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(CNN)-enabled electrocardiogram
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and single-lead setups
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Gaetano Maria De Ferrari1,2*‡
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Hospital, Turin, Italy, 2Department of Medical Sciences, University of Turin, Turin, Italy, 3Department of
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Nazionale per l’Informatica (CINI), Rome, Italy
Background: Artificial intelligence (AI) has shown promise in the early detection
of various cardiac conditions from a standard 12-lead electrocardiogram (ECG).
However, the ability of AI to identify abnormalities from single-lead recordings
across a range of pathological conditions remains to be systematically
investigated. This study aims to assess the performance of a convolutional
neural network (CNN) using a single-lead (D1) rather than a standard 12-lead
setup for accurate identification of ECG abnormalities.
Methods: We designed and trained a lightweight CNN to identify 20 different
cardiac abnormalities on ECGs, using data from the PTB-XL dataset. With a
relatively simple architecture, the network was designed to accommodate
different combinations of leads as input (<100,000 learnable parameters). We
compared various lead setups such as the standard 12-lead, D1 alone, and D1
paired with an additional lead.
Results: The CNN based on single-lead ECG (D1) achieved satisfactory
performance compared to the standard 12-lead framework (average
percentage AUC difference: −8.7%). Notably, for certain diagnostic classes,
there was no difference in the diagnostic AUC between the single-lead and
the standard 12-lead setups. When a second lead was detected in the CNN in
addition to D1, the AUC gap was further reduced to an average percentage
difference of −2.8% compared with that of the standard 12-lead setup.
Conclusions: A relatively lightweight CNN can predict different classes of cardiac
abnormalities from D1 alone and the standard 12-lead ECG. Considering the
growing availability of wearable devices capable of recording a D1-like single-
lead ECG, we discuss how our findings contribute to the foundation of a
large-scale screening of cardiac abnormalities.
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Introduction

The 12-lead electrocardiogram (ECG) is a fundamental instrument

used in diagnosing cardiac abnormalities. Traditionally, 12-lead ECGs

are analyzed by trained medical professionals; however, recent

advances in artificial intelligence (AI) and, in particular, deep neural

networks (1) have enabled methods to accurately analyze ECGs (2,

3). In the diagnosis of rhythm disturbances, these approaches

outperform expert cardiologists in terms of diagnostic accuracy (4).

Furthermore, AI demonstrated the ability to recognize specific

patterns and ECG waveform abnormalities that are invisible to the

human eye, e.g., detecting a high likelihood of cardiac contractile

dysfunction or a future or past episode of atrial fibrillation from an

“apparently” normal ECG in sinus rhythm (5, 6). Thus, an AI-based

analysis of the 12-lead ECG has the potential for a prompt and

accurate diagnosis of ECG abnormalities and early detection of

different cardiac diseases. The rapid adoption of wearable devices

capable of recording single-lead ECGs (7–10) has opened new

opportunities in diagnosing cardiac disorders such as atrial

fibrillation. Anecdotally, a precordial smartwatch has been found to

detect signs of myocardial ischemia with a 12-lead ECG and to

record an event of ventricular fibrillation (11). AI-based algorithms

have shown potential in detecting cardiac alterations from single-lead

ECG recordings. For example, Attia et al. (12) reported that an AI-

based analysis of a single-lead ECG of a smartwatch worn by

approximately 2,500 patients correctly identified a left ventricular

ejection fraction (LVEF) of <40% in 16 patients. To the best of our

knowledge, there are no studies that systematically assess the

performance of AI-based algorithms based on single-lead ECG

across different ECG cardiac diagnoses.

Moreover, the computing ability of battery-operated wearable

devices is typically limited, making large deep neural networks not

suitable for such platforms and necessitating the development of ad

hoc algorithms for ECG analysis. This work aims to address the above

issues through a twofold contribution. First, we propose an ad hoc

method for detecting cardiac abnormalities based on a lightweight

CNN, as opposed to the state-of-the-art architectures typically used

for this task. Second, we train our CNN to identify from the single-

lead D1 (and in combination with D2) more than 20 different cardiac

conditions that are typically diagnosed from standard 12-lead ECGs

with far more complex architectures. We show that for multiple ECG

abnormalities [e.g., AV block, complete left or right bundle branch

block, and lateral myocardial infarction (LMI)], the performance of

our single-lead lightweight CNN is comparable to that provided by

more complex architectures using standard 12-lead setups. These

results show the potential to integrate AI-based algorithms into

wearable devices for mass-screening the population against cardiac

diseases, as discussed in the last section of this article.
Methods

The PTB-XL ECG dataset

The PTB-XL ECG dataset (13, 14) is a publicly available dataset

containing 21,837 clinical 12-lead ECGs (based on the Wilson lead
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system) of 10 s length from 18,885 patients (52% males, 48%

females, median age of 62 years; interquartile range, 22 years;

range, 0–95 years) recorded at a sampling frequency of 500 Hz.

