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Introduction: Accurate identification of the myocardial texture features of fat
around the coronary artery on coronary computed tomography angiography
(CCTA) images are crucial to improve clinical diagnostic efficiency of
myocardial ischemia (MI). However, current coronary CT examination is
difficult to recognize and segment the MI characteristics accurately during
earlier period of inflammation.
Materials and methods: We proposed a random forest model to automatically
segment myocardium and extract peripheral fat features. This hybrid machine
learning (HML) model is integrated by CCTA images and clinical data. A total
of 1,316 radiomics features were extracted from CCTA images. To further
obtain the features that contribute the most to the diagnostic model,
dimensionality reduction was applied to filter features to three: LNS, GFE, and
WLGM. Moreover, statistical hypothesis tests were applied to improve the
ability of discriminating and screening clinical features between the ischemic
and non-ischemic groups.
Results: By comparing the accuracy, recall, specificity and AUC of the three
models, it can be found that HML had the best performance, with the value of
0.848, 0.762, 0.704 and 0.729.
Conclusion: In sum, this study demonstrates that ML-based radiomics model
showed good predictive value in MI, and offer an enhanced tool for predicting
prognosis with greater accuracy.

KEYWORDS
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1 Introduction

The incidence and mortality rates of coronary heart disease have shown a continuous

increasing trend, making it a leading cause of all-cause mortality (1). Whether coronary

heart disease occurs when coronary arteries are atherosclerotic depends to some extent

on the degree of narrowing of the blood vessels caused by atherosclerotic plaques and
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their stability (2–5). Coronary angiography (CAG) is an invasive

imaging examination used to detect whether there is stenosis or

occlusion in the coronary arteries. While it cannot provide detail

such as arterial wall thickness and plaque characteristics, and it is

weak in evaluating plaque characterization (6, 7). To address this

limitation, intravascular ultrasound (IVUS) uses an ultrasound

probe placed within the coronary arteries to provide high-

resolution dynamic images, assisting doctors in assessing the

structure of the arterial wall and distribution of plaques (8).

However, it can only provide images of localized areas within the

blood vessels and cannot comprehensively observe the entire

coronary artery system.

CCTA combines the advantages of both coronary angiography

and computed tomography imaging in a mature, non-invasive

imaging method (9). It makes regions of interest (ROI) more

clearly from different angles, generating high-resolution 3D

images to display the clear structure of the heart and coronary

blood vessels (Figure 1). With its high sensitivity and negative

predictive value, CCTA has been widely used in the diagnosis

and treatment of coronary heart disease (10, 11). However, on

the one hand, other effective methods need to be combined with

CCTA to diagnose myocardial ischemia because of contrast

agents or heart motion. On the other hand, the information in

CCTA images depends on subjective judgment. Therefore, it is

necessary to find a method that can quantitatively extract CCTA

information to reduce the limitations of subjective judgment.

Based on the above, many studies have been devoted to solving

this problem. From the perspective of traditional image processing,

studies (12) have combined hessian filtering and local geometric

features to track coronary arteries in CCTA using traditional

image processing methods. There are also studies (13) utilizing
FIGURE 1

Normal and ischemic myocardium. Normal group: A 45-year-old female
myocardial ischemia, as shown by the arrow. (A,D) Axial image, (B,E) coron
and the window width to 800 HU. Blue arrows are represented myocardial
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radiomics, plaque segmentation is applied to compute diverse

features related to shape, intensity, and texture under various

image transformations. In recent years, artificial intelligence (AI)

technology based on deep learning and computer vision has been

widely used in various diagnosis and treatment services in the

medical industry (14–16).

Inspired by the significant effects of the above methods on

CCTA image processing, it is considered that combining

radiomics-extracted tissue features with machine learning

methods can construct a prediction model for automatic analysis

of features such as narrow regions and calcification degree (17).

