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Cardiac contractility modulation (CCM) is based on electrical stimulation of the
heart without alteration of action potential and mechanical activation, the data
on its fundamental molecular mechanisms are limited. Here we demonstrate
clinical and physiological effect of 12 months CCM in 29 patients along with
transcriptomic molecular data. Based on the CCM effect the patients were
divided into two groups: responders (n = 13) and non-responders (n = 16). RNA-
seq data were collected for 6 patients before and after CCM including 3
responders and 3 non-responders. The overall effect of CCM on gene
expression was mainly provided by samples from the responder group and
included the upregulation of the genes involved in the maintenance of
proteostasis and mitochondrial structure and function. Using pathway
enrichment analysis, we found that baseline myocardial tissue samples from
responder group were characterized by upregulation of mitochondrial matrix-
related genes, Z disc-protein encoding genes and muscle contraction-related
genes. In summary, twelve months of CCM led to changes in signaling
pathways associated with cellular respiration, apoptosis, and autophagy. The
pattern of myocardial remodeling after CCM is associated with initial expression
level of myocardial contractile proteins, adaptation reserves associated with
mitochondria and low expression level of inflammatory molecules.

KEYWORDS
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Introduction

Cardiac contractility modulation (CCM) has been actively studied in order to improve
the prognosis for patients with heart failure and reduced ejection fraction (HFrEF) (1-3).
CCM is relatively new method of electrophysiological therapy for patients with HFrEF
which is based on electrical stimulation of the heart in an absolute refractory period
(1). CCM does not lead to the emergence of an action potential and does not change
the course of electrical and mechanical activation of the heart, but only provides a
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positive inotropic effect without increasing the myocardial oxygen
demand (4-6). The molecular mechanisms underlying the positive
inotropic effect of CCM are suggested to be mediated by the
increase in intracellular calcium levels and changes in
phosphorylation of the key proteins modulating the activity of
sarcoplasmic calcium (3-7). Until now, the only study focused
on transcriptomic and proteomic changes measured directly in
human cardiac tissue under CCM has been published (8). This
study included only a target analysis of genes involved in calcium
metabolism after tree and six months of 3-month long CCM.
The data on the global molecular events in myocardial tissue
under long-term exposure to CCM are still missing. The present
study aimed to identify differentially expressed genes in
myocardium biopsies obtained from patients with HFrEF after
twelve months of CCM using whole-transcriptome sequencing
approach in order to associate these alterations with a type of

CCM response and myocardial remodeling.

Materials and methods

The study protocol was approved by the local ethics committee
of the Almazov National Medical Research Centre and complied
with the requirements of the Declaration of Helsinki. All patients
signed written informed consent. Patient characteristics and
therapy are presented in Table 1.

Total RNAs were isolated from myocardial biopsy specimens
obtained from right ventricular side of interventricular septum
and libraries for RNA sequencing were prepared using TruSeq
Stranded mRNA kit (Illumina, USA). We used DeSeq2 to
perform differential expression analysis and compared patients
before CCM implantation against patients after implantation.
Raw sequencing data are available at SRA, NCBI, under
GSE251971. Details of RNA sequencing and bioinformatic
analysis are described in Suppl. File.

Results

The mean follow-up period for all 29 patients with HFrEF of
ischemic aetiology after CCM 11.8+ 1.5
months, by the end of the first year, 11 patients (38%) had an

intervention was

10.3389/fcvm.2024.1321005

ICD implanted mainly as a primary prevention of sudden
cardiac death. After 6 and 12 months of CCM, a reduction in
the NYHA (New York Heart Association) class accompanied by
a significant improvement of echocardiographic, clinical,
biochemical and quality of life parameters were reported
(Supplementary Table S1). Based on the CCM effect on LVESV
(Left Ventricular End-Systolic Volume), the study cohort was
divided into two groups: responders (n=13), where LVESV
decreased by more than 10% compared to baseline after 6
months of CCM, and non-responders (n = 16), where parameters
remained unaltered. These groups did not differ significantly in
age, baseline hemodynamic and clinical parameters (Table 2).
The degree of left ventricular (LV) reverse remodeling was
significantly greater in the responder group compared to the
non-responder group (Table 2). Both groups showed a significant
reduction in the NYHA class, an increase in the distance 6MWT
(6 Minute Walk Test) and quality of life according to EQ-5D data.