Prediction was assessed as a multi-label classification task (13)

according to the 20 diagnostic classes shown in Figure 1 (the 5

macro classes are reported only for the sake of completeness and

were not considered in this study).

The ECGs were divided into 10 folds. According to Wagner

et al. (13), since containing only ECGs validated by at least one

cardiologist and therefore presumably representative of the

highest label quality, the ninth fold was used as the validation set

and the tenth fold as the test set. The other eight folds served as

the training set.
Data preprocessing

As in previous literature, ECGs were downsampled at 100 Hz

signals (1,000 samples for each of the 12 leads, for each ECG).

ECGs that either had (i) conflicting labels (being classified as

NORM and as some other non-NORM diagnostic class), (ii) lack

of classification (not classified into any diagnostic class), or (iii)

diagnostic statements with a likelihood equal to 0% were filtered

out. Of the resulting 21,008 ECGs, 17,598 were used as the

training set, 1,708 as the validation set, and 1,702 as the test set.

Following standard practice, we independently normalized each

lead over the mean and standard deviation computed on the

training set.

Finally, each ECG was represented as a matrix with L rows and

W columns, where L represents the number of considered leads

(between 1 and 12, depending on the number of leads input)

and W represents the length of the ECG (maximum of 1,000

samples at 100 Hz sampling frequency). The number of samples

that was provided as input to the CNN eventually depended on

the network receptive field, as discussed below.
Convolutional network architecture

Although Strodthoff et al. (15) found the deep ResNet with 101

layers was the best-performing model, to assess CNN diagnostic

performance for an arbitrary number of L input leads, we used a

straightforward architecture with eight convolutional layers

(Figure 2). This architecture is composed of a few sections with

well-defined functions that can be easily interpreted (6). Keras

framework with a TensorFlow (Google; Mountain View, CA, USA)

backend was used to implement the CNN. In the first section, a

convolutional layer with one 1 × 1 filter performs a preliminary

linear transformation over the L leads taken as input. Next, a

section with six convolve–normalize–pool blocks follows. For each

block, a convolutional layer extracts feature maps, where batch

normalization is meant to accelerate learning and a 1 × 2

MaxPooling operator halves the feature maps size across the

temporal axis W only. The number of output feature maps by

each convolutional block is 16, 16, 32, 32, 64, and 64, respectively.

The filter sizes are 1 × 5, 1 × 5, 1 × 5, 1 × 3, 1 × 3, and 1 × 3,
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FIGURE 1

Distribution of PTB-XL ECG diagnoses (aggregated into 20 diagnostic classes and 5 diagnostic superclasses).
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respectively. Attia et al. (6) reported that convolutional filters have a

dilation rate of 2 to increase the receptive field without resorting to

4× pooling. This section of the CNN fuses each lead over the

temporal axis and projects the L leads over a larger feature space.

The output of this section is a vector of 64 feature maps with a

size of 1 × 1, i.e., a vector of 64 features, for each of the L leads.

Since the receptive field of these features was W = 344 samples

along the temporal axis, this network required about 3.4 s of ECG

sampling at 100 Hz to produce a diagnostic output. Thus, the

presence of 10 s of sampling of each ECG allowed for a data
FIGURE 2

Detailed CNN architecture.
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augmentation strategy as reported below. Notably, each lead was

independently filtered up to this point, i.e., there was no mixing

between information coming from different leads.

In the third section, an eighth and last convolutional layer with

128 filters with a size of 1 × 1 projects a linear combination of these

features over a larger 128 × 1 vector of features. This was the only

part of the network where information from different leads was fused.