At the same time, it can realize the rapid automation analysis of

CCTA images, greatly improving the efficiency and accuracy of

medical diagnosis.
2 Materials and methods

2.1 Data acquisition

We conducted a retrospective analysis of patient data from

Xiamen Cardiovascular Hospital Affiliated to Xiamen University

who underwent CCTA examination between January 2022 and

December 2022. To ensure the suitability of clinical and imaging

data for our research purposes, we established the following

inclusion criteria: (1) the time interval between CCTA image

acquisition and the diagnosis of myocardial ischemia is less than

two weeks. (2) no myocardial infarction patients within the past

three months or patients with typical or atypical angina

symptoms for less than two months. (3) CCTA images do not

have obvious motion artifacts or metal artifacts; and (4) no
patient without MI. Ischemic group: a 65-year-old male patient with
al image, and (C,F) sagittal image. The window level was set to 100 HU,
ischemic focus in D, E and F.
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patients with other heart diseases. Exclusion criteria included: (1)

patients with a history of coronary artery bypass grafting or stent

implantation, (2) patients with a high heart rate (heart rate

greater than 85 beats per minute or arrhythmia), and (3) patients

with severe liver or kidney disease (18). In this study, the

diagnosis of myocardial ischemia was based on clinical diagnosis

and/or single photon emission computed tomography imaging

diagnosis. A total of 158 samples were collected, with 70 patients

diagnosed with ischemia and 88 age-matched healthy individuals

serving as controls who underwent CCTA scans under equivalent

conditions. We also collected clinical data from these individuals,

including 8 characteristics: gender, age, history of hypertension,

history of hyperlipidemia, history of diabetes, family history of

heart disease, cardiac enzymes, and muscle calcium protein.

All patients were scanned using a 560-layer multi-spiral

cardiovascular CT device (CardioGrapheTM; GE Healthcare) on

an empty stomach. The scanning range was from the tracheal

ridge to the bottom of the heart. The scan parameters were as

follows: tube voltage 120 kVp, tube current 50 mA, CT rotation

time 0.24 s, and a reconstruction layer thickness of 0.5 mm. An

iodine contrast agent was injected intravenously using a high-

pressure injector (Salient; Imaxeon Pty Ltd.), and the scan began

5 s after the trigger threshold was reached. The contrast agent

used was omnipaque (350 mg I/ml, GE Healthcare), and the

injection was performed according to the following protocol:

coronary artery drug injection time of 12 s; for heart rates

≥75 beats/min, the rate increased by 0.2 ml/s for every 5 beats/

min increase, and the dose increased accordingly. A physiological

saline solution with a dose of 30 ml was injected at the same rate

as the contrast agent. The CCTA scan was performed in

accordance with the Society of Cardiovascular Computed

Tomography (SCCT) Coronary Artery Computed Tomography

Angiography Performance and Acquisition Guidelines in 2016,

and the scan parameters followed the “As Low As Reasonably

Achievable” (ALARA) principle.
FIGURE 2

Flowchart of research based on radiomics and machine learning. Starting with
are used to extract features from the two parts of data. After feature select
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2.2 CCTA images preprocessing

The study of radiomics can be divided into five steps: data

preprocessing, image processing, feature extraction, exploratory

analysis, and modeling (Figure 2). The purpose of data

preprocessing is to improve the quality of the image, remove

interference information such as noise and aliasing caused by

human factors (19, 20). Specific methods include resampling,

denoising, and data augmentation. First of all, medical images

possess a large volume and necessitate adequate storage and

processing capabilities. Furthermore, varying devices adhere to

distinct image resolution standards, often resulting in non-

uniform medical image resolutions. Therefore, it is necessary to

use interpolation for resampling before processing the data. This

method calculates new pixel values by interpolation calculation

between pixel points, thus obtaining a feature and resolution-

changed image. Common interpolation methods include linear

interpolation, nearest neighbor interpolation, and so on.

Furthermore, denoising is an essential step in the preprocessing

process to enhance image quality and clarity. Depending on the

corresponding CCTA image’s quality, three methods can be

employed for denoising: gaussian filter, median filter, and

bilateral filter.
2.3 Features extraction and selection

Features can be extracted from the original image, including its

shape features, gray-level co-occurrence matrix, gray-level run-

length matrix, gray-level size zone matrix feature, and gray-level

dependence matrix. In addition, these features can be re-

extracted from the image for further analysis (21–24). Similarly,

we can also perform wavelet transform, exponential transform,

logarithmic transform, gradient transform, square transform,

square root transform and other transforms on the original
clinical data and CCTA image data, statistical assumptions and radiomics
ion, a random forest model is established.
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features except for the shape features. These transforms aim to

modify the distribution of pixel values in an image and adjust its

contrast, brightness, tone and other attributes. There are three

main feature selection methods used in this study, namely low

variance filtering, maximum relevance and minimum redundancy

(mRMR) (25) and recursive feature elimination (RFE). We used

variance-based dimensionality reduction for initial feature

selection of radiomics features. Specifically, variance reduction

reduces dimension by removing features with less variance.