Repeated RNA-seq analysis was performed to identify common
transcriptional changes related to CCM as well as to identify
transcriptional changes unique to the responder or non-
responder groups of patients, the samples were first collected
during CCM implantation, and then in patients with later
implantable cardioverter-defibrillator (ICD) insertion during the
operation. Two consecutive RNA-seq data were collected for 6
patients, including 3 responders and 3 non-responders (Table 1,
Supplementary Table S2). The mean time of ICD implantation
with repeated myocardial biopsy sampling was 10.6 + 2.6 months
after CCM implantation and did not differ between the
responder and non-responder groups. First, we compared
transcriptional changes before and after CCM in all the patients.
A total of 242 genes were differentially expressed (Figure 1A),
with SYNPO, NRAP, and RORC being the most upregulated after
CCM therapy and BTNL9, PTN, OGN, NOTCH4, MCF2I, and
ADCY4 as the most downregulated. Many pathways related to
Z-disc structure, mitochondria, and macroautophagy were
upregulated in patients after CMM (Figure 1B). A further
separate analysis of post CCM samples in responder and non-
responder groups revealed that most of the genes upregulated in
the entire post-CCM group were represented by the samples
from the responder group. We revealed 32 differentially
expressed genes, with HSPB6, MYOI8B, CDKNIA, GALNTI17,
KCNK6, KCNJ4, and SNAP47 being the most upregulated genes;

TABLE 1 Demographic characteristics and clinical course of 6 patients with repeated endomyocardial biopsy samples, mean + SD or median [Q25; Q75].

Responders (n = 3)

Non-responders (n = 3)

Age (years) 57.0+9.0 47.7+7.0
Male/female 172 3/0
Baseline 6 months 12 months Baseline 6 months 12 months
HR, beats/min 633+3.1 66.3+6.5 64.4+15.1 67.0+4.0 70.7+6.8 76.7+11.9
SBP, mmHg 110.0 +10.0 110.0 £ 07 110.0 +£10.0 103.3+5.8 116.7 £ 5.8 110.0+17.3
QRS, ms 1292 +4.0 133.0+12.0 137.0 + 14.4 113.7+13.3 113.9+10.8 111.0+12.3
6MWT, m 391.3+137.8 396.6 +59.2 416.7 £57.9 423.7 £105.6 453.7 £76.5 454.0+79.9
Eq5D (visual analog scale), % 76.7 £20.8 88.3£16.0 91.7+7.6 63.3£37.9 83.3+5.6 61.7 £27.5
CCM-stimulation, % 98 [98;99] 99 [98;99] 93 [56;99] 98 [98;98] 98 [67;99] 97 [92;98]
HR, heart rate; SBP, systolic blood pressure; 6MWT, six-minute walk test.
Frontiers in Cardiovascular Medicine 02 frontiersin.org
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TABLE 2 Comparison of baseline characteristics and clinical course among the responder and non-responder groups (n = 29). Data presented as: n (%),
mean + SD or Me [Q25; Q75].

Non-responders (n = 16)

Responders (n=13)