The output layer is composed of 20 neurons with sigmoid

activations, one for each of the 20 PTB-XL ECG diagnostic

classes, acting as 20 independent binary classifiers.
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The number of learnable parameters of this CNN depends on

the number of leads provided in input (i.e., from dimension L of

the input matrix introduced below) and ranges from 36,000

parameters for L = 1 up to 96,000 parameters for L = 12 leads.
Data augmentation

To maximize the ability of the network to generalize over data

unseen at training time, the training samples were augmented with

the following random transformations:

• Gaussian noise: noise, drawn from a Gaussian distribution with

zero mean and standard deviation from a uniform distribution

in the [0.01, 0.1] interval, was added to each ECG lead.

• Time scale: for each ECG, all leads were temporally stretched or

compressed by a random factor uniformly drawn from the [0.8,

1.2] interval.

• Amplitude: for each ECG, all the samples were multiplied by a

random factor uniformly drawn from the [0.7, 1.3] interval.

• Temporal cropping: starting from a random position, in each

ECG, a window of W = 344 consecutive samples was cropped.

The width of the window corresponds to the receptive field of

the above CNN.

Notably, these transformations were applied only to the training set

except for temporal cropping that was applied to all: the network

was trained and evaluated on random segments of about 3.4 s.

Input setups

The CNN was designed to receive as input a matrix of size L ×

W, where L represents an arbitrary number of leads between 1 and

12. Regardless of L, the network always produced a vector y of 20

values ∈ [(0, 1)] as output, corresponding to the diagnostic classes.

Hence, the network allowed us to fairly compare experiments

where different subsets of leads act as input of the network. In

total, we assessed four different input setups:

• Standard 12-lead ECG, input matrix 12 × 344 (i.e. 12 leads of

344 samples at 100 Hz each, which is about 3.4s of ECG)r

• Independent leads (eight-lead) ECG, input matrix 8 × 344;

considering that four leads (D3, aVR, aVL, aVF) are linear

combinations of leads D1 and D2, the eight independent leads

(lead D1, lead D2, leads V1–V6) were used as input.

• Single-lead ECG (lead D1), input matrix 1 × 344.

• Two-lead ECG (lead D1 + additional lead), input matrix 2 × 344;

lead D1 was coupled with a second lead, registering information

from a different spatial axis.

Training procedure and performance
assessment

The network was trained to minimize the sum of the binary

cross-entropies computed over the 20 outputs of the network.

Adam (16) was used as an optimizer. The learning rate was set

to decay linearly from 10−2 to 10−4 by a batch size equal to 32

ECGs for 200 epochs of training in total.
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According to Wagner et al. (13), the results were reported as

macro-averaged and threshold-free measures; in particular, the

performance of the network was evaluated by the area under the

curve (AUC) (13). In addition, we also evaluated the sensitivity

and specificity at the best threshold identified by the receiver–

operator curve (ROC) analysis for each diagnostic class (please

refer to Supplementary Tables S4 and S5).

To evaluate the consistency of our results, we also tested a fine-

tuned version of the trained network on two other publicly

available datasets, namely, the Georgia and China datasets (14).

Please refer to the Supplementary Material for a more detailed

description of this additional evaluation.
Results

Table 1 summarizes the AUC with a 95% CI (over 50 runs) of the

PBT-XL ECG test set for each diagnostic class and the inter-class

average, for each investigated diagnostic scenario. As a state-of-the-art

reference, the table also presents the outputs using the architecture

(deep ResNet with 101 layers) proposed by Strodthoff et al (15).
Standard (12-lead) setup

The average AUC across the 20 diagnostic classes achieved by

the standard 12-lead setup was 93.2%, and when the data

augmentation strategy was omitted during CNN training, the

performance dropped by 1.1%.
Independent (eight-lead) setup

The eight-lead setup (leads D1, D2, V1, V2, V3, V4, V5, and V6)

did not induce a performance loss as compared with the 12-lead

setup: the average percentage difference over the 20 diagnostic

classes was −0.3%. Being the four excluded leads (D3, aVR, aVL,

aVF), which are linear combinations of leads D1 and D2, this

finding supports the idea that they provide redundant information,

which is associated with a computational burden (96,000 and

56,000 parameters in the 12- and 8-lead setups, respectively).
Single-lead (D1) setup

The single D1-lead setup was associated with an average of

−8.7% accuracy as compared with the 12-lead setup. For some

specific diagnostic classes, the performance drop was significant.

