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Introduction: Autophagy refers to the process of breaking down and recycling
damaged or unnecessary components within a cell to maintain cellular
homeostasis. Heart failure (HF) is a severe medical condition that poses a
serious threat to the patient’s life. Autophagy is known to play a pivotal role in
the pathogenesis of HF. However, our understanding of the specific
mechanisms involved remains incomplete. Here, we identify autophagy-
related genes (ARGs) associated with HF, which we believe will contribute to
further comprehending the pathogenesis of HF.

Methods: By searching the GEO (Gene Expression Omnibus) database, we found
the GSE57338 dataset, which was related to HF. ARGs were obtained from the
HADb and HAMdb databases. Annotation of GO and enrichment analysis of
KEGG pathway were carried out on the differentially expressed ARGs (AR-
DEGs). We employed machine learning algorithms to conduct a thorough
screening of significant genes and validated these genes by analyzing external
dataset GSE76701 and conducting mouse models experimentation. At last,
immune infiltration analysis was conducted, target drugs were screened and a
TF regulatory network was constructed.

Results: Through processing the dataset with R language, we obtained a total of
442 DEGs. Additionally, we retrieved 803 ARGs from the database. The
intersection of these two sets resulted in 15 AR-DEGs. Upon performing
functional enrichment analysis, it was discovered that these genes exhibited
significant enrichment in domains related to “regulation of cell growth’,
“icosatetraenoic acid binding’, and “IL-17 signaling pathway”. After screening
and verification, we ultimately identified 4 key genes. Finally, an analysis of
immune infiltration illustrated significant discrepancies in 16 distinct types of
immune cells between the HF and control group and up to 194 potential
drugs and 16 TFs were identified based on the key genes.

Abbreviations

HF, heart failure; GEO, gene expression omnibus; ARGs, autophagy-related genes; DEG, differentially
expressed gene; AR-DEGs, autophagy-related differentially expressed genes; MI, myocardial infarction;
GO, gene ontology; BP, biological processes; MF, molecular function; CC, cellular components; KEGG,
kyoto encyclopedia of genes and genomes; LASSO, least absolute shrinkage and selection operator; RF,
random forest; GSVA, gene set variation analysis; CTD, comparative toxicogenomics database; TF,
transcription factor; ssGSEA, single-sample gene set enrichment analysis; IGFIR, insulin-like growth
factor 1 receptor; NLR, NOD-like receptor; PAMPs, pathogen-associated molecular patterns; DAMPs,
danger-associated molecular patterns; I/R, ischemia/reperfusio.
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Discussion: In this study, TPCN1, MAP2K1, S100A9, and CD38 were considered as
key autophagy-related genes in HF. With these relevant data, further exploration of
the molecular mechanisms of autophagy in HF can be carried out.
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heart failure, autophagy, key genes, bioinformatics analysis, machine learning

1 Introduction

Heart failure (HF) is a multifaceted clinical syndrome that
arises from a multitude of factors resulting in anomalous
alterations to the structure and function of the heart. HF can be
caused by a variety of factors, including myocardial infarction
(MI), ischemic heart disease, cardiomyopathy, heart valve disease,
and arrhythmias.

prevalent contributor to HF and is closely associated with its

hypertension, Myocardial ischemia is a
high mortality rate (1). According to the 2021 American Heart
Association Statistical Update, around 6 million individuals in
the United States experience HF, representing approximately
1.8% of the entire populace. The incidence of HF is much higher
among the elderly, with a prevalence rate of 4.3% in the 65-70
age group in 2012. It is expected to steadily increase and reach a
prevalence rate of 8.5% by 2030. In addition, the five-year
mortality rate for HF is as high as 50%, indicating a poor
prognosis (2). The heightened incidence, hospitalization, and
mortality rates of HF necessitate a more thorough exploration
and understanding of its pathogenesis. In recent years, increasing
evidences suggest that autophagy appears to be intricately linked
with the development of cardiovascular disease and shows
promise as a viable therapeutic target (3).