Variance represents the degree of dispersion of the feature, and if

a feature has a small variance, it may contribute less to

distinguishing the sample, so consider removing it. In addition,

we used mRMR to reduce redundancy between features while

preserving features highly associated with myocardial ischemia.

Specifically, we calculate the mutual information between features

to represent the degree of relevance, as follows:

I(x; y) ¼
ðð
p(x, y)log

p(x, y)
p(x)p(y)

Suppose that the feature set is S ¼ {x1, x2, . . . , xn}, in order to

select the feature with the greatest correlation, S satisfies:

maxD(S, c), D ¼ 1
jSjSxi[S

I(xi; c),

where c is the target feature myocardial ischemia. Secondly, to

ensure the low redundancy of the set, the following formula

needs to be satisfied:

minR(S), R ¼ 1

jSj2 Sxj , xi[S
I(xi; xj),

The ultimate goal is to find the set S with the greatest degree of

correlation and the least degree of redundancy, directly

optimizing the following formula:

maxF(D, R), F ¼ D� R:

Intuitively, an increase in D or R will both increase the objective

function. The above process helped us reduce the number of

features from 1,316 to 20. Too many features would increase the

complexity of the model and the risk of overfitting. Therefore,

we introduce RFE to reduce the final CCTA image radiomic

features to 3. These methods aim to select the most informative

features to generate the optimal feature set.
2.4 Statistical analysis

Unlike images, clinical data is usually stored in tabular form.

The clinical data used in this study includes 8 characteristics:

gender, age, history of hypertension, history of hyperlipidemia,

history of diabetes, family history of heart disease, cardiac
Frontiers in Cardiovascular Medicine 04
enzymes, and muscle calcium protein. To perform differential

statistical analysis for each clinical feature, we use chi-square test,

Mann–Whitney U-test, and t-test (for normal distribution). The

chi-square test is utilized to examine the presence of a

relationship between two discrete variables. For continuously

distributed variables that conform to a normal distribution,

t-tests are employed to compare the significance of differences in

means between two independent samples. In cases where the

features do not adhere to a normal distribution, we introduce the

Mann–Whitney U-test, also known as the Wilcoxon rank-sum

test. Generally, when the p-value is less than 0.05 or 0.01, it

indicates a statistically significant difference between the two

features; conversely, if the p-value exceeds the significance level,

there is no evidence of a significant difference between the

two features.
2.5 Classification model based on
random forest

Through the above research process, two parts of features

related to coronary heart disease can be extracted: CCTA image

features and clinical features. A classification model named HML

is constructed by combining these two parts of features. We

consider using a random forest to establish a coronary heart

disease classification model. A random forest is an ensemble

learning method based on decision trees, whose basic idea is to

build multiple decision trees and improve the performance of the

model by voting or averaging (26, 27). In a random forest, a

random subset of data samples and features is first selected.

Then, this data and features are used to construct a set of

decision trees.

Each decision tree consists of several layers of nodes, with each

node serving as a judgment condition that determines which

branch to which data should be directed within the tree. In the

end, the majority voting mechanism or averaging method is

employed to predict the category to which each sample belongs.
3 Results

3.1 CCTA features extraction

Extensive radiomic feature extraction of CCTA can extract

detailed features of the lesion area, including the size, shape,

texture and other aspects of the disease description. Some

features may be difficult to detect artificially. The universality of

features provides the guarantee and foundation for the

subsequent model building of machine learning. The screening

process of 1,316 features of specific radiomics is as follows. The

screening of radiomic features is based on Pyradiomics library in

Python. Firstly, 107 original features of CCTA images are

extracted. These include 15 shape features, 18 first order features,

24 gray level co-occurrence matrix (GLCM) features, 16 gray

level runs length matrix (GLRLM) features, 18 gray level size

zone matrix (GLSZM) features and 16 gray level dependence
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1327912
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Wang et al. 10.3389/fcvm.2024.1327912
matrix (GLDM) features. Further, the Pyradiomics package

provides us with a number of filters that can be used for re-

extraction based on the original features. The first is the wavelet

transform. In addition to shape features, the remaining features

can be extracted again after the wavelet transform (107–14 = 93).