Namely, inferior myocardial infarction (IMI), inferior myocardial

ischemia (ISCI), and incomplete right bundle branch block

(IRBBB) showed a drop in accuracy of >20%. On the other hand,

for several other diagnostic classes, non-specific ischemic changes

(ISC_), ischemic changes in anterior leads (ISCA), non-specific ST

changes (NST_), AV block (_AVB), complete left bundle branch

block (CLBBB), complete right bundle branch block (CRBBB),

incomplete left bundle branch block (ILBBB), left atrial overload/
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1327179
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 1 Average AUC with 95% CI (over 50 runs) of the considered scenarios.

Classes D1 D1 + D2 D1 + V1 D1 + V2 D1 + V3 D1 + V4 D1 + V5 D1 + V6 8 leads 12 leads 12 w/o
aug

Ref

NORM 89.76
[89.69,
89.83]

93.95
[93.91,
93.99]

92.00
[91.94,
92.06]

91.91
[91.84,
91.98]

92.23
[92.17,
92.29]

92.90
[92.86,
92.94]

93.07
[93.01,
93.13]

92.79
[92.75,
92.83]

96.06
[96.02,
96.10]

96.07
[96.03,
96.11]

96.06
[95.96,
96.16]

95.2

ISC_ 90.73
[90.64,
90.82]

92.96
[92.88,
93.04]

91.81
[91.72,
91.90]

91.68
[91.58,
91.78]

91.64
[91.54,
91.74]

93.46
[93.38,
93.54]

95.18
[95.10,
95.26]

95.57
[95.50,
95.64]

95.28
[95.19,
95.37]

95.40
[95.31,
95.49]

95.10
[94.96,
95.24]

96.5

ISCA 87.94
[87.81,
88.07]

87.77
[87.65,
87.89]

89.11
[88.98,
89.24]

88.76
[88.62,
88.90]

89.68
[89.53,
89.83]

89.74
[89.60,
89.88]

89.44
[89.29,
89.59]

88.47
[88.34,
88.60]

91.85
[91.70,
92.00]

91.97
[91.80,
92.14]

90.38
[90.00,
90.76]

93.4

ISCI 72.01
[71.37,
72.65]

91.68
[91.40,
91.96]

71.75
[71.17,
72.33]

77.32
[76.75,
77.89]

76.59
[76.04,
77.14]

79.16
[78.64,
79.68]

81.60
[81.16,
82.04]

81.90
[81.42,
82.38]

92.68
[92.40,
92.96]

93.85
[93.48,
94.22]

90.72
[90.16,
91.28]

91.5

NST_ 84.86
[84.59,
85.13]

87.11
[86.86,
87.36]

85.09
[84.82,
85.36]

84.60
[84.29,
84.91]

84.86
[84.64,
85.08]

84.97
[84.71,
85.23]

87.32
[87.07,
87.57]

86.57
[86.30,
86.84]

88.24
[88.03,
88.45]

88.23
[87.96,
88.50]

86.92
[86.45,
87.39]

86.7

STTC 80.73
[80.58,
80.88]

84.81
[84.69,
84.93]

81.97
[81.84,
82.10]

84.52
[84.38,
84.66]

85.87
[85.76,
85.98]

87.53
[87.42,
87.64]

88.29
[88.19,
88.39]

86.53
[86.43,
86.63]

90.11
[90.00,
90.22]

90.58
[90.48,
90.68]

89.60
[89.45,
89.75]

91.1

_AVB 92.50
[92.21,
92.79]

95.20
[95.09,
95.31]

93.27
[93.09,
93.45]

92.97
[92.79,
93.15]

93.21
[93.06,
93.36]

93.18
[92.97,
93.39]

93.59
[93.48,
93.70]

93.60
[93.38,
93.82]

94.24
[94.09,
94.39]

93.73
[93.58,
93.88]

93.75
[93.55,
93.95]

96.9

CLBBB 99.56
[99.52,
99.60]

99.67
[99.65,
99.69]

99.75
[99.72,
99.78]

99.76
[99.74,
99.78]

99.68
[99.66,
99.70]

99.65
[99.62,
99.68]

99.72
[99.71,
99.73]

99.71
[99.69,
99.73]

99.56
[99.51,
99.61]

99.52
[99.46,
99.58]

99.20
[99.08,
99.32]

99.9

CRBBB 98.94
[98.84,
99.04]