Autophagy is a biological degradation process within cells, which
breaks down cellular components and reuses them. It also serves as a
mechanism for cellular self-protection, enabling the elimination of
pathogens, damaged proteins, organelles, and other items within
cells, thereby maintaining normal cell function (4). Many diseases
are linked to autophagy, including neurodegenerative diseases,
musculoskeletal
diseases, kidney disease, metabolic syndrome, liver disease, cancer,

cardiovascular  disease, disorders, lung
and so on (5). As research on autophagy in cardiovascular diseases
advances, it has become increasingly evident that this process plays a
crucial role not only in maintaining heart morphology and function,
but also in the development of HF. For example, moderate
autophagy can delay the progression of HF. With ATG5 and ATG7
knockout in animal models, insufficient autophagy leads to
increased hypertrophic cardiomyocytes, which promotes the
deterioration of heart function (6). Overactive autophagy can
accelerate the deterioration of heart function. In the final stage of
HF, damaged organelles, ROS and other harmful factors accumulate
in cardiomyocytes and lead to overactive autophagy, which damages
important organelles and proteins while clearing harmful factors,
thus accelerating the deterioration of heart function (7). At this
point, downregulation of autophagy levels can play a protective role
in the heart. Furthermore, autophagosome clearance is the final
stage of the autophagy process, and inhibition of this function
can lead to the accumulation of autophagosome, which has an
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adverse impact on the body (8). However, many autophagy-related
genes for HF remain unknown and require further exploration.

In this study, a bioinformatics analysis method based on
transcriptome sequencing was used to discover autophagy-related
genes in HF patients, with the aim of providing fresh
perspectives on the diagnosis and treatment methods. Figure 1
illustrates the workflow for the specific analysis.

2 Materials and methods
2.1 Data source

We downloaded the microarray dataset GSE57338 (mRNA)
and GSE76701 (mRNA) related to heart failure on the Gene
Expression Omnibus (GEO) database. GSE57338 came from
GPL11532 platform [(HuGene-1_1-st) Affymetrix Human Gene
1.1 ST Array] and GSE76701 came from GPL570 platform [(HG-
U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array].
The samples in GSE57338 and GSE76701 were both from human
heart tissue. The GSE57338 dataset included 95 patients with HF

Microarray dataset GSES7338
HF=95 Normal=136
442 Differentially HADDb database
HAM(db database
expressed genes (DEGs)
were identified by “limma” Total of 803 autophagy-
related genes (ARGs)
[ ¥ ]
15 Autophagy-related DEGs (AR-DEGs) |
v v
GO and KEGG Expression of AR-DEGs
enrichment analysis Correlation analysis
The Least Absolute
Shrinkage and Selection [« Random Forest(RF)
Operator (LASSO)
[ I
v
8 Key genes
|
¢ v ¥ ¥
Immune Screen TF-gene Validated by
cell for gene regulatory external dataset
infiltration targeted network GSE76701 and
analysis drugs establishment experiment
FIGURE 1
Flowchart of the current study.
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and 136 normal individuals as controls; the GSE76701 dataset had
4 HF samples and 4 normal samples. After removing duplicate
genes from two autophagy-related gene databases HADb (http://
www.autophagy.lu/index.html) and HAMdb (http://hamdb.scbdd.
com/) (9), 803 autophagy-related genes (ARGs) were acquired in
total (Supplementary File S1).

2.2 ldentification of DEGs

(DEGs), we
performed differential analysis between the HF and normal

To identify differentially expressed genes

samples in GSE57338 dataset using the R package “limma”
(version 3.54.2) (10). P<0.05 and |log2 (fold change, FC)| > 0.5
were set as filtration criteria. R package “EnhancedVolcano”
(version 1.16.0) and “pheatmap” (version 1.0.12) were utilized to
visualize the expression of DEGs.