The wavelet transform has 8 types of features LLH, LHL, LHH,

HLL, HLH, HHL, HHH, LLL, so 93*8 = 744 features can be

extracted after the wavelet transform. The same goes for

Exponential, Gradient, Logarithm, Square, SquareRoot. After

these five transform filters, 465 features can be obtained. Thus, a

total of 1,316 radiomic features were obtained to provide medical

features for subsequent machine learning models (107 + 93*8 +

93*5 = 1,316). The radiomics features obtained from CCTA

images are classified into four categories: transform features,

texture features, shape features and first order features (Figure 3).
3.2 Features selection

We used variance-based dimensionality reduction and mRMR

method for initial feature selection of radiomics features, resulting

in identification of the following 20 features (Table 1). While many

features can enhance the model’s learning capacity, they may also

increase its complexity and lead to overfitting. To balance the

above issues, we introduced recursive feature elimination to

further select features, and obtained the final three CCTA image
FIGURE 3

Radiomic features. Four kinds of characteristics of CCTA were extracted by
redundancy reduction are used to determine the final optimal selection by
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radiomics features: logarithm_ngtdm_Strength (LNS), wavelet-

LLH_glcm_MCC (WLGM), and gradient_firstorder_Energy (GFE).

The first feature represents the gradient strength calculated

using a feature extraction method based on the laplacian

operator after taking the logarithm of the original image. When

there are distinct variations in gray intensity between brightness

changes, indicating clear and well-defined features in the image,

the value of strength tends to be high.

The second feature represents the calculation of the maximum

correlation coefficient (MCC) using a feature extraction method

based on gray-level co-occurrence matrix (GLCM) after applying

low-low-high (LLH) wavelet transformation to the original

image. When the texture feature is more complex, the value of

MCC is usually larger, while when the texture feature is simple.

The third feature represents the calculation of energy in the

first-order feature after applying gradient transformation to the

original image. It is a measurement of the pixel value magnitude

in the image. A slightly larger energy value may indicate the

presence of some high-intensity pixels.
3.3 Statistical analysis of clinical data

To explore the statistical significance of clinical data on

coronary heart disease, we conducted different statistical tests on

each clinical feature in the normal and ischemic groups. For

discrete variables, we used the chi-square test to compare the
radiomics. Then variance reduction and maximum correlation minimum
recursive elimination.
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TABLE 1 Selected features by variance and REF.

Name of Features
‘original_firstorder_Skewness’ ‘wavelet-LLH_glcm_MCC’

’squareroot_glszm_GrayLevelVariance’ ‘wavelet-HLL_firstorder_Skewness’

‘wavelet-HHL_firstorder_RobustMeanAbsoluteDeviation’ ‘wavelet-LHL_glrlm_ShortRunHighGrayLevelEmphasis’

‘original_shape_Maximum2DDiameterColumn’ ‘wavelet-LHH_firstorder_Entropy’

‘logarithm_ngtdm_Strength’ ‘wavelet-LHL_glcm_Idn’

‘wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis’ ‘gradient_firstorder_Energy’

’squareroot_firstorder_Minimum’ ‘wavelet-HHH_glszm_SizeZoneNonUniformity’

‘original_glszm_GrayLevelVariance’ ‘wavelet-HLH_firstorder_Variance’

‘original_gldm_DependenceVariance’ ‘wavelet-HHH_gldm_HighGrayLevelEmphasis’

‘wavelet-LLL_glcm_MaximumProbability’ ‘wavelet-LLH_firstorder_Range’

Wang et al. 10.3389/fcvm.2024.1327912
relationship between different clinical features and the presence of

coronary heart disease. For continuous variables that meet normal

distribution, we used the t-test to determine the correlation. For

continuous variables that do not meet normal distribution, we

used the Mann–Whitney U-test.