99.34
[99.31,
99.37]

99.69
[99.68,
99.70]

99.58
[99.56,
99.60]

99.22
[99.14,
99.30]

99.16
[99.10,
99.22]

99.24
[99.20,
99.28]

99.16
[99.11,
99.21]

99.58
[99.56,
99.60]

99.56
[99.54,
99.58]

99.60
[99.58,
99.62]

99.8

ILBBB 90.48
[89.92,
91.04]

90.74
[90.26,
91.22]

92.07
[91.70,
92.44]

93.07
[92.71,
93.43]

91.18
[90.55,
91.81]

93.39
[92.89,
93.89]

93.72
[93.22,
94.22]

92.87
[92.13,
93.61]

92.32
[91.73,
92.91]

91.47
[90.87,
92.07]

87.43
[86.34,
88.52]

91.9

IRBBB 73.86
[73.48,
74.24]

79.14
[78.82,
79.46]

96.17
[96.09,
96.25]

91.41
[91.25,
91.57]

76.17
[75.91,
76.43]

75.33
[75.03,
75.63]

76.07
[75.77,
76.37]

79.75
[79.46,
80.04]

95.90
[95.78,
96.02]

96.16
[96.03,
96.29]

95.02
[94.79,
95.25]

98.0

IVCD 68.41
[68.10,
68.72]

73.86
[73.57,
74.15]

71.46
[71.17,
71.75]

72.52
[72.24,
72.80]

71.41
[71.14,
71.68]

69.89
[69.62,
70.16]

68.94
[68.60,
69.28]

70.82
[70.51,
71.13]

75.47
[75.23,
75.71]

76.40
[76.03,
76.77]

78.52
[78.14,
78.90]

74.4

LAFB/
LPFB

79.01
[78.78,
79.24]

97.57
[97.51,
97.63]

83.56
[83.40,
83.72]

80.94
[80.72,
81.16]

81.72
[81.55,
81.89]

85.87
[85.71,
86.03]

89.58
[89.48,
89.68]

90.86
[90.74,
90.98]

97.83
[97.76,
97.90]

98.20
[98.15,
98.25]

97.67
[97.59,
97.75]

97.5

WPW 86.55
[85.44,
87.66]

84.40
[83.16,
85.64]

90.70
[89.56,
91.84]

84.33
[82.85,
85.81]

85.12
[83.96,
86.28]

84.68
[83.69,
85.67]

83.07
[81.55,
84.59]

83.02
[81.31,
84.73]

92.38
[91.40,
93.36]

93.36
[92.22,
94.50]

90.26
[88.81,
91.71]

85.5

LAO/LAE 80.60
[80.19,
81.01]

86.93
[86.57,
87.29]

83.52
[83.08,
83.96]

80.27
[79.74,
80.80]

79.92
[79.55,
80.29]

81.30
[80.83,
81.77]

82.16
[81.70,
82.62]

81.90
[81.44,
82.36]

81.22
[80.59,
81.85]

82.43
[81.75,
83.11]

80.37
[79.64,
81.10]

78.2

LVH 87.97
[87.85,
88.09]

90.77
[90.62,
90.92]

91.42
[91.27,
91.57]

90.92
[90.76,
91.08]

90.98
[90.84,
91.12]

92.06
[91.92,
92.20]

93.23
[93.10,
93.36]

94.08
[93.98,
94.18]

94.44
[94.33,
94.55]

94.24
[94.11,
94.37]

95.10
[94.95,
95.25]

95.3

RAO/
RAE

84.93
[84.14,
85.72]

97.11
[96.83,
97.39]

87.60
[86.83,
88.37]

84.21
[83.34,
85.08]

80.86
[79.63,
82.09]

88.83
[87.83,
89.83]

89.35
[88.56,
90.14]

89.41
[88.62,
90.20]

93.81
[93.15,
94.47]

92.55
[91.83,
93.27]

92.02
[91.01,
93.03]

95.9

AMI 83.18
[83.03,
83.33]

85.67
[85.57,
85.77]

90.29
[90.18,
90.40]

94.94
[94.87,
95.01]

94.16
[94.09,
94.23]

90.17
[90.04,
90.30]

86.26
[86.16,
86.36]

86.35
[86.21,
86.49]

96.70
[96.64,
96.76]

96.72
[96.64,
96.80]

96.21
[96.06,
96.36]

