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Gut microbiota: a potential new
regulator of hypertension
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2Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University,
Chongqing, China
Hypertension is a significant risk factor for cardiovascular and cerebrovascular
diseases and has become a global public health concern. Although
hypertension results from a combination of factors, the specific mechanism is
still unclear. However, increasing evidence suggests that gut microbiota is
closely associated with the development of hypertension. We provide a
summary of the composition and physiological role of gut microbiota. We
then delve into the mechanism of gut microbiota and its metabolites involved
in the occurrence and development of hypertension. Finally, we review various
regimens for better-controlling hypertension from the diet, exercise, drugs,
antibiotics, probiotics, and fecal transplantation perspectives.
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1 Introduction

Hypertension is the most important risk factor for cardiovascular and cerebrovascular

diseases and often coexists with other risk factors, which in turn leads to other serious

diseases such as heart, brain, and kidney. The number of hypertensive patients has

doubled over the past 30 years. However, only 13% of hypertensive patients are effectively

controlled (1, 2). The gastrointestinal tract plays a crucial role in regulating the relationship

of the external environment to commensal and/or pathogenic substances such as food and

bacteria that communicate with the human host. It is an entry point for many harmful

environmental risk factors for hypertension (3). A decrease in gut microbiota abundance,

diversity, and an increase in the Firmicutes (F)/Bacteroidetes (B) ratio increase the risk of

hypertension (4). Miao et al. (5) provided convincing evidence of a causal relationship

between gut microbiota and blood pressure by using Mendelian randomization. An

imbalance in gut microbiota can lead to hypertension and is closely associated with short-

chain fatty acids (SCFAs), trimethylamine oxide (TMAO), hydrogen sulfide (H2S), and

lipopolysaccharide (LPS), which are metabolites produced by gut microbiota. This article

provides an overview of the mechanism by which gut microbiota contributes to the

development and progression of hypertension, as well as the impact of gut microbiota

metabolites on hypertension. Additionally, the article discusses better options for

controlling hypertension, including diet and exercise, medication, and fecal transplantation.
2 The composition of gut microbiota in the host

In healthy adults, the composition of the gut microbiota is stable and consists of

trillions of microorganisms, but mainly four species: (1) Firmicutes, (2) Bacteroidetes,

(3) Actinobacteria, and (4) Proteobacteria. Changes in the proportion of Firmicutes (F)

and Bacteroidetes (B) microbial communities, i.e., F/B ratio, can be used as biomarkers
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of pathological conditions (6). α diversity and β diversity are

commonly used indicators to evaluate microbiota ecology, with

higher α diversity indicating a greater number of community

species and β diversity indicating the number and distribution of

species in different communities (7). Imbalanced gut microbiota

may result from factors such as improper diet, stress, medication,

age, infection, pH changes, and immune dysfunction.
3 The composition of gut microbiota in
cardiovascular disease

There is growing evidence of an association between

cardiovascular disease and changes in the abundance or diversity

of gut bacteria (Table 1). A cross-sectional study found that the

gut microbiota in chronic heart failure is characterized by high

compositional changes, low bacterial abundance, and a decrease in

butyrate-producing bacteria, changes that may be associated with

chronic immune activation (8). Another study, which involved 161

patients with coronary heart disease and 40 controls, showed that

the structural features of the gut microbiota changed with the

development of coronary heart disease. The abundance of

Haemophilus and Klebsiella increased with the severity of

coronary heart disease compared to healthy controls (9). In the

standard mouse model of myocardial infarction (MI), the
TABLE 1 Changes in gut microbiota in cardiovascular diseases

Row Disease Year Subjects Microbiome ch

1 Stable systolic
Heart failure

2018 N = 84 HF
N = 266
Controls

↑Prevotella Hungatella
Succinclasticum
↓Lachnospiracea
Blautia
Eubacteriumhalli
Ruminococcaceae
Faecalibacterium
Bifidobacteriaceae