2.3 ldentification of AR-DEGs

In order to obtain autophagy-related DEGs (AR-DEGs), we
intersected 803 ARGs with the DEGs detected from the
GSE57338 dataset. We created Venn diagrams using the
Sangerbox tool (http://www.sangerbox.com/) (11) to visualize
the overlap of genes. To demonstrate the expression of AR-DEGs
in GSE57338, we used box plots generated by the R package
“ggpubr” (version 0.6.0). We also performed correlation analysis
of AR-DEGs and visualized the results using the R package
“corrplot” (version 0.92).

2.4 GO and KEGG enrichment analysis

Gene Ontology (GO) enrichment analysis is a common
technique that helps in identifying biological processes (BP),
molecular functions (MF), and cellular components (CC) that are
over-represented in a set of genes of interest. The KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway analysis can help
researchers to gain insights into the biological functions of a set
of genes and to identify the key pathways or processes that are
involved in a particular biological phenomenon. The R package
“clusterProfiler” (version 4.6.2) (12) was used for GO and KEGG
analyses of AR-DEGs.

2.5 ldentification of key genes via machine
learning

To further screen key genes, two machine learning algorithms
—LASSO (the least absolute shrinkage and selection operator) and
RF (random forest)—were adopted. Lasso regression is a type of
regression analysis that performs variable selection and estimates
the coefficients of a linear regression model, while also imposing
a penalty on the size of the coefficients to avoid overfitting. The
LASSO regression method was applied using the “glmnet”
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package (version 4.1.6) (13) in R, with a parameter o set to 1 to
refine the model’s qualities. This enabled the identification of
AR-DEGs and the
consideration. RF is a decision-making algorithm that constructs

removal of irrelevant genes from
multiple decision trees and combines their outputs for improved
accuracy in classification and regression tasks (14). The R
package “randomForest” (version 4.7.1.1) was used to perform
RF analysis. Lastly, we identified the key genes by taking the

intersection of the genes obtained through LASSO and RF.

2.6 Validation of key genes by analysing
external dataset

We downloaded the GSE76701 dataset to validate the reliability
of the key genes obtained previously. Wilcoxon rank-sum tests
were performed to determine whether these genes exhibited
differential expression between the HF and control groups. To
visualize the results, we used the R package “ggpubr” to generate
box plots.

2.7 Establishment of animal models

In this study we used male C57BL/6 WT mice aged 6-8 weeks
and weighing 20 + 2 g for experiments which were approved by the
Animal Ethics Committee of the Air Force Medical University. The
mice were housed in a temperature-controlled chamber (25 + 2°C)
for a 12-hour light/dark cycle, and provided free access to food and
water. Subsequently, the mice were randomly allocated to either a
HF group or a control group. The mice in control group were
raised under normal diet while the HF group were anesthetized
with isoflurane and implanted with a micro-pump filled with
angiotensin II (Ang II) subcutaneously, which was continuously
infused at a rate of 2 ug/Kg/min for 4 weeks. RT-qPCR was
performed after model establishment in the 4th week. The
present study quantified the expression levels of Anp, Bnp, and
B-Mhc in two distinct sets of samples, with the simultaneous
elevation of all three biomarkers indicating the presence of HF.
In addition, echocardiography was performed in the 4th week.
Left (LVPWd), left
ventricular (LVEDD), and left
ventricular end-systolic dimension (LVESD) were measured to

ventricular posterior wall dimension

end diastolic dimension
calculate left ventricular ejection fraction (EF) and fractional
shortening (FS). EF <50% is considered indicative of HF.