Age (years) 57.7+6.5 54.0 £10.9
Male /female 11 (85%)/2 (15%) 14 (87%)/2 (13%)
ICD before CCM implantation 1 (8%) 4 (25%)
Clinical course after CCM implantation
ICD insertion after CCM implantation 6 (46%) 5 (31%)
Device pocket stimulation, n (%) 1 (8%) 2 (12.5%)
Leads replacement (2 RV leads), n (%) 1 (8%) 2 (12.5%)
HF hospitalization, n (%) - 2 (12.5%)
Clinical status
Baseline 6 months Baseline
NYHA FC, n (%)
1 0 0 (0%) 1 (8%) 0 (0%) 3 (19%) 2 (13%)
I 9 (69%) 13 (100%) 12 (92%) 12 (75%) 13 (81%) 13 (81%)
111 4 (31%) 0 (0%) 0 (0%) 4 (25%) 0 (0%) 1 (6%)
NYHA FC
Me [Q25; Q75], 2[2; 3] 2[2; 2] 2[2; 2] 2[2:2.5] 2[2; 2 2[2; 2]
mean + SD** 23£05 22£0 19+03 23+04 1.8+0.4 1.9+0.4
HR, beats/min 68.0%68 66.6+8.3 632£83 66.3+7.2 65.4%58 66.9%9.9
SBP, mmHg 1157 £16.3 1157 £12.8 113.2£129 114.8 8.0 1184£65 120.0 £ 14.7
QRS, ms 1159+ 18.4 117.8 £21.9 121.4+22.1 114.8+18.8 115.8+19.1 1188215
6MWT, m 386.6+70.4 417.6 + 46.3 446.9 +59.4 37534893 410.4 + 88.7 457.6 +86.6
(p=0.043) (p=0.01) (p=0.041) (p =0.0002)
LVEF, % 249 +6.1 31.5+6.4 30.7+6.8 264 +5.5 264+6.6 27.0+64
(p=0.004) (p=0.01)
LV end-diastolic volume, ml 251.5£57.9 2104 +37.1 222.1+42.38 233.3+50.8 2347 £52.7 229.6 £62.5
(p =0.0003) (p =0.002)
LV end-systolic volume, ml 177.4+52.7 139.4 +41.3 154.6 +48.5 165.9+51.3 169.3 £49.6 168.9 £58.2
(p =0.0001) (p =0.002)
VO2 peak, ml/kg/min 153+32 16.5+3.7 19.9+4.0 15.8+6.3 15.7+6.7 18.2+6.6
(p=0.006) (n=14)
NT-proBNP, pg/ml 891 [473;1181] 551 [342;771] 446 [375;749] | 9560 [7341,719] 852.5 [264;1,139] 1,075 [519;1,447]
(p=0.004) (p=0.02) (n=14)
Eq5D (visual analog scale), % 64.6+17.7 723+14.4 74.6 £ 14.9 65.3+17.8 73.1+14.0 70.3 +16.7
(p=0.03) (p=0.041) (p=0.01)
CCM-stimulation, % 98.9[97;99] 99.0[98;99] 99.0[95;99] 98.0[95;99] 98.0[96;99] 96.5[91;99]
Medication, n (%)
ACE-i/ARB 13 (100%) 13 (100%) 13 (100%) 15 (94%) 15 (94%) 15 (94%)
>50% of full dose 8 (62%) 8 (62%) 9 (69%) 10 (67%) 11 (73%) 10 (67%)
Full dose 4 (31%) 5 (38%) 4 (31%) 3 (20%) 6 (40%) 6 (40%)
Beta-blockers 13 (100%) 13 (100%) 13 (100%) 16 (100%) 16 (100%) 16 (100%)
>50% of full dose 8 (62%) 10 (77%) 9 (77%) 11 (69%) 10 (63%) 10 (63%)
Full dose 2 (15%) 2 (15%) 2 (15%) 3 (19%) 5 (31%) 6 (38%)
Aldosterone antagonists 12 (92%) 13 (100%) 13 (100%) 14 (88%) 14 (88%) 16 (100%)
Left ventricular reverse remodeling: comparison of the changes among the study groups at the 6 months, median [Q25; Q75]
Change in LVEF (absolute), % 4[2; 11.0] ] 05 [=2; 3]
p=0.009
A LV end-diastolic volume, ml —42.0 [-55; —17] ‘ 0.5 [-11.5; 15]
p=0.0002
Change in LV end-diastolic volume, A % 17.1 [-20.1; —8.9] ‘ 0.25 [—4.7; 5.8]
p=0.0002
A LV end-systolic volume, ml —33.0 [—46; —22] ‘ 0 [-7; 10.5]
p=0.000001
Change in LV end-systolic volume, A % —17.1 [-25.5; —15.4] ‘ 0 [—5.2; 6.4]
£ <0.00001
(Continued)
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TABLE 2 Continued
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Responde O esponde 6
Left ventricular reverse remodeling: comparison of the changes among the study groups at the 12 months, median [Q25; Q75]
Change in LVEF (absolute), A% 8 [-2; 12] \ 1[-3; 4]
p=02
A LV end-diastolic volume, ml =21 [—40; —16] ‘ —3.5 [-13; 15]
p=0.006
Change in LV end-diastolic volume, A % —9.4 [-19.4; —6.5] ‘ —1.5 [-5.5; 3.8]
p=0.02
A LV end-systolic volume, ml —17 [-24; —-13] ‘ 0 [-11; 6]
p=0.001
Change in LV end-systolic volume, A % —9.1 [-18.9; —6.5] ‘ 0 [-8.7; 3.5]
p=0.007

ICD, implantable cardioverter defibrillator; FC, functional class; RV, right ventricle; HR, heart rate; SBP, systolic blood pressure; 6MWT, six-minute walk test; LVEF, left
ventricular ejection fraction; VO2 peak, maximal oxygen consumption; A, the changes.

Bold values indicate that mean values that reach statistical significance.
Abbreviations as in Tables 1 and 2.
*p < 0.05, comparison with baseline data in the respective group.

