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Arteriovenous fistulas (AVFs) have long been used as dialysis access in patients
with end-stage renal disease; however, their maturation and long-term
patency still fall short of clinical needs. Rodent models are irreplaceable to
facilitate the study of mechanisms and provide reliable insights into clinical
problems. The ideal rodent AVF model recapitulates the major features and
pathology of human disease as closely as possible, and pre-induction of the
uremic milieu is an important addition to AVF failure studies. Herein, we review
different surgical methods used so far to create AVF in rodents, including
surgical suturing, needle puncture, and the cuff technique. We also summarize
commonly used evaluations after AVF placement. The aim was to provide
recent advances and ideas for better selection and induction of rodent AVF
models. At the same time, further improvements in the models and a deeper
understanding of AVF failure mechanisms are expected.
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1 Introduction

With an aging population, the incidence and prevalence of chronic kidney disease

(CKD) are increasing annually, and the number of patients requiring hemodialysis

(HD) is growing exponentially (1, 2) According to clinical practice guidelines,

arteriovenous fistulas (AVFs) are a crucial bridge used for HD access in patients with

end-stage renal disease (ESRD) (3). Importantly, experts prefer using autologous AVFs

for vascular access owing to their low possibility of developing infections and other

non-thrombotic complications than AVF graft (4). However, the long-term patency of

autologous AVFs is poor, and their application yet fails to meet clinical needs owing to

early maturation failure, late stenosis, and formation of thrombosis (5, 6). Patients with

complications and treatment related to vascular access account for nearly one-third of

HD admissions (2). One main reason for AVF maturation failure is insufficient

outward remodeling, which fails to adapt to changes in hemodynamics following

arterialization (7). Another reason is excessive neointimal hyperplasia (NIH) within the

fistula and thrombosis at the anastomosis, leading to luminal stenosis (8). Previous

studies have shown that aggressive NIH was found in both pig models of AVF graft

stenosis and stenotic venous segments in patients with early AVF failure (9, 10).

In general, researchers have focused on the pathogenesis of AVF failure and have

conducted many studies. In depth exploration and experimentation with new drugs or

vascular coatings is needed to obtain effective methods to improve the long-term
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patency and extend the duration of AVFs. An establishment of a

good animal model to reproduce this particular pathophysiology

is key to the rigour and success of subsequent studies. It was

shown that multiple vascular biological pathways may be

involved in causing the development of this pathologic change,

including inflammation, oxidative stress, hypoxia, and altered

hemodynamics (7). Large animals are anatomically and

physically closer to human and can effectively demonstrate

hemodynamic changes, which is a limitation of small animals.

However, rodents are good choices in other respects and are

irreplaceable due to their low cost, abundance of resources, large

sample sizes, and maturity in genetic studies (11, 12). Another

major advantage of the rodent AVF model is the rapid

development of significant neointimal damage, thus facilitating

short-term intervention studies (13, 14). Several rodent AVF

models have been established using surgical manipulation;

however, an ideal uniform standard is yet to be established for

developing model methods.

In this review, we searched related articles in PubMed up to

November 2022 using the following terms in titles and abstracts:

(mouse OR rat OR rodent) AND (arteriovenous fistula). In this

study, we described primarily used contents of AVF models and

the need to pre-induce a CKD milieu in the AVF model for

better disease mimicry. We then reviewed the evolutionary

history of rodent AVF models, summarizing methods available to

create AVF in rodents based on different surgical approaches,

including general suturing, needle puncture, and the cuff

technique. Finally, common evaluations after AVF placement are

introduced. We hope that this review can provide recent

advances and new hints for the selection and induction of rodent

AVF models and can help deepen our understanding of existing

studies on the molecular mechanisms of AVF.
2 Main study contents and
requirements of AVF models

AVF is a lifeline for ESRD patients, and longer dialysis

durations can last over a decade; however, the success rate of

AVF creation and its durability still need to be improved (15).

An ideal AVF is required to achieve an anticipated duration and

fewer complications when patients require HD for more than 1

year (3). At present, most studies use AVF animal models to

investigate the molecular mechanisms of the pathophysiologic

processes associated with AVF failure.

There is a different understanding of AVF failure, depending

on the stage of occurrence and cause. First, autologous AVFs

usually takes 4–6 weeks after the procedure to mature; therefore,

are not immediately available to use (3, 16). This clinical

maturation process is accompanied by hemodynamic changes,

mild venous dilatation, and vascular remodeling (17, 18).

Endothelial injury, altered blood flow and shear stress activate

myofibroblasts, fibroblasts, and immune cells along with an

increase in pro-inflammatory cytokines and growth factors to

promote the proliferation and migration of smooth muscle cells

(SMCs) to the intimal layer (10, 19). Once vascular remodeling is
Frontiers in Cardiovascular Medicine 02
unbalanced, excessive intimal hyperplasia causes early fistula

maturation failure (20, 21). An imbalance in the regulation of

extracellular matrix degradation and deposition in the vessel wall

causes wall thickening during AVF maturation (18, 22). In

contrast, a good patency rate of the fistula is required to meet

functional needs. Similarly, NIH is the main identified etiology of

poor patency at the venous limb or near anastomosis regions and

attendant venous stenosis, which is also prone to thrombosis

(23). Previous studies have suggested that the specific

pathogenesis of AVF failure involves hypoxia (24), oxidative

stress (25, 26), inflammation (27–29), uremia (30), and

hemodynamics (31, 32). It has been demonstrated that vascular

remodeling in fistulas characterized by high flow and low

pressure is associated with upregulation of matrix

metalloproteinases (MMPs; MMP-2 and MMP-9), reduced tissue

inhibitors of MMPs, and collagen degradation (18). Castier et al.

found that changes such as wall shear stress (WSS) induce

elevated levels of oxidative stress and increase reactive oxygen

species production by NADPH oxidase, which in turn activates

MMPs to promote vascular remodeling (31). Platelet activation

during endothelial injury causes the release of platelet-derived

growth factor, stimulating the upregulation of the expression of a

range of pro-inflammatory cytokines including tumor necrosis

factor-α, which can mediate the proliferation and migration of

SMCs (8). However, the specific molecular mechanisms remain

to be explored further to develop effective coping strategies.

Complications following fistula treatment include ischemic

neuropathy, edema, infection, hematoma, and subclavian steal

syndrome, which have also been studied using AVF models,

although they account for a small proportion (33–35).

Furthermore, because AVF induces hyperdynamic circulation, the

probability of adverse cardiovascular events increases, and the use

of surgical aortocaval fistulas to simulate chronic cardiac load in

rats has been reported (36). Carotid-jugular fistulas can be used to

simulate altered cerebral blood flow in arteriovenous

malformations, pathophysiology of microcirculatory changes,

induction of venous hypertension (37, 38), and exploration of the

role of AVF in “cardiorenal syndrome” (39, 40). Nevertheless,

AVF failure due to stenosis and thrombosis remains a significant

concern in basic research, based on its clinical value. Studies have

demonstrated that the period of AVF maturation is longer in

diabetic patients; therefore, studies related to AVF failure based on

the specific disease background of diabetes are available (41, 42).

To establish a standard experimental animal model of AVF,

certain basic requirements must be met. First, careful

consideration must be given to animal welfare, and adherence to

the “3Rs principles” of “replacement, reduction, and refinement”

is necessary before conducting any animal research (43). Second,

the AVF animal model should meet the following experimental

requirements as far as possible: it should be able to simulate the

arterialized vein process, have a high degree of similarity to

human hemodynamics, be relatively easy to establish, and have a

good balance between cost-effectiveness and sample size.

Furthermore, AVF patency rates are important indicators of

interest that help determine the timing of sample acquisition and

intervention (Table 1).
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TABLE 1 Examples of the rodent AVF models for studying AVF failure.

Animal
species

Model methods Study
time
points

Patency rates Main characteristics References

Male C57BL/6
mice

End-CCA to
side-EJV

1 and 6
weeks

58% at 6 weeks Recapitulate the features of failing human AVFs (44)

0, 1, 7, 14, 21
days

80% at 3 weeks Not cause significant changes in overall blood pressure (31)

End-EJV to end-
CCA using the
cuff

1, 3, 7 days 100% at 7 days Recapitulate anatomical and cellular features shown in
other species; help to characterize the molecular
mechanisms of vascular adaptive changes

(45)

With left nephrectomy
and right upper pole
occlusion

7, 14, and 28
days

100% at 28 days Successful uremic condition; help to silence genes for
follow-up studies

(46)

End-EJV to side-
CCA

7, 14, 28 days 88%, 90%, 50% at
time points
respectively

Similar configuration and features to the most
frequently used in human

(28)