These three methods are non-parametric statistical tests based on

certain assumptions to determine whether there are significant

differences among multiple samples. In this study, a total of 88

patients with normal myocardial blood supply and 70 patients with

myocardial ischemia were enrolled, of which 110 samples were

used as the training set and 48 samples were used as the testing
TABLE 2 Statistical analysis of train group and test group.

Variable Sample Test
Female 58 21 (43.75%)

Male 100 27 (56.25%)

Non_hypertension 53 17 (35.42%)

Hypertension 105 31 (64.58%)

Non_hyperlipidemia 106 32 (66.67%)

Hyperlipidemia 52 16 (33.33%)

Non_diabetes 99 29 (60.42%)

Diabetes 59 19 (39.58%)

Non_family history of heart disease 97 32 (66.67%)

Family history of heart disease 61 16 (33.33%)

Age 158 62.56 ± 11.33

Cardiac enzymes 158 93.60 (66.38, 118.2

Troponin 158 12.15 (6.85, 44.77

TABLE 3 Statistical analysis of normal and ischemic.

Variable Sample Ischemic
Female 58 38 (43.18%)

Male 100 50 (56.82%)

Non_hypertension 53 33 (37.50%)

Hypertension 105 55 (62.50%)

Non_hyperlipidemia 106 57 (64.77%)

Hyperlipidemia 52 31 (35.23%)

Non_diabetes 99 57 (64.77%)

Diabetes 59 31 (35.23%)

Non_family history of heart disease 97 51 (57.95%)

Family history of heart disease 61 37 (42.05%)

Age 158 61.67 ± 11.26

Cardiac enzymes 158 93.60 (68.40, 118.2

Troponin 158 10.60 (6.28, 29.62
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set. There were no statistical differences in all clinical features

between the training and testing sets (P-value > 0.05), indicating

that the clinical feature distributions of the two data sets were

similar (Table 2). Only troponin showed a significant difference

between the ischemic and healthy groups (P-value < 0.05) among

all clinical features (Table 3), which can be explained medically. In

coronary heart disease, myocardial ischemia and hypoxia caused by

narrowing or blockage of coronary arteries can lead to myocardial

cell damage and death, resulting in an increase in troponin

concentration. Therefore, it is both reasonable to incorporate

troponin concentration as a feature in the subsequent model.
Train Statistics P-value
37 (33.64%) 1.471 0.225

73 (66.36%)

36 (32.73%) 0.108 0.742

74 (67.27%)

74 (67.27%) 0.006 0.941

36 (32.73%)

70 (63.64%) 0.148 0.7

40 (36.36%)

65 (59.09%) 0.809 0.368

45 (40.91%)

62.13 ± 11.70 0.217 0.828

6) 101.30 (68.40, 118.26) −0.391 0.696

) 15.20 (7.47, 51.69) −0.556 0.578

Normal Statistics P-value
20 (28.57%) 3.582 0.058

50 (71.43%)

20 (28.57%) 1.394 0.238

50 (71.43%)

49 (70.00%) 0.482 0.487

21 (30.00%)

42 (60.00%) 0.38 0.538

28 (40.00%)

46 (65.71%) 0.99 0.32

24 (34.29%)

63.00 ± 11.95 −0.718 0.474

6) 103.70 (68.24, 118.27) −0.467 0.64

) 19.65 (8.58, 51.69) −2.679 0.007
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3.4 Random forest classification model

After feature screening, the final optimal set of features consists

of two parts: three CCTA radiomics features and one clinical

feature. When the relative contributions of radiomics features

and clinical features to disease judgment were uncertain, we

developed three random forest models: a radiomics random

forest model based on radiomics features only, clinical random

forest model based on clinical features only, and a combined

model named HML incorporating both feature types. The AUC,

accuracy, sensitivity, specificity of the three models were
FIGURE 4

(A) ROC curve on the training set. (B) ROC curve on the test set. (C) decision
curve on the training set. (F) calibration curve on the test set.

Frontiers in Cardiovascular Medicine 07
compared to determine whether the selected features contributed

to the diagnosis of coronary heart disease. The training set

results are shown on the left and the test set results are shown

on the right (Figure 4). We can see that the HML achieved

higher AUC in the training set and test set (Figures 4A,B), which

were 0.921 and 0.848, respectively. Figures 4C,D are calibration

curves, and the 45° diagonal line represents the ideal calibration.