**Data of NYHA functional class have non normal distribution, but for clarity illustration of the indicators dynamics presented as mean + SD.
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FIGURE 1

Gene expression analysis by RNA sequencing of biopsy samples from patient before and after CCM treatment. (A) Volcano plot illustration RNA-Seq
differential expression data. Pairwise comparisons is shown between all samples before and after therapy. (B) Gene enrichment analyses for
comparison of all before and after CCM therapy samples. (C) Volcano plot illustration RNA-Seq differential expression data for pairwise
comparisons samples between responders to therapy samples before and after CCM therapy. (D) Gene enrichment analyses for comparison of
responders samples before and after CCM therapy. (E) Volcano plot illustration RNA-Seq differential expression data for pairwise comparisons
samples between non-responders to therapy samples before and after CCM therapy. (F) Gene enrichment analyses for comparison of non-

and BTNL9 and MCF2I being the most downregulated genes in
CCM responder group (Figure 1C). These upregulated genes
included signal (SRP)—dependent
translational protein targeting to membrane, many metabolic

recognition particle co-
genes as well as genes encoding for actin-binding proteins
(Figure 1D). Very few genes were upregulated in CCM non-
responder group, while several genes (LUM, PTN, OGN) were
significantly downregulated, including genes involved in cell
adhesion and integrin-complex, collagen and heparin-binding
processes (Figures 1E,F). The overall effect of CCM on global
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gene expression was mainly provided by samples from the
responder group and included the upregulation of the genes
involved in the maintenance of proteostasis and mitochondrial
structure and function. Since macroautophagy was one of the
upregulated pathways, we performed a detailed analysis of the
genes involved in a muscle-specific type of autophagy—
chaperone-assisted selective autophagy (CASA) and mitophagy.
The gene set enrichment analysis revealed the significant
upregulation (p <5e-13) of the genes involved in CASA and
mitophagy in patients after CCM (Figure 2).
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To further search the predictive expression markers that could
distinguish responders from non-responders based on their
baseline characteristics, we compared the baseline transcriptional
profile in these groups. The statistical power of this test was
lower than in the previous comparison since the number of
analyzed samples was less (n=6), and many factors were
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included into differential expression design (e.g., sex of the
donor, batch), which resulted in the almost complete absence of
differentially expressed genes (Supplementary Figure S1). We
found that many mitochondrial pathways, mitochondrial matrix-
related genes, Z disc-protein encoding genes and muscle
contraction-related genes were upregulated in responders. In
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TABLE 3 Histological analyses and intraoperative parameters of
electrodes of 6 patients with repeated endomyocardial biopsy samples
(pre- and post-fixation electrode values), mean + SD.

Overall

Responders
(n=3)

Non-responders

(n=6) (n=3)

Percentage of fibrotic 13.8+8.6 13.2+8.1 14.0 £10.2
areas of endomyocardial

biopsy samples, %

Sensed P wave value (RA lead), mV

RA O 32+0.6 34+05 3.0+£0.8
RA post 48+04 45+0.5 50+0
Sensed R wave value (RV lead), mV

RV 0 105+1.2 10.7+0.3 105+ 1.9
RV post 82+2.0 9.0+£1.0 7.5+28
Sensed R wave value (LS lead), mV

LSo 9.5+1.1 9.1+1.2 10.5+1.9
LS post 6.6+1.8 7.2+£2.0 6.0+1.7

0: at time O; post: post-fixation; RV, right ventricle; RA, right atrium; LS, lead
sensing.

contrast, immune pathways including leukocyte cell-cell adhesion,
and neutrophil degranulation were upregulated in non-responders.
To exclude the difference in tissue composition, muscle cell
cellularity, and the area of fibrosis, the morphological and voltage
electrophysiology analysis were performed. We demonstrated that
there were no differences in the total cardiomyocyte area and
ECG voltage in myocardial samples from responder and

10.3389/fcvm.2024.1321005

non-responder groups (Table 3, Figure 3). Therefore, the
observed differences in myocardial expression profile was not
linked to different cellular composition.

Discussion

In our study, we demonstrated that 6-12 months of CCM of
ischemic HF patients (II-III NYHA) was associated with
improvement of clinical parameters and quality of life. By 6
months of CCM, reduction of LVESV >10% and LVESV > 15%
were registered in 45% and 34% patients, respectively. These data
are in line with data on 3 months of CCM in patients with
HFrEF (III NYHA) (50% with ischemic aetiology) published by
Zhang and co-authors who documented the decrease in
LVESV >15% in 39% of cases (9). Of note, in our study, the
long-term CCM did not result in significant dynamics of reverse
myocardial remodeling in 55% of patients despite improvement
in the clinical symptoms and exercise tolerance.

The reverse remodeling of LV under CCM is determined by
the
cardiomyocyte calcium-handling genes as the primary effectors of

molecular pathways and previous studies underlined
CCM impact (8, 10-12). However, we did not observe any effect of
CCM on either of calcium-related proteins. One of the possible
explanations could be the different time point of biopsy sampling

in our and previously published studies (12 and 3 months

FIGURE 3

Endomyocardial biopsies. (A—C) responders’ samples. (D) non-responders’ sample. (A) Endocardial fibrosis with a pronounced vacuolar degeneration
of cardiomyocytes and fibrosis-braiding of cardiomyocytes. 65 years old, x100. (B) Small-focal fibrosis (or Focal fibrosis) with fibrosis-braiding of
cardiomyocytes, endocardial fibrosis. 65 years old, x50. (C) Fatty infiltration with endocardial fibrosis. 56 years old, x50. (D) Small-focal fibrosis
(Focal fibrosis) with fatty infiltration. 62 years old, x100. Masson's trichrome stain.
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correspondingly). Additional explanation could be the different
technical approach utilizing RNA sequencing in a current study
compared to previously reported RT-PCR data. Thus, our study
provides the information on the later time points of CCM effect
and illuminate new and previously unreported genes and pathways
linked to a positive effect of CCM. Most of the gene expression
effect on CCM raised from the responder cardiac samples leaving
the non-responder group as almost “unreactive”. Among the most
upregulated are mitochondrial matrix and mitophagy genes,
mitochondrial metabolism-related genes, contractile sarcomeric
genes as well as structural cardiomyocyte genes. Allover, the CCM-
related improvement of myocardial function is associated with
expression increase of cardiomyocyte structural and metabolic
genes and downregulation of extracellular matrix and collagen
synthesis-related genes. This is well in line with data reported by
D’Onofrio et al.,
inflammatory circulating biomarkers and markers of fibrosis such

who demonstrated the improvement of
as collagen 3, collagen 4, C-cystatin and IL-6 after 6 and 12
months of CCM therapy in patient with LMNA-associated dilated
cardiomyopathy (13). However, the observed modulation of gene
expression still leaves the question whether the described molecular
effects are specifically linked to CCM-related cardiomyocyte
changes or simply reflect the cellular processes under positive
cardiac remodeling and HFrEF positive dynamics. For example,
upregulation of mitochondrial pathways, structural and Z disc-
protein encoding genes and muscle contraction-related genes can
represent the molecular signature of increased cardiomyocyte
contractility and functional myocyte properties as a result of HF
treatment independently on CCM. Further experimental and
clinical studies with extended control groups and increased number
of patients included will allow to answer these questions.

The involvement of several genes linked to CASA and
mitophagy prompted deeper analysis of this gene set under
CCM. We detected the relative increase in expression of such
genes including BAG3, HSPBS8, HSPAS8, VSP and SQSTMI as well
as MFN2, VDAC, PINKI and PRKN (Figure 2G). CASA has
already been reported as essential process degrading damaged
components of Z-disc and our data further confirms that positive
CASA flux can be one of the attributes of restoration of
cardiomyocyte contractile function (14-17).

The increase in CASA-related genes, structural, mitochondrial
and contractile genes reflect the late CCM-mediated effects which
do not include the direct involvement of Ca-operating genes
described as the early CCM effects. Importantly, these effects
were mostly represented by responder group samples. This
underlines the importance of initial patient stratification and
identification of those subjects who have the highest probability
to benefit from CCM. We speculate the preservation of
mitochondrial structure and metabolism as well as contractile
and cytoskeletal apparatus determinate greater effect of CCM. In
contrast, the increased expression of immune and inflammatory
response genes is associated with moderate or no long-term
functional response to CCM. We conclude that the baseline
cardiomyocyte status—either more pro-contractile or more
proinflammatory—is critical for the long term on cite and
remote effects of CCM.
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Study limitations

Due to the very small number of samples available for RNA
sequencing the current study represents the pilot project aiming to
underline the possible molecular effects of long-term CCM
treatment. Further verification and validation of the described
tendencies need to increase the number of samples and, possible, to
extend the number of time points analyzed. In addition, the data
obtained in frame of multicentre study rather than in single center
study will allow more accurate and objective clinical data assessment.
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