were significantly up-regulated.
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FIGURE 6

Validation of hub genes expression levels. (A,B) The mRNA expression levels of the ten hub genes (CD74, COL1A1, TXNRD1, CCND1, COL5A1, SERPINH1,
BCL6, ITGA10, FOS, and JUNB) of AS and AI group were analysed using the expression values from the high throughput RNA-sequencing data. These
genes were marked in the indicated volcano plot. (C,D) The mRNA expression levels of the ten hub genes (CD74, COL1A1, TXNRD1, CCND1, COL5A1,
SERPINH1, BCL6, ITGA10, FOS, and JUNB) of AS and AI group were detected by real-time PCR assay using the human aortic valve samples of AS and
AI. The mRNA levels were normalized to those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (n= 5). *P < 0.05 vs. the normal control
group, n.s., no significance.
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Whereas those of TXNRD1, BCL6, and ITGA10 were obviously

down-regulated. Although, transcriptional profiles of AS and AI

pathological processes have been well parsed by Christina

L. Greene et al. (14), the identification of highly correlated genes

with the progression of AS and AI by systematic computerized
Frontiers in Cardiovascular Medicine 11
algorithm remains unimplemented. Greene et al. used DEGs

analysis only to screen for genes of interest, our analysis strategy

may be more comprehensive and diverse. Our study may provide

the relatively reliable molecular markers for mechanism

researches, diagnosis, and treatment of AS and AI.
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CD74 (MHC class II invariant chain, Ii), is a kind of type II

transmembrane glycoprotein (30). CD74 functions in multiple

biological processes and disease types, including lung

adenocarcinoma (31), kidney disease (32), spondyloarthritis (33),

colitis (34), etc. Collagen type I alpha 1 chain (COL1A1) and

collagen type V alpha 1 chain (COL5A1) are the members of

collagen family (35), mainly involved in various courses of tumor

development, such as hepatocellular carcinogenesis and

metastasis (36), immune infiltration in mesothelioma (37),

metastasis of lung adenocarcinoma (38), tumor progression in

ovarian cancer (39). Thioredoxin reductase 1 (TXNRD1) is a

member of the thioredoxin system, regulating hepatocellular

carcinoma (40), epilepsy (41), osteosarcoma (42). Cyclin D1

(CCND1) functions as a regulator of CDK kinases and regulates

the cell-cycle during G1/S transition (43). Serpin family H

member 1 (SERPINH1) is a member of the serpin superfamily of

serine proteinase inhibitors and binds specifically to collagen, has

been identified acting in gastric cancer metastasis (44) and

proliferation and migration of retinal endothelial cells (45). B cell

lymphoma 6 (BCL6) is a recognized sequence-specific

transcriptional repressor and critical for regulating germinal

centers homeostasis (46). Integrin subunit alpha 10 (ITGA10) is

a receptor for collagen, has been supposed to be the prognostic

biomarker for skin cutaneous melanoma and ovarian cancer

(47, 48). Fos proto-oncogene, AP-1 transcription factor subunit

(FOS) has been uncovered adjusting cell proliferation,

differentiation, and transformation (49). JunB proto-oncogene,

AP-1 transcription factor subunit (JUNB) is a member for AP-1

complex, has been identified as the cell proliferation inhibitor

and senescence inducer (50), which involves in the regulation of

oral squamous cell carcinoma (51) and osteoarthritis (52), etc.

However, the molecular functions for these ten hub genes

identified by our study in aortic valve were still unclear. Our

study provided the feasible molecular bases for the mechanism

research or clinical diagnosis and treatment targeting AS and AI,

whereas the specific role for these molecules in AS and AI

should be further confirmed using in vitro or in vivo

experimental models of AS and AI. Collectively, we identified the

key signaling pathways and hub genes (CD74, COL1A1,

TXNRD1, CCND1, COL5A1, SERPINH1, BCL6, ITGA10, FOS,

and JUNB) in AS and AI pathological processes, which may

become the potential indicative biomarkers or important

regulatory targets in AS and AI pathogenesis. Our findings

probably provided the vital theoretical foundation for AS and AI

study in the future.
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