The HML is closer to the ideal calibration curve, indicating that

the model has better consistency between the average prediction

rate and the actual probability. Figures 4E,F are the decision

curves, the X-axis is the risk threshold, and the Y-axis is the net
curve on the training set. (D) decision curve on the test set. (E) calibration
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TABLE 4 Comparison of performance on training and test.

Model AUC (95%CI) ACC (95%CI) SEN (95%CI) SPE (95%CI)
Train Clinical 0.756 (0.668–0.845) 0.718 (0.715–0.722) 0.551 (0.412–0.690) 0.852 (0.763–0.941)

Radiomics 0.906 (0.851–0.961) 0.845 (0.843–0.848) 0.776 (0.659–0.892) 0.902 (0.827–0.976)

Combine 0.921 (0.871–0.971) 0.873 (0.871–0.875) 0.837 (0.733–0.940) 0.902 (0.827–0.976)

Test Clinical 0.619 (0.457–0.781) 0.604 (0.594–0.614) 0.571 (0.360–0.783) 0.630 (0.447–0.812)

Radiomics 0.831 (0.719–0.943) 0.729 (0.721–0.737) 0.714 (0.521–0.908) 0.741 (0.575–0.906)

Combine 0.848 (0.742–0.954) 0.729 (0.721–0.737) 0.762 (0.580–0.944) 0.704(0.531–0.876)

The bold values indicates that the hybridmodel proposed in this paper can achieve the state of art effect in the AUC index nomatter in the training process or the testing process.

Wang et al. 10.3389/fcvm.2024.1327912
benefit. The black line represents the assumption of no lesion and

the gray line represents the assumption of complete lesion. The

further away the curve is from both the black and gray

lines, the higher the net benefit of the model.

The model that uses only a single clinical feature has the worst

performance across all metrics, particularly with a sensitivity of

0.551, indicating its limited ability to detect diseases accurately.

Benefiting from the diversity of random forests, the HML that

combines clinical and radiomics features consistently

outperforms the other two models. Therefore, these comparison

results demonstrate the powerful ability of combine random

forest in coronary disease classification. By analyzing the

comparison results of these three models (Table 4), we can see that:

The HML has the highest AUC, sensitivity, specificity of 0.848,

0.762 and 0.704 respectively, which proves the effectiveness of

the HML.

Compared with the most advanced multiple logistic regression

model, HML easily exceeds the logistic model by 6.5% in AUC,

effectively proving that the proposed method can better classify

coronary heart disease and provide effective help for doctors.

The effectiveness of the HML indicates that the radiomics

characteristics and clinical characteristics of myocardial CCTA

can be used as biomarkers for myocardial diagnosis.
4 Discussion

The aim of this study is to construct an efficient diagnostic

model for coronary heart disease by leveraging radiomics and

machine learning techniques to extract features from CCTA

images, which are then combined with statistical results derived

from clinical features. CCTA is a safe, reliable and non-invasive

method. However, the analysis of a large number of CCTA

images requires support from medical and human resources.

Therefore, it is necessary to combine other methods to process

CCTA more effectively. Studies have shown that radiomics can

transform images into mineable data information, and then

conduct high-throughput quantitative analysis, capturing those

difficult-to-detect features in CCTA images.

In addition, we have also integrated clinical data with statistical

method to obtain clinical features that exhibit a strong association

with the onset of coronary heart disease. Then we utilized machine

learning techniques to combine the two sets of features and

establish three random forest models with varying feature

combinations, ultimately resulting in the optimal feature set. The
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results of the study showed that the combination of clinical and

CCTA features produced the best results, with AUC values of

0.921 and 0.848 for the training set and the test set, respectively.

Similarly, Zhao et al. (28) obtained AUC values of 0.914 and

0.827 for the training set and the test set. The higher AUC

values may be due to the fact that we combined clinical features

and used more data sets, resulting in more extracted features.

In a word, both clinical and CCTA features’ weight should be

considered, along with modeling on more diverse data in future

study. Therefore, further advancement of our research requires

prospective and large-scale randomized controlled clinical studies

to better evaluate its clinical application value.

Overall, the effectiveness of our method suggests that radiomics

and clinical characteristics of myocardial CCTA can serve as

biomarkers for myocardial diagnosis.
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