2 Coronary artery
disease (CAD)

2019 161 CAD
patients and 40
healthy controls

↑Veillonella
Haemophilus Klebsiella
↓Lachnospiraceae
Ruminococcaceae

3 Myocardial
infarction (MI)

2019 MI C57BL/6J
mice

↓Lactobacillus

4 Atrial Fibrillation
(AF)

2023 N = 30 AF
N = 30 sinus rhythm (SR)

↑Lactobacillus Fusobacte
Haemophilus
↓Bifidobacterium

5 Hypertension 2017 N = 60 hypertension
N = 60 healthy controls

↑Klebsiella Clostridium
Streptococcus Parabacte
Eggerthella Salmonella
↓Faecalibacterium
Roseburia Synergistetes

6 Hypertension 2019 529 participants of the
biracial (African- and
European-American)

↑Robinsoniella Catabact
↓Sporobacter Anaerovor

7 Hypertension 2015 N = 5 WKY
N = 6 SHR

↑Streptococcus Turiciba
lactate-producing bacter
↓Coprococcus Pseudobu
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production of lactic acid bacteria and short-chain fatty acids is

reduced after myocardial infarction, and supplementation with

lactic acid bacteria or short-chain fatty acids will improve

cardiac function (10). In a study of 30 atrial fibrillation (AF)

and 30 healthy controls, it was found that there was a

significant decrease in intestinal bifidobacteria, an increase in

the abundance of Lactobacillus, Clostridium, Haemophilus, and

a decrease in isovaleric acid and isobutyric acid in the AF

group (11). All the above studies suggest the involvement and

important regulatory role of the gut microbiota (GM) in

cardiovascular diseases.

Hypertension induces changes in the intestinal environment,

which can induce dysbiosis in internal microbial communities.

The hypertensive group was found to have significantly reduced

microbiota richness, evenness, and diversity (12). In a cross-

sectional analysis, the composition of the gut microbiota was

found to be significantly different in terms of blood pressure,

and gut microbial diversity was negatively correlated with systolic

blood pressure (13). Hypertensive patients have an increase in

harmful genera with pro-inflammatory responses and reduced

immunity in the intestine, such as Klebsiella, Streptococcus, and

Parabacterium, which may be key genera leading to the

development of hypertension; while short-chain fatty acid

producers are relatively reduced (14). Subsequent analysis of sixty

hypertensive patients and sixty matched controls revealed
anges Metabolites
changes

Findings Ref

Not reported Butyrate production genetic potential is
lower in HF microbiome

(6)

Not reported Certain bacteria might affect
atherosclerosis by modulating the
metabolic pathways of the host

(7)

↓acetate butyrate
propionate.

Gut microbiota-derived SCFAs play an
important role in maintaining host
immune composition and repair capacity
after MI

(8)

rium ↓isobutyric acid
isovaleric acid

GM and SCFA dysbiosis might play a
crucial part in the occurrence and
development of AF.

(9)

roides
↑LPS Specific changes in microbial diversity,

genes, species, and functions of the gut
microbiome in hypertensive patients

(10)

er
ax

Not reported Gut microbial diversity was inversely
associated with both hypertension and
systolic blood pressure.

(11)

cter
ia
tyrivibrio

↓Acetate butyrate
lactate

Hypertension is associated with gut
microbiota dysbiosis.

(12)
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reduced gene counts, reduced diversity, and altered microbial

composition, consistent with previous findings (12).

In addition, another study showed differences in GM between

males and females. Virwani et al. (15) found β diversity and GM

composition were significantly different only in female hypertensive

patients, as shown by a significant increase in the number of

Ruminococcus gnavus, Clostridium bolted, and Bacteroides ovale,

which was not observed in male hypertensive patients. These

differences may be related to hormone secretion in men vs. women.

In a large study of 4,672 subjects from six different ethnicities,

HEalthy Life (HELIUS) in the urban setting showed that gut

microbiota composition and blood pressure (BP) were closely

correlated, despite large differences between age and ethnic

subpopulations (16). All of the above studies illustrate the fact that

factors such as racial subgroups and gender affect the composition

of the gut flora.
4 Destruction of the intestinal barrier
in hypertensive

In a healthy state, intestinal barrier function is maintained by

physical factors, including tight junctions between epithelial cells,

mucus production, and mucosal immunity. When the intestinal

barrier function is normal, the intestinal permeability is low,

which can effectively inhibit the leakage of intestinal pathogens,

intestinal endotoxin, and other substances into the body.