21 days 82% at 21 days Help to study the role of elastin in AVF remodeling in
elastin haplodeficient (eln+/−) mice

(47)

14 days 83% at 14 days Help to find relaxin receptor deficiency promotes
vascular inflammation in RXFP1 knockout (Rxfp1−/−)
mice model; hard to perform flow measurements and
cannulations

(48)

With 5/6 nephrectomy 2, 4 weeks 62% (CKD), 86%
(non-CKD) at 4
weeks

Validation of the role of uremic toxins in AVF stenosis
and thrombosis

(49)

Aortocaval
needle puncture

1, 7, 14, 21,
28, 35, 42
days

67% at 42 days Recapitulate features of AVF maturation and failure in
long-term follow up; a simple, safe and powerful tool to
study the improvement of AVF outcomes

(50)

Female and
male C57BL/6
mice

0, 3, 7, 21, 42
days

25.7% (female),
64.3% (male) at 42
days

Similar dilation and wall thickening during early AVF
remodeling and sex difference in AVF patency was
shown

(51)

Female wistar
rats

End-FA to side-
FV

3, 14, 28 days 100% at 28 days Hemodynamics, maturation and vascular remodeling
similar to native fistula

(18)

Sprague–
Dawley rats

End-FA to side-
FV

between 1
and 4 weeks

100% at all time
points

Not lead to lower extremity edema or venous fibrosis;
display similar histological features

(52)

Female
Sprague–
Dawley rats

With adenine diet 0, 7, 14, 21,
42, 63, 84
days

96% at 42 days Uremic condition; reliable model to test novel
therapeutic strategies

(30)

End-FV to side-
FA

With adenine diet 21, 42, 63, 84
days

93.75% at 12 weeks Recapitulate features of AVF maturation and typical
cardiovascular features as in human

(53)

Male Sprague–
Dawley rats

End-EJV to end-
CCA using the
cuff

With 5/6 nephrectomy 7, 28 days 100% at 28 days An ideal experimental animal model of early and
metaphase chronic renal insufficiency for research into
intimal hyperplasia

(54)

AVF, arteriovenous fistula; CCA, common carotid artery; CKD, chronic kidney disease; EJV, external jugular vein; FA, femoral artery; FV, femoral vein; RXFP1, RLN/insulin-

like peptide family receptor 1.

Li et al. 10.3389/fcvm.2024.1293568
3 The evolutionary history of
establishment methods

A variety of rodent models have been explored to study AVF

failure owing to the advantages of rodents, such as short

reproductive cycle and economy. In particular, as the genome of

the mouse has been studied in depth and technological

advancements have been made, rodents are a good choice for

investigating the molecular mechanisms of disease. There has

been a marked increase in the number of related studies over the

last two decades in Figure 1.

In 1973, Stumpe et al. first created aortic fistulas in Sprague–

Dawley rats, but they were mostly used as an experimental

model for a long time to study cardiac volume overloading (55).

Ten years later, Quisling and Mickle et al. reported the creation

of a rat aortocaval fistula by needle puncture to assess

histopathological and angiographic changes in the fistula itself,
Frontiers in Cardiovascular Medicine 03
and this classic method is used to date (56). Around 1999, side-

to-side anastomoses of femoral vessels for AVF were reported

(33). In the following years, it was also reported that fistulas in

rodents could be accomplished by anastomosing the femoral

vessels in different ways (17, 18, 57). Side-to-end anastomosis of

the common carotid artery (CCA) to the external jugular vein

(EJV) was developed in rats in 2004, truly characterizing the

AVF itself (58). The first mouse AVF model was developed by

Kwei et al. in 2004 and was based on end-CCA to end-EJV via

the vascular cuff technique (45). Castier et al. created a surgical

mouse model to suture the arterial end to the lateral wall of the

vein in 2005, which is different from the human AVF (31). In

2008, Lin reported an innovative superficial tail fistula in rats,

but it was not successfully ap-plied owing to complications (59).

Nowadays, the original methods have been improved, and the

combination of CKD pre-induction and AVF structures has been

developed in rodents, which can highly simulate disease
frontiersin.org
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FIGURE 1

The evolutionary history of rodent AVF models. The earliest reported time points for several major rodent AVF models are shown. AVF, arteriovenous
fistulas; CCA, common carotid artery; CKD, chronic kidney disease; EJV, external jugular vein; FA, femoral artery; FV, femoral vein. Created with
processon.com.
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conditions (46). A comparison of the different methods of creating

AVF in rodents is shown in Table 2 for reference. In conclusion,

mice and rats are the most widely used rodents to create AVF

models; however, consensus on how to induce the model is still

lacking. Further improvements are needed in rodent models to

stably target the induction of NIH and mimic the failure

process (Figure 2).
4 Rodent AVF models

4.1 Pre-induction of stable CKD in rodent
AVF model

Chronic renal dysfunction has been suggested to have an

impact on the systemic environment and pathogenesis of AVF

failure (69, 70). In patients with CKD, the number of circulating

endothelial progenitor cells is reduced, and their adherence,

outgrowth potential, and anti-thrombogenicity are decreased

(71). A clinical study confirmed pre-existing inflammatory and

oxidative markers in the veins of patients with CKD (72). The

accumulation of uremic toxins impairs mitochondrial function

and elevates oxidative stress levels in the body (73). The systemic

effects of CKD promote cytokine pro-duction and proliferation

and migration of vascular SMCs, which are involved in intimal

hyperplasia formation (74). Undoubtedly, this complex disease

context is important for finding appropriate animal models to

simulate a hypothesis and study a scientific problem.
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Existing experimental rodent models of CKD have been

constructed by inducing an appropriate pathology based on its

complex and diverse etiology (Table 3).

The successful induction of CKD in rodent model is mostly

verified by significant changes in biochemical index levels

compared to the normal group, such as an approximately two-

fold increase in serum urea nitrogen and creatinine, in addition

to the detection of proteinuria or renal tissue sections with

significant collagen deposition and other characteristics of kidney

injury, for which there are no specific levels to judge. Subtotal

nephrectomy is a more frequently used induction approach of

CKD complementary to the AVF model, although this method

has a high mortality rate of approximately 40% (81–49). Two-

step five-sixth partial nephrectomy was used in a study on CKD-

promoted AVF failure by Ding et al., in which approximately

two-thirds of the left kidney was first removed 4 weeks before

establishing AVF, and the right kidney was removed after feeding

the mice a 6% protein chow for 1 week, followed by a 40%

protein chow to lower mortality rate (83). In another study using

5/6 nephrectomy combined with a jugular AVF rat model, the

animals were healthy except for one rat that died during

anesthesia, and 3 of 17 developed AVF stenosis after 1 week,

with significantly higher urea and creatinine levels in the model

group at 3 weeks (39). Misra et al. successfully induced venous

stenosis using left nephrectomy and right upper pole occlusion

with AVF placement after 4 weeks (46, 84). However, an infarct-

induced remnant kidney model may be accompanied by

hypertension, proteinuria, and glomerulosclerosis. Notably, the

current use of chronic adenine-containing diets to induce uremic
frontiersin.org
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FIGURE 2

Schematic diagram of surgical methods for fistulas in rodents.
Current fistula models in rodents are commonly established using
including: (A) end-jugular vein to side-carotid artery by surgical
suturing. (B) End-femoral artery to side-femoral vein. (C) Side-
aorta to side-inferior vena cava by needle puncturing. (D) End-
jugular vein to end-carotid artery using cuff technique. IVC,
inferior vena cava.

TABLE 3 Major CKD models in rodents.

CKD Models Methods
Remnant kidney model Unilateral nephrectomy and partial infarction of the

remaining kidney (46)

5/6 subtotal nephrectomy (52, 63)

Adenine-induced 0.75% adenine-containing diet for 4 weeks (66)

Diabetic nephropathy Nicotinamide, alloxan and (or) streptozotocin infusion;
high-fat diet; gene modified (75)

Hypertension-induced Angiotensin II infusion; spontaneously hypertensive
rats with unilateral nephrectomy (76)

Primary glomerular
nephropathy

Adriamycin or uromycin injection; transgenic mice (77,
78)

Secondary nephrotic
syndrome

Lupus-prone mouse strains; transgenic mice (79)

Hereditary nephritis Gene engineered mouse (80)

Li et al. 10.3389/fcvm.2024.1293568
models can produce both stable renal damage and the induction of

cardiovascular diseases, such as CKD in humans (85). Blood urea

nitrogen and serum creatinine were reported to be elevated in

this model after 4 weeks of adenine feeding, closely resembling

the clinical scenario (60, 66). This method is only available for

rats or mice, which is an advantage of rodent animal models (30,

86). Due to the high individual variability in uremia, the lack of

consistency in renal unit mass reduction makes it difficult to

standardize, which is a direction worth exploring. It is certain

that a high degree of consistency in the baseline characteristics of
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the rodents, modeling methods and timing to harvest can reduce

the error. The mainstream of renal failure models that have been

validated to cause renal injury are the remnant kidney model

and adenine feeding, which is exactly what we recommend.

In addition, both diabetic nephropathy and hypertension-

induced renal damage are important causes of ESRD. There is no

ideal rodent model for diabetic nephropathy; however,

administering alloxan and streptozotocin (glucose analogs) or

high-fat diet, spontaneous development based on genetic

background, and genetic engineering modifications are some

reported modalities which can be used for establishing such

models (41, 75). Models of hypertension and renal damage can

be induced by angiotensin II injections for several weeks, and by

unilateral nephrectomy in spontaneously hypertensive rats (76).

Other CKDs such as lupus nephritis, polycystic kidney disease,

and IgA nephropathy can be mimicked in genetically modified

mice, but these models are costly, difficult to construct, and

progress slowly, and even develop ESRD less frequently (79–77).

Injection of adriamycin and puromycin can successfully induce

glomerulosclerosis in rodent models (78). All these models can

provide some ideas for establishing a stable CKD milieu in

rodent AVF models.
4.2 Surgical suturing methods in rodent
AVF models

4.2.1 Carotid–jugular fistula
Carotid-jugular fistula models mimic human peripheral fistulas

and are extensively used in studies on AVF failure mechanisms. To

date, the most widely accepted method in rodents is anastomosis

from the end of the EJV to the ipsilateral side of the CCA, with

the vein acting as an outflow tract, which has an identical AVF

configuration as the clinical application (44). The incision in the

arterial wall of mice is only 1 mm; therefore, technically it is

highly demanding (47). Yassari et al. first observed this type of

fistula in rats at five time points over 90 days and found that the

hemodynamics showed a stable high flow and low resistance

state immediately after fistula formation, whereas after 21 days,

the angiographic and histological presentation of the fistula

stabilized (58). Analysis of fistula sections from this model

demonstrated that endothelial molecular changes resemble those

observed in humans (87). The same method was applied to mice,

and the patency rates on days 7, 14, and 28 were 88%, 90%, and

50%, respectively. The success rate of the procedure was up to

97% after adequate practice (28, 61). In contrast, Castier et al.

created an end-CCA to side-EJV anastomosis in mice, with a 3-

week patency rate of 80% for the fistula, and significant NIH

induction at the anastomosis (31). Another study reported an

overall perioperative mortality rate of 20%, mainly related to

anesthesia or postoperative bleeding (13). Significant thickening

of the arterial wall at the anastomosis site was observed at 1

week postoperatively, with a 100% and 33% patency rate of the

fistula at 3 and 4 weeks, respectively. In addition, it did not cause

significant changes in overall blood pressure (13, 31). Liang et al.

performed direct end-to-end anastomosis of the CCA and
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internal jugular vein with interrupted sutures in mice using 11-0

nylon sutures and observed more severe NIH in the venous

portion near the anastomosis (63, 88). It is considered that end-

EJV to side-CCA able to make the vein arterialized would be

more suitable for investigational study and drug compound test,

due to maximizing similarity to clinical. It has not been reported

which is better, the end-to-end cuff model or end-to-side

anastomosis, but the former can reduce the trauma produced by

suturing. CCA to EJV is more widely used than CCA to IJV,

because CCA to IJV requires connection to the thinner vein

(IJV), which is located anatomically closer to the CCA and is not

conducive to modeling the angle formed during AVF.

4.2.2 Femoral fistula
Initially, a side-to-side anastomosis was made between the

common femoral artery (FA) and femoral vein (FV) under

microsurgical magnification to create a femoral AVF (33, 57).

Subsequently, another surgical procedure of end-to-side fistula in

rat was developed, in which an inguinal incision was made,

followed by dissection of the distal FA and anastomoses of the

end to the lateral wall incision of the FV. Increased MMP

expression during AVF maturation was demonstrated in this

model (18). The end of the FV was sutured to the side of the FA

to form a femoral fistula, with an anastomotic length of

approximately 2.5 mm. The suture was more consistent in

structure than that used in human AVF (64, 89). In a study by

Langer, the average operation time was reduced to 27 min, all 15

rats survived, and the fistula patency rate was 93% at 12 weeks

(17, 53). However, histological findings showing massive fibrosis

of the media and fusion with the lateral side were once reported,

and the subsequent hind limb edema in the animal suggested its

limitations (90). Croatt suggested that such complications could

be avoided by not ligating both the femoral vein above the AVF

and the superficial epigastric vein after the creation of the

femoral AVF (52). Moreover, a mouse model for studying HD-

related limb dysfunction through direct anastomosis of the iliac

artery and vein has recently been reported, with an

approximately 80% patency rate in surviving mice (34). However,

the iliac veins in this model are part of the deep venous system

and differ from superficial AVF in clinical patients (18).

4.2.3 Aortic fistula
The fistula can also be constructed by surgical anastomosis of

adjacent arteries and veins in a side-to-side manner after vessel

incision, such as the descending aorta and inferior vena cava

(66). To rapidly and significantly induce NIH, the distal renal

vein can be anastomosed to the abdominal aorta, and

intraoperative ligation of the renal vein for several minutes was

optionally attempted to create an aortic fistula in rats, but it later

induced severe ventricular hypertrophy and heart failure (67, 91).

4.2.4 Tail fistula
In 2008, Lin et al. first reported tail fistula in a rat model (59). It

is characterized by superficial visibility and can therefore be used

for subcutaneous treatment and monitoring studies. For this

purpose, a more superficial lateral vein was selected and its end
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was anastomosed to the side of the ventral artery of the rat’s tail.

Five fistulae were successfully operated on, and dilated veins were

visible through the skin after 28 days, four of which showed NIH

on histological analysis. However, this model is very different in

structure from that of humans, and the utility and validity of the

model are not guaranteed owing to multiple complications,

particularly adhesions of scar tissue followed by local

compression (92).
4.3 Rodent AVF models created using
aortocaval needle puncture

A simple and clean method to create a fistula is by puncturing

the aorta into the vena cava using anatomical features. The general

procedure involves exposing the vena cava and abdominal aorta

retroperitoneally, cross-clamping them, and creating a venous

incision through which the needle penetrates the opposite vessel

wall. Finally, the venous incision is closed, the clamps are

removed, and an aortocaval fistula is formed without additional

suturing when arterial pulsatile flow is evident in the inferior

vena cava at the puncture site (50, 93). Mickle et al. reported

histopathologic and angiographic assessments of aortocaval

fistulas at various stages, from 1 day to 6 months (56).

According to a study by Yamamoto, the model showed

maturation characteristics of a dilated and thickened AVF with

increased blood flow in 75% of mice at day 21, whereas 33% of

fistula stenoses failed at day 42, which is very similar to the

human AVF maturation process (50). This model is significant

for the study of the biological process of vascular remodeling and

the mechanism of AVF dysfunction after venous injury.

However, central vessels are characterized by high-flow, which

may differ from more peripheral processes, and are located

deeper, making them less amenable to superficial observation.
4.4 Rodent AVF models created using the
cuff technique

As the outer diameter of the carotid artery is approximately 2–

3 mm in rats and 0.3–0.5 mm in mice, end-to-end suturing of the

proximal CCA to the distal EJV can be performed; however, this

procedure is challenging. The cuff technique can be used to

simplify small vessel anastomosis (94). In the study by Misra

et al., the mortality rate on postoperative day 1 in mice with

end-to-end carotid-jugular fistulas was 20% (95). The technique

requires the preparation of a small cannula with the appropriate

diameter and length, which has been reported in mice with an

internal and outer diameter of 0.2–0.28 mm and 0.4–0.61 mm,

respectively, while in rats a disposable venous indwelling needle

catheter is used (45, 46, 54). The CCA is detached and cut,

the severed end of the artery is led through the catheter, and the

arterial blood vessel wall is turned out and wrapped around the

catheter, followed by the insertion of the cannula containing the

arterial end into the jugular vein, secured with a suture around

the ligature. This type of vascular anastomosis is less invasive
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and has a low incidence of blood leakage with a lower likelihood of

causing thrombosis, as it only approaches the artery adventitia (45,

54). However, a catheter is placed inside the vessel, and the extent

to which it mimics a human AVF is limited.
5 Evaluation of rodent models after
AVF placement

Apart from using appropriate approaches to confirm the

success of the models, assessing the pathophysiological

development of the fistula after placement is another crucial

aspect. Important evaluations usually require the determination

of patency, changes in hemodynamic features, and

histopathological examination of the fistula (96) (Figure 3).
FIGURE 3

Various evaluation methods on fistulas. (A) Macroscopic view of side-to-end
fistula by ultrasound by Dardik et al. (97). (C) Near-infrared fluoroscopy imag
magnetic resonance imaging, histology and lumen geometrical models sho
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Hemodynamic alterations are strongly associated with the

development of adaptive vascular remodeling and dialysis access

dysfunction, the observations of which include blood flow

patterns, pressure and velocity analysis, and WSS (100). Due to

the small diameter of the blood vessels in rodent models, there

may be some technical difficulties in studying intravascular blood

flow, which often involves the use of a perivascular flow probe or

various imaging techniques (62). Doppler ultrasound has the

advantage of easy handling and real-time non-invasive imaging,

which can be used to confirm vessel patency, accurately measure

changes in transit-time flow, velocity tracings, inner diameter of

vessels, and provide values to calculate WSS (17, 101). Magnetic

resonance imaging (MRI) combined with angiography allows an

accurate assessment of the geometry and flow changes at multiple

locations and time points in the blood vessels and has been shown

to be a good predictor of AVF maturation (45, 58, 64, 65).
carotid-jugular fistula post-operation. (B) Assessment of the aortocaval
es of patency of fistula by Wong et al. (98). (D) Representative images of
wing fistula characteristics by Daniel et al. (99).
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Recently, non-contrast MRI imaging has been used to reconstruct

the three-dimensional lumen structure at a higher resolution

(orders of 0.5 µm and 0.1 ms) in a mouse model to reveal the

real-time spatiotemporal characteristics of local wall

hemodynamics in AVF by computational fluid dynamic (CFD)

simulations. However, the correlation between early in vivo

hemodynamic parameter changes, late lumen vascular remodelling,

and NIH development has not been finely analyzed (100).

Currently, an MRI-based fluid-structure interaction (FSI) study in

a mouse AVF model was introduced for additional comprehensive

assess of hemodynamic and wall mechanics parameters (99).

Additionally, dextranated magnetofluorescent nanoparticles [CLIO-

VT680 (cross-linked iron oxide-VivoTag680)] can be deposited on

pathological endothelial cells near the AVF anastomosis, enabling

in vivo observation and prediction of subsequent inflow tract NIH

using intravital microscopy or MRI imaging (102). With infrared

fluorescence imaging, direct AVF patency can be assessed using

video imaging with the aid of a fluorescence-assisted resection and

exploration imaging system (28, 98). Live animal in vivo

evaluations are a great choice that enable longitudinal follow-up

imaging and can minimize animal sacrifice.

Histological staining of vessel sections after perfusion-fixed

outflow and control veins allows for the assessment of

morphological changes. Common staining includes hematoxylin

and eosin, which allows the measurement of fistula neointima

and media thickness, statistical patency rates, and thrombosis.

Masson’s trichrome and Verhoeff–Van Gieson staining are useful

for evaluating the continuity and integrity of smooth muscle

fibers, intercellular fibers, and collagen (14, 103). With a deeper

understanding of the mechanisms of AVF failure, the assessment

of oxidative stress markers and indicators of inflammation is also

a good complement (104). Immunohistochemical assessment

helps in target protein localization; western blotting and reverse

transcriptase polymerase chain reaction are also essential tools

for determining the expression of molecules in specific signalling

pathway mechanisms (44). Except traditional methods, some

advancement in molecular assays (for instance, spatial

multiomics: at transcriptional, translational, metabolic, and

epigenetic levels and multiplex fluorescent protein assay) can be

considered for future investigation of the microenvironment of

AVF failure and how AVF interacts with it surrounding tissue/

cells. However, due to the limited amount of available venous

tissue in rodent models, an adequate sample size is needed for

statistical analysis of such a protein (44).
6 Discussion

Currently, AVF is the gold standard for dialysis access,

maintaining prescribed dialysis treatment for more than 3

million patients with CKD progressing to ESRD worldwide (1,

2). Unfortunately, fistula maturation failure and poor patency

remains problematic for the administration of HD; thus,

suitable animal models are needed to simulate and study

human diseases (105, 106).
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Despite some disease research limitations and limited

translational value, rodent models have helped to a great extent

in many aspects. On the one hand, owing to advances in

transgenic and sequencing technologies, specific biomarkers and

potential therapeutic targets can be identified using current

rodent models. A few specifically modified mice were used to

study the important role of changes in gene expression in AVF

failure (47, 107, 108). For example, researchers constructed heme

oxygenase-1 (HO-1) gene-deficient mice and demonstrated that

their vascular access is more likely to be dysfunctional (109).