96.9

IMI 71.59
[71.23,
71.95]

93.28
[93.16,
93.40]

75.18
[74.96,
75.40]

74.34
[74.06,
74.62]

75.40
[75.18,
75.62]

77.05
[76.78,
77.32]

80.26
[80.04,
80.48]

83.05
[82.84,
83.26]

93.05
[92.93,
93.17]

95.16
[95.08,
95.24]

95.11
[94.97,
95.25]

94.6

LMI 98.81
[98.58,
99.04]

99.59
[99.51,
99.67]

98.61
[98.40,
98.82]

99.17
[99.01,
99.33]

99.29
[99.10,
99.48]

99.36
[99.26,
99.46]

99.36
[99.27,
99.45]

99.58
[99.51,
99.65]

98.25
[97.62,
98.88]

99.08
[98.86,
99.30]

95.88
[94.72,
97.04]

91.4

Avg 85.12
[85.00,
85.24]

90.58
[90.50,
90.66]

88.25
[88.16,
88.34]

87.86
[87.76,
87.96]

86.96
[86.86,
87.06]

87.88
[87.80,
87.96]

88.47
[88.36,
88.58]

88.80
[88.68,
88.92]

92.95
[92.85,
93.05]

93.23
[93.15,
93.31]

92.25
[92.08,
92.42]

93.10

The last column represents the results of the best architecture proposed by Strodthoff et al. (15). The AUCs are reported as percentages. The bold numbers correspond to

the best performer for each class. The underlined numbers correspond to the competitive results.
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enlargement (LAO/LAE), and LMI, the drop in accuracy was <5%

(the performance drop was smaller than 1% for CLBBB, CRBBB,

and LMI). The upper panel of Figure 3 shows the performance

comparison of single-lead and standard 12-lead setups.
Two-lead setup

Among all leads, D2 yielded the best increase in average AUC

compared to the single D1-lead setup. The average AUC across the 20

diagnostic classes achieved by the two-lead setup was 90.6%, which

represented an average percentage difference over the 20 diagnostic

classes of −2.8% compared with the standard 12-lead setup (90.6% vs.

93.2%). The use of an additional lead proved particularly useful in the

diagnostic classes in which the single-lead setup performed worse. In

the IMI and SCI classes, the accuracy loss compared to standard 12-

lead ECG was reduced from >20% with single-lead to <2% with a

two-lead setup. The bottom panel of Figure 3 shows the performance

comparison of two-lead vs. standard 12-lead setups.

Interestingly, for two diagnostic classes, namely, right atrial

overload/enlargement (RAO/RAE) and LAO/LAE, the two-lead

performed better than the 12-lead setup (+4.9% and +5.5%,

respectively). On the other hand, the diagnosis of anterior (not

anterolateral) myocardial infarction still showed a 10% lower

accuracy with the two-lead as compared with the 12-lead setup

(in this case, the addition of V2, a lead recording information

from a different spatial axis, reduced the diagnostic loss to <2%).
FIGURE 3

AUC percentage variation among single-lead (D1) and 12-lead scenarios
Percentage differences are reported relative to the 12-lead setup.
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Validation on an external dataset

We fine-tuned the trained network to test it on other two

external freely available datasets, namely, the Georgia and China

datasets (14), to increase the rigor. The drops in the average

AUCs calculated on the test set of these datasets are in

agreement with the findings on the PTB-XL dataset. Please refer

to the Supplementary Material for a more detailed description of

this additional evaluation.
Discussion

The present study analyzed over 20,000 ECGs with 20 different

abnormalities confirming the accuracy of a lightweight deep

learning algorithm based on CNN (also with a very simplified

architecture) and significantly increasing our understanding of

the potential of AI-based ECG diagnostics. Figure 4 shows a

graphical summary of the main findings of the study.