2.8 Validation of key genes by RT-qPCR

Expression of identified key genes were further validated by
RT-qPCR which was performed using cDNA from the 4-week
time point (HF=3, normal=3, C57BL/6 mice left ventricle).
RNA was extracted using the TRIzol® Reagent and reverse
transcription was conducted following the manufacturer’s
protocols (Yeasen Biotechnology, Shanghai, China). To quantify

mRNA expression, the comparative quantification method
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(2—AACT) was employed, with normalization to the housekeeping
gene Gapdh, utilizing the QuantStudio™ 5 system (Applied
Biosystems, United States). Primer sequences used in this study
can be found in Supplementary File S2.

2.9 Immune infiltration analysis

Gene Set Variation Analysis (GSVA) is a computational
approach that leverages tissue gene expression profiles to calculate
the scores of distinct immune cells, facilitating the analysis of
disparities in immune gene sets between HF and normal samples
(15). We also performed correlation analysis between the key
genes and immune cells using the R package “corrplot”.

2.10 Target drug screening

The comparative toxicogenomics database (CTD) helped us to
predict the potential gene target-based drug. CTD could be
accessed by visiting NetworkAnalyst 3.0 platform (https://www.
networkanalyst.ca/NetworkAnalyst/) (16).

2.11 Construction of TF-gene regulatory
network

Transcription factors (TF) are proteins that play a crucial role
in regulating gene expression by binding to specific DNA
sequences and controlling the transcription process. The JASPAR
database was used to identify TFs that bind to AR-DEGs in HF
and it could also be accessed by visiting NetworkAnalyst 3.0
platform which can be used to generate an analysis of the
TF-gene regulatory network. Cytoscape software (version 3.9.1)
was utilized for visualization.

10.3389/fcvm.2024.1247079

3 Results
3.1 Identification of DEGs

Utilizing the afore-mentioned filtration criteria [P-value <0.05
and | log2 (fold change, FC) |>0.5], we identified 442 DEGs
from the GSE57338 dataset, consisting of 241 up-regulated genes
and 201 down-regulated genes (Supplementary File S3). The
volcano plots of these DEGs are shown in Figure 2A and heat
map results of the top 50 DEGs are shown in Figure 2B.

3.2 Identification of AR-DEGs

A total of 15 AR-DEGs of HF were obtained by intersecting
241 up-regulated genes and 201 down-regulated genes with 803
ARGs, of which 6 up-regulated (SNCA, PLCEl, MAPKIO,
CXCL12, TPCNI1, CXCR4) and 9 down-regulated (S1PR3,
MAP2K1, NAMPT, S100A9, CD38, S100A8, CYBB, CCL2,
SPP1), and the Venn diagram is shown in Figure 3A. The
expression of 15 AR-DEGs in the HF group and the normal
group were shown in Figure 3B. In the correlation matrix
analysis, the values of relative coefficients between genes with
P-value <0.05 were marked in Figure 3C.

3.3 Enrichment analysis of AR-DEGs

604 biological process (BP), 17 chromosomal location (CC), 37
molecular function (MF) of GO analysis and 148 KEGG signaling
pathways were obtained by clustering AR-DEGs of HF with R
package “clusterProfiler” (Supplementary Files $4,S5). Figures 4A,B
show the top 5 enriched GO annotation terms and topl0 KEGG
pathways, respectively. For BP analysis, the top 3 significantly
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Identification of DEGs in GSE57338. (A) The volcano plots of DEGs. (B) Heat map results of the top 50 DEGs.
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DEGs in the HF and normal group. (C) Correlation heatmap of 15 AR-DEGs. The values of relative coefficients between genes with P-value <0.05 were
marked; blue represented positive correlation and red represented negative correlation. The darker the color, the larger the absolute value of the
correlation coefficient, indicating a stronger correlation.
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3.4 Machine learning screened for key
genes of AR-DEGs in HF

In order to obtain key genes in HF, we utilized the expression
matrices of 15 AR-DEGs to construct the best diagnostic model via
both LASSO regression and RF algorithms. The LASSO regression
algorithm further narrowed down their range and obtained a total
of 10 variables as key AR-DEGs (Figures 5A,B) (Supplementary
File 6). The RF algorithm prioritized the 15 AR-DEGs by
quantifying the importance of each gene (Figures 5C,D)
(Supplementary File S7). We took the top 10 ranked genes based
on their scores and intersected them with the 10 genes obtained
from the Lasso algorithm. This resulted in a final set of 8 genes
(SNCA, MAPK10, CXCL12, TPCNI1, S1PR3, MAP2K1, S100A9,
CD38) (Figure 5E).