Knockout of monocyte chemoattractant protein-1 (MCP-1) in a

mouse was found to be beneficial in increasing the patency of

fistula (110). Adenoviral vector-mediated gene delivery

upregulated HO-1 in a mice AVF model of CKD, showing

beneficial effects (111). On the other hand, rodent AVF models

are used to elucidate the pathogenesis and underlying

mechanisms including cellular events, morphology, and

pathologic changes behind the loss of AVF function. Liang et al.

demonstrated that 50% of SMCs in AVF neointima formation

originated from arterial anastomoses using techniques such as

fluorescent protein gene labeling in a mouse AVF model (112).

Evaluating hemodynamic changes and NIH in rodents by using

various approaches may provide important information about

the physiology and pharmacology of AVF (62, 103).

Furthermore, the role and effects of drugs such as sulodexide

(113), simvastatin (84), rosuvastatin (42) have been studied in

this model. Use of these drugs along with the local

administration of endovascular devices or antigen-coated

nanoparticles can be attempted, offering the prospect of

treatment of AVF failure. Finally, the establishment of a mixed

model of disease in rodents, such as those with CKD or diabetes,

is more helpful in exploring the impact and mechanisms of

clinical comorbidities.

As mentioned previously, several recently established

representative methods of rodent AVF models are reliable and

can provide good references to contribute to research. The

modified end-EJV to side-CCA rodent AVF model by Misra

et al. had the highest degree of clinical peripheral mimicry,

showing the complete pathophysiological process of AVF

maturation to NIH, and the fistula site is easily accessible for

local administration and follow-up with ultrasound (60, 114).

Interestingly, an attempt to anastomose the right end-EJV to the

left side-CCA could provide an outflow vein length of 10 mm;

therefore, this model could be applied for studying restenosis

after angioplasty (14). However, these models are technically

challenging and can be influenced by the experience and

microsurgical skills of the researchers in different laboratories.

The needling method commonly used by Dardik et al. greatly

reduces variations due to operator factors and has the advantages

of being simple, rapid, and relatively sterile (25, 50, 51). It has

also been reported that the diameter of the fistula can be

controlled by selecting different needle sizes, thereby achieving

high modelling stability and reproducibility (97). The limitation

is that the local hemodynamics of aortocaval fistulas vary

considerably and may easily lead to ventricular hypertrophy and

cardiac failure (68). Narrower vessel diameters, lack of valves in
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veins, and different evolutionary processes of blood coagulation can

lead to faster thrombosis in rodent models (17). Thrombotic lesions

always occurs secondary to AVF restenosis in humans, and we’re

supposed to exclude mice with thrombus-obstructed vessels from

AVF models, focusing on the pathology of intimal hyperplasia.

Another limitation is that young male animals are more often

used due to their high tolerance and long probability and duration

of survival after operation, however, older AVF rodent models

may have different study results since most of CKD patients in

late middle to elder age rather than in young population.

With the maturity and improvement of AVF rodent model, the

future development of its related research is worth to be expected.

Firstly, female has been reported to have lower AVF patency and

durability compared with men. This difference may be caused by

lower velocity, small vessel size, lower shear stress, sex hormone

difference (115). It may also be due to sex-specific genes/proteins

involved in thrombosis/inflammatory/proliferative pathways

during AVF remodeling (116–118), and this difference deserves

the continued attention of researchers. Second, this disease is

often an altered systemic environmental state accompanied by

changes in distant vascular bed and other organ’s function (e.g.,

heart, kidneys, and brain), especially as cardiovascular events

account for more than half of the mortality in patients with

ESRD (119). Our studies tend to focus only on the local area,

and it is also important to understand the regional and systemic

hemodynamic changes in each murine AVF configurations.

Moreover, the current AVF model is highly influenced by the

surgical operator, and the stability and homogeneity of the model

should be improved in the future. Various innovative vascular

anastomosis devices (which has already been applied in the

clinic) can be considered, besides, the stable establishment and

standards regarding the CKD model are yet to be determined.

Overall, rodents have played an important role in advancing

AVF-related research in recent years and will continue to serve

as a transitional tool for preclinical model translation to simulate

diseases and help reveal disease features.
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