The main new finding was the demonstration that the D1 lead

analyzed with the same CNN approach provided an overall

accuracy that was only slightly inferior to that of the full 12-lead

setup. For several ECG abnormalities, including important

conditions such as AV block, complete left or right bundle branch

block and LMI, the diagnostic yield of this single-lead approach

was almost identical to that provided by the 12-lead standard setup.
(top chart) and among D1 +D2 and 12-lead scenarios (bottom chart).
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FIGURE 4

Graphical summary of the study.
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Adding a second lead to D1 further reduced the performance

gap with the 12-lead ECG setup. On average, the best AUC for a

two-lead setup was achieved by combination D1 +D2: the simple

combination of these two contiguous leads, by adding a second

spatial axis exploring cardiac electrical activity, allowed to reduce

the diagnostic gap by 64% (from a relative percentage difference

of −7.8% to −2.8%). Notably, this approach also was capable of

providing a marked increase in the accuracy of detecting

myocardial ischemia and infarction of the inferior wall, a

condition difficult to detect from the sole D1 lead. In addition, for

some cases, such as the diagnoses of right and left atrial

enlargement, the two-lead analysis outperformed the 12-lead

setup, probably because it included the most informative lead (D2)

for these alterations avoiding less informative leads potentially

introducing noise. On the other hand, in terms of detection of

myocardial ischemia and infarction of the anterior wall, the D1 +

V2 setup overcame the D1 +D2 setup, due to the need, in these

specific clinical scenarios, for a lead (such as V2), which spatially

explores the site where the typical alterations for these conditions

are found. Focusing on architecture, our proposed relatively

lightweight neural network (36,000–96,000 trainable parameters)

yielded similar results to those of more complex architectures

[Attia et al. (6): 300,000 parameters; top-performing architecture

by Strodthoff et al. (15): 3.5 million parameters]. In particular, we

highlighted the fact that the present CNN model, in the 12-lead

input setup, numerically outperformed the far more complex

ResNet architecture proposed by Strodhtoff et al. for the same

multi-label classification task (AUC: 0.932 vs. 0.931; please refer to

Table 1). This high performance is due to the neural network
Frontiers in Cardiovascular Medicine 07
design, tailored for this specific application, and to the extensive

use of data augmentation, which also represents a significant step

forward relative to previous studies.

The present findings have potentially large implications. As an

example, even an acute myocardial infarction may potentially be

detected by a single-lead recording. There is an enormous effort to

reduce the time delay between the hospital door and the ECG

execution in case of chest pain, applying refined triage strategies.

However, the time spared, although statistically significant, is often

very modest [1 min in the study by Su et al. (17)]. Thus, the delay

from symptom onset to diagnostic ECG is the most actionable and

likely the sole independent predictor of pre-discharge LVEF (18)

and possibly of mortality (19). In addition, left bundle branch

blocks (both complete and incomplete) and non-specific

intraventricular conduction disturbances are accurately recognized

by the AI-enabled single-lead ECG and, given their association with

increased mortality (20), might prompt the need for further clinical

investigations. The same is also true for atrioventricular blocks.
Conclusions

AI-enabled ECG based on the sole D1 lead showed good

performance in predicting cardiac abnormalities with a limited

drop in AUC if compared to 12-lead ECG. Adding the additional

lead D2 further reduces the performance gap. Altogether, our

results prove that AI-enabled single or two-lead ECG analysis

might be sufficient to detect cardiac abnormalities that have been

classically diagnosed by 12-lead ECG. These results, paired with the
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relatively low complexity of our approach, lay the basis for extending

the use of AI-enabled analysis of a reduced number of ECG

recordings derived from the increasingly available wearable devices,

potentially favoring a more accessible and large-scale screening of

cardiac conditions. In a smartwatch, a D1-like lead is the default

recording (obtained by keeping the watch on the left wrist and

touching the crown with the right index), but a D2-like lead can

be easily and reliably obtained by simply moving the watch to the

left lower abdomen, still keeping the right finger on the crown

(21). Precordial leads could also be obtained, but their recording

appears more cumbersome. In this context, the recent work by

Attia et al. (12) is noteworthy, as they effectively retrained a deep

neural network originally designed for analyzing 12-lead ECGs to

be compatible with single-lead ECGs derived from wearable devices

(although for a specific task). However, our current experimental

evidence is entirely based on leads from standard 12-lead ECGs,

and not directly on single-lead recordings from wearable devices.

We expect that reproducing our results on wearable devices would

pose a set of unique challenges. For example, the increased

impedance of a dry electrode on the wrist may lead to increased

sampling noise while wearing the device at peripheral locations on

the body might attenuate the signal amplitude, calling for robust

noise filtering techniques. Together with the need to minimize the

complexity due to the constrained processing capabilities, wearable

devices represent a formidable challenge both in a medical and

engineering sense, prompting further research in this direction.
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