3.5 Validated by external dataset and
experiment
In the dataset GSE76701, we utilized the Wilcoxon test

methodology to identify high expression of SNCA and TPCNI1 in
the HF group, while S1PR3, MAP2KI, S100A9, and CD38
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showed lower expression. These findings were completely
GSE57338.
However, we did not find a significant difference in the
expression of MAPK10 and CXCL12 between HF and control

groups (Figure 6A). In the animal experiment, the relative

consistent with the expression trend observed in

mRNA expression levels of Anp, Bnp, and B-Mhc were
significantly higher in the HF group compared to the Normal
group 6B).
echocardiographic data, the EF of mice in the HF group was

(Figure Following  the  calculation of
only around 33%, whereas the normal group exhibited an EF of
approximately 64%. These findings collectively confirmed the
HF model 6C)
(Supplementary File S8). We found high expression of Tpenl in
the HF group, while Map2kl, S100a9, and Cd38 showed lower

expression levels that were consistent with the expression trend

successful construction of the (Figure

observed previously in GSE57338. However, we observed no
significant difference between HF and normal groups in the
expression of Snca, Mapk10, Cxcl12, and S1pr3 (Figure 6D). The
inconsistency in the expression of these genes across external
datasets and animal experiments may be attributed to the
potential inter-species differences in the pathogenesis of the
corresponding genes. Therefore, further empirical investigation is
imperative to shed more light on this matter. Subsequently, we
intended to conduct further
differentially expressed key genes with significance: Tpcenl,
Map2kl, S100a9 and Cd38.

studies centered on the 4

3.6 Immunoinfiltration analysis

In this study, we adopted the ssGSEA (single-sample gene set
the level of
immunoinfiltration of these 28 immune cells in samples from HF

enrichment analysis) algorithm to evaluate
and normal groups and the results were visualized in the heat

map (Figure 7A).The faceted boxplot demonstrated that HF
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Log (M) trees

RF

patients had a higher level of activated CD4 T cell, activated CD8 T
cell, effector memory CD4 T cell and Type 2 T helper cell and a
lower level of activated dendritic cell, central memory CD4 T
cell, central memory CD8 T cell, effector memory CD8 T cell,
gamma delta T cell, immature dendritic cell, macrophage,
MDSC,
regulatory T cell, T follicular helper cell, type 1 T helper cell, and

natural killer T cell, plasmacytoid dendritic cell,

type 17 T helper cell (Figure 7B). Figure 8 presents the
correlation relationship between 4 key genes and top 10
differential immune gene sets in the form of a correlation plot.
Here we only display the top five immune cells that show a
positive correlation with each gene, as well as the top five
immune cells that have a negative correlation with each gene.
The complete data is available in Supplementary File S9.

3.7 Screening for gene targeted drugs

The CTD database was used to screen gene targeted drugs
associated with the 4 key genes for HF in the NetworkAnalyst
194 drugs
Supplementary File S10. Based on the degree of proportionality

3.0 platform, and predicted are shown in
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between gene-chemical associations, the analysis revealed that
Cyclosporine and Estradiol exhibit strong binding to the HF gene.

3.8 Transcription factor (TF)-gene
regulatory network establishment

Using the JASPAR TF binding site database, we constructed a
TF-gene regulatory network which included 20 nodes (4 seed genes
and 16 transcription factors) and 19 edges based on 4 key genes in
the NetworkAnalyst 3.0 platform. Among them, MAP2KI1 and
TPCNI1 are each regulated by 6 TFs, whereas CD38 is regulated
by 5 TFs and S100A9 by 2. The TF-gene regulatory network is
visualized in Figure 9 and more detailed information can be
obtained by referencing Supplementary File S11.

4 Discussion

HF constitutes the advanced phase of various cardiovascular
disorders, such as cardiomyocyte injury and death, fibrosis and
hypertrophy, inflammation reactions, neuroendocrine imbalance,
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Further validation of expression of 8 key genes. (A) Validation by dataset GSE76701. (B) The expression levels of Anp, Bnp, and -Mhc in HF and normal
sample. (C) Representative echocardiographic images taken 28d post-Ang II. (D) Validation of expression of key genes between samples from HF and
normal mice (n =3 per group) by RT-gqPCR. *P<0.05.

etc. The management of HF predominantly involves symptomatic
and neuroendocrine therapeutic approaches. Among them,
neuroendocrine therapies, such as ACEI/ARB, B-blockers and
have been scientifically

aldosterone  receptor

demonstrated to improve the prognosis of HF patients. However,

antagonists,

the 5-year survival rate for HF patients remains suboptimal (17).
Exploration of new intervention targets, pathways, and treatment
methods for HF is necessary.

In the development of HF, autophagy dysfunction can lead to
cardiomyocyte apoptosis, inflammatory response, and metabolic
disorder, thus promoting the progression of HF. Currently, there
is increasing research on the mechanism of HF and autophagy.
Research has shown that in elderly mice, the insulin-like growth
factor 1 receptor (IGF1R) can inhibit autophagic flux in the
heart, leading to an increase in hypertrophic cardiomyocytes and
hindering the recovery of heart function. However, low IGFIR
activity can consistently improve aging heart function and
myocardial bioenergetics in an autophagy-dependent manner.
The IGFIR exhibits higher signal activity in HF of humans (18).
In I/R injury, during ischemia, insufficient nutrient supply to
myocardial cells can activate autophagy through AMPK, thereby
maintaining energy production and promoting survival of
myocardial cells during ischemia. However, prolonged ischemia
can also suppress autophagic flux (19). During the reperfusion
phase, autophagy flux can be restored, while the recovery of
oxygen results in a noteworthy rise in the generation of ROS
which also stimulates autophagy flux in cardiomyocytes and
reduces cardiomyocytes loss and acute I/R injury (20). Every coin
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has two sides, the increase of ROS can also lead to an increase in
BECLIN 1 expression, which will activate autophagic flux. This
activation of autophagic flux is harmful and can lead to an
increase in I/R injury (19). In pressure overload-induced HF,
autophagy flux is also increased, and its role is both beneficial
and harmful. When stressed, increased autophagy flux can
exacerbate the production of myocardial fibrosis, leading to
myocardial hypertrophy (21). On the contrary, there are studies
proving that autophagy serves as an adaptive response to stress
overload, during which AMPK or metformin can enhance
autophagic response, thereby reducing myocardial hypertrophy
(22). The above mechanisms elucidate that autophagy is a
complicated process that exhibits notable dynamism. The
regulation of autophagy, either up or down, is largely contingent
upon the environmental factors that tissue cells encounter. The
degree of adjustment can also lead to different outcomes, which
poses many challenges for related research.

Our analysis commences at the level of gene, offering potential
insights for subsequent research endeavors. Based on the
GSE57338 dataset and 803 ARGs, we employed the R package
“limma” to screen for differentially expressed genes and
ultimately identified 4 key genes via a series of algorithms and
subsequent verification processes.

TPCNI1 (Two Pore Segment Channel 1) is a gene that encodes
for a protein called two-pore channel 1. This protein belongs to the
family of two-pore channels, which are ion channels found within
the endolysosomal system of cells (23). TPCN1 is very important in

regulating calcium ion homeostasis and lysosomal function, and
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FIGURE 8
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has been linked to various physiological processes such as
autophagy, apoptosis, and viral infection. The presence of TPCl
and TPC2 is critical to maintaining proper levels of basal and
induced autophagy in cardiomyocytes. On the contrary, the lack
of these proteins can lead to a decrease in cell viability under
stressful conditions (24). Studies on the mechanism of TPCNI1 in
HF are not in-depth, but its effect on cardiomyocytes and its
relationship with autophagy can furnish different directions on
exploring HF.

The gene MAP2K1, responsible for encoding the MAP kinase
kinase protein, belongs to the category of dual specificity protein
kinases. This protein actively participates in the phosphorylation
cascade of the mitogen-activated protein (MAP) kinase pathway.
MAP kinases are integral to numerous cellular processes
including cell proliferation, differentiation, survival,
apoptosis. MAP2K1 is also known as MEKI. In the signaling
hierarchy of a cardiac myocyte, the MEK1-ERK1/2 pathway is
likely to hold a central regulatory position (25). In a myocardial

and

ischemia-reperfusion model, the activation of ERK1/2 has been
found to reduce apoptosis caused by reperfusion injury,
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indicating that the MAP2KI1 signaling pathway may provide
cardioprotective effects (26). Furthermore, the Raf/MEK/ERK
pathway is capable of regulating the expression levels of LC3B
and SQSTM1/p62 within cells, which act as important markers
for autophagy within cells (27).

S100A9 (S100 calcium binding protein A9) encodes for a
protein called S100A9 or Calgranulin B which is expressed by
various cells of the immune system and is involved in a range of
biological processes, including chemotaxis, antimicrobial activity,
and cell signaling. The translocation of S100A9 to the nucleus
allows for the regulation of MDSC differentiation by IL-10
secreted by macrophages, thereby achieving the role of protecting
against HF (28). In addition, S100A9 can directly induce
autophagy and apoptosis (29, 30).

CD38 (CD38 molecule) encodes for a non-lineage-restricted,
type II transmembrane glycoprotein and it also functions as an
enzymatic ectoenzyme. CD38 knockout mice were observed to
have a protective effect on the heart when subjected to ischemic/
reperfusion injury. This protective mechanism operates through
the activation of the antioxidative stress pathway mediated by
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FIGURE 9

The TF-gene regulatory network consisted of 4 key genes, 16
transcription factors and 19 edges. The degree of correlation
between TFs and genes were reflected by the depth of the color.

SIRT1/FOXOs. CD38 also serves as a crucial factor in cardiac
hypertrophy by inhibiting SIRT3 expression and activating the
Ca®"-NFAT signaling pathway (31). Research has shown that
overexpression of CD38 can downregulate the expression of Rab7
and its adaptor protein, pleckstrin homology domain-containing
protein family member 1 (PLEKHMI1). The loss of Rab7/
PLEKHM]1 impairs autophagosome-lysosome fusion, which leads
to a blockade of autophagy flux and results in heart dysfunction
under H/I conditions. These findings indicate that targeted
inhibition of CD38 overexpression could be a promising
therapeutic strategy (32).

Moreover, we performed enrichment analysis on 15 AR-DEGs.
The results showed that significantly enriched GO terms were
“regulation of cell growth”, “inflammatory response”, and
“regulation of transport”, and signal pathways, such as “IL-17

» o«

signaling pathway”, “NOD-like receptor signaling pathway” and
so on. Autophagy serves as a mechanism for clearing out
dysfunctional or unnecessary materials within the cell and
recycling them for energy production and the maintenance of
cellular homeostasis, so it is essential in regulating cell growth
and coping with various stresses such as starvation, infection,
and inflammation (33). IL-17 (Interleukin-17) plays a vital role
in regulating cardiac disorders. The concentration of IL-17 in the
blood plasma was determined to be significantly elevated
amongst individuals with HF in comparison to those without the
condition. A negative correlation was found between the IL-17
levels and cardiac ejection fraction as well as fractional
shortening. An increase in IL-17 disrupts calcium handling and
cardiac remodeling via the NF-kB pathway, leading to impaired
cardiac function. Inhibiting the IL-17 signaling pathway may
become a potential treatment method for heart failure (34). In
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addition, IL-17 triggers autophagy by activating the ERKI/2-
Beclin-1-p62 pathway, while suppresses through the BCL2-
Beclin-1 and PI3K-GSK3B pathways. Conversely, autophagy
suppresses IL-17 production by activating p38 MAPK signaling
(35). The NOD-like receptor (NLR) signaling pathway is an
essential factor within the innate immune system that detects
and responds to microbial infection and cellular damage. NLRs
are a group of endogenous cytosolic sensors responsible for
detecting pathogen-related molecular patterns (PAMPs) and
danger-associated molecular patterns (DAMPs). When activated,
these receptors trigger a signaling cascade that ultimately leads to
the secretion of pro-inflammatory cytokines, chemokines, and
antimicrobial peptides (36). Many literatures indicated the NLR
signaling pathway exerted a strong effect in the heart (37, 38).
The vital role of the NLR pathway and its binding autophagy-
related pathways in the pathological development of HF has been
extensively studied (39, 40). These studies have offered insights
that can be used to delve into the mechanistic aspects of
autophagy-related HF.

Utilizing single-sample GSEA (ssGSEA), we investigated the
extent of immune infiltration present in each sample according
to a total of 28 immune cell types. Various T cells, including
activated CD4 T cells, activated CD8 T cells, effector memory
CD4 T cells, and Type 2 T helper cells, are positively correlated
with the progression of HF, providing insight into the role of
immune genes in the disease.

In addition, we constructed TF-gene regulatory networks and
predicted target drugs, such as Cyclosporine and Estradiol based
on 4 key genes of HF, which further expanded the scope of
research and offered valuable insights for the development of
novel drugs and precise clinical targeting therapies for HF.

This study is reliant on publicly accessible transcriptome
information from the database, as well as the acquisition of
the As  the
investigation into the autophagy phenomenon deepens, our

autophagy-related genes from same source.
understanding of the pathogenic mechanisms associated with
autophagy increases, and new genes with autophagy regulatory
functions are gradually being uncovered. However, due to the
delay in updating the autophagy gene database, it is challenging
to comprehensively include all autophagy-related genes in this
study. Consequently, it is inevitable that an increasing number of
positive genes will be overlooked over time, presenting a
significant limitation that warrants further exploration in future
In this

employed, and subsequently, tissue specimens were extracted for

research endeavors. study, animal modeling was
gene testing. While the obtained results partially align with the
validation findings from external datasets, it is undeniable that
species variations can exert an influence on the ultimate
outcomes. This constitutes another noteworthy limitation of this
study. For future investigations, the collection of blood samples
from HF patients for testing could be considered. This approach
not only offers convenience in implementation and eliminates
species differences but also holds potential for significant clinical
translational implications. In addition, integrating the findings of
this investigation with single-cell sequencing and advancements
is In future research

in multi-omics research imperative.
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endeavors, a more in-depth analysis should be conducted on the
molecular mechanisms of the 4 pivotal genes. This analysis will
be utilized to explore the diagnostic and prognostic potential of
these genes, well as enhance our

as comprehension of

autophagy-related mechanisms involved in HF.

5 Conclusion

15 autophagy-related genes exhibiting differential expression in
myocardial samples of patients with HF were ascertained using the
GEO database. Furthermore, validation by the external dataset
GSE76701 and mouse HF models underscored the importance of
4 key genes, namely Tpcnl, Map2kl, S100a9 and Cd38, in the
pathogenesis and advancement of HF. The present findings
suggest that the identified genes have potential utility as
biomarkers or therapeutic targets for individuals with HF.
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