Abnormal changes in intestinal permeability and structural

damage to the intestinal mucosa lead to the translocation of

bacteria and toxic products into the blood circulation, causing

the development of systemic inflammation (17). Chronic

inflammation can perpetuate the hypertensive state, exacerbate

hypertensive target organ damage, and promote the development

of resistant hypertension (18).

Several studies have shown that hypertensive patients have

significant disturbances in the gut microbiotaand intestinal

barrier dysfunction (19–21). In hypertension, the intestinal

barrier is incomplete due to disturbance of microbial

composition, causing mucin degradation, transmission and

adhesion of pathogens and pro-inflammatory LPS, followed by

activation of resident immune cells that trigger the

inflammatory cascade, which leads to intestinal dysbacteriosis

(22). In addition, intestinal fatty acid binding protein,

lipopolysaccharide, and enhanced gut-targeted pro-

inflammatory T helper cells (Th) 17 were significantly

increased in plasma, and zonulin (intestinal epithelial tight

junction protein regulator) was significantly increased in

hypertensive patients, suggesting increased intestinal

permeability and barrier dysfunction secondary to intestinal

inflammatory responses (23). Similar studies have found that

spontaneously hypertensive rats (SHR) showed reduced

intestinal mucosal thickness and blood flow, decreased

glandular goblet cells, decreased intestinal villus height,

decreased tight junction protein, and increased intestinal

permeability, suggesting that hypertension can lead to

impaired intestinal barrier function (19).
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5 The key mechanisms of gut
microbiota regulating the occurrence
and development of hypertension

5.1 Regulation of gut microbiota in
inflammation mediated hypertension

Inflammation is the body’s defense response to injury or infection,

but excessive inflammation can lead to disease. Studies have shown

that people with high blood pressure often exhibit higher levels of

inflammation than healthy people. Therefore, inflammation may be

one of the causes of increased blood pressure. Gut microbiota

imbalance induces immune disorders, which cause chronic

inflammatory responses and induce endothelial dysfunction, thereby

causing increased blood pressure. Karbach et al. (24) found that gut

microbiota may contribute to the development of hypertension

in vivo by promoting angiotensin II (Ang-II) induced monocyte

chemoattractant protein 1 (MCP-1)/IL-17-driven vascular immune

cell infiltration and inflammation.

Both obstructive sleep apnea (OSA) syndrome and a high-salt

diet contribute to the development of high blood pressure. OSA

leading to hypertension is associated with dysbacteriosis of the

gut microbiota by significant loss of anti-inflammatory T

regulatory cells (Tregs) and increases in pro-inflammatory TH1

and TH17 cells in the ileum, cecum, and brain (25). In addition,

the researchers found that rats with OSA combined with a high-

salt diet released Th1-related cytokines (IFN-γ), inhibited anti-

inflammatory cytokines (TGF-β1) to increase blood pressure, and

affected the gut microbiome (26). Some studies have reported

that a high-salt diet can inhibit lactic acid bacteria leading to gut

microbiota disturbance and promoting the production of

pathogenic TH17 cells, thereby promoting salt-sensitive

hypertension (27). Ferguson et al. (28) found that mice fed a

high-salt diet exhibited increased intestinal inflammation,

including a significant increase in the B7 ligand CD86, and that

the formation of IsoLG protein adducts in CD11c + bone marrow

cells, leading to hypertension. These observations suggest that gut

microbiota-targeted therapy can be used as a new strategy for the

prevention and treatment of OSA and salt-sensitive hypertension,

and its underlying mechanism is the direction of further research.
5.2 Gut microbiota drives hypertension
through the brain-gut axis system

The brain-gut axis is a bidirectional communication pathway

composed of the central nervous system the enteric nervous

system and the autonomic nervous system, and gut microbiota

imbalance causes increased inflammation, which further leads to

autonomic disorders, while autonomic disorders affect the

intestinal flora (29, 30). The gut microbiota mediates and

regulates the release of gut peptides, which can signal to the brain

via the vagus nerve and the brain can also be counter-regulated

(31). Hypothalamic-driven increases in intestinal sympathetic tone,

intestinal pathology, and inflammatory interactions exacerbate

elevated blood pressure (32). Some studies have found that when
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the gut microbiota is imbalanced and causes intestinal barrier

disruption, its metabolites act on the nerves of the intestinal wall

and activate the central sympathetic nerves, resulting in systemic

arteriolar contraction and hypertension (33). Metabolites of the

microbiota have been found to readily cross the blood-brain

barrier, causing central inflammatory symptoms in the brain and

leading to hypertension (34).

Santisteban et al. (19) found that disturbed gut microbiota in

SHR enhanced sympathetic neuronal communication between

the gut and the hypothalamic paraventricular nucleus (PVN).

However, after the transplantation of gut microbiota from

healthy rats into hypertensive rats, inflammation and sympathetic

stimulation in the PVN were reduced, and blood pressure was

steadily decreased. This suggests that gut microbiota metabolism

affects enhanced information transmission in the intestine and

sympathetic nervous system (SNS), and SNS activation can also

in turn affect gut microbiota metabolism regulate dopamine and

norepinephrine secretion, and affect blood pressure.

Torl et al. (35) found that intestinal dysbiosis was associated with

sympathetic outflow via stimulation of NADPH-oxidase-derived

ROS in the brain in SHR, and these central effects may be

associated with reduced expression of butyrate-sensitive receptors

in the hypothalamus, Th17, and macrophage infiltration in the

hypothalamic PVN, and higher plasma levels of LPS. The

immunosuppressive agent mycophenolate mofetil (MMF) inhibits

neuroinflammation in PVN, increases the proportion of Tregs in

mesenteric lymph nodes and Th17 and Th1 infiltration in the

aorta, normalizes the gut microbiota, improves aortic endothelial

function, and reduces systolic blood pressure (36). Taken together,

this suggests that the gut microbiota can stimulate sympathetic

drive, possibly through direct intestinal wall nerve-brain

interactions or by promoting neuroinflammation and promoting

the development of hypertension (37).
5.3 Gut microbiota affects hypertension
through lipid metabolism pathways

Hypertension and dyslipidemia tend to coexist, while current

studies have shown that dyslipidemia plays an important role in

the mechanism of hypertension (38, 39). Normal gut microbiota

regulates lipid metabolism homeostasis, and when gut microbiota

is disturbed, it leads to abnormal lipid metabolism and promotes

the formation of hypertension. Chronic intake of a high-fat diet

has been found to alter the diversity of gut microbes and the

structure of the microbiota, which may further alter cholesterol

homeostasis in mammals (40). Ding et al. (41) found that mice

fed a high-fat diet developed lipid metabolism disorders, gut

microbiotaimbalance, a significant increase in the number of

Firmicutes, and a decrease in the number of Bacteroides,

resulting in increased free radicals in the body, causing oxidative

stress and lipid peroxidation, and at the same time, a high-fat

diet resulted in destruction of the submucosal epithelium,

neutrophil infiltration, and loss of tight junction proteins (42).

These changes are similar to the characteristics of the gut

microbiotaof hypertension. The latest guidelines for the
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management of hypertension suggest that high cholesterol levels

are an important modifiable risk factor for hypertension (43). So

modulating lipid metabolism can be used as a new way to

prevent hypertension.
6 Metabolites of gut microbiota and
blood pressure regulation

The gut microbiota can produce a range of bioactive

metabolites, such as enzymes, peptides, antibiotics, amino acids,

hormones, and vitamins, which can mediate host receptor

activation, signaling, and immunomodulatory effects (44).

Among them, SCFAs, TMAO, H2S, and LPS are closely related

to the development of hypertension (45). Hypertensive patients

have abundant gut microbial enzymes involved in TMAO

production, while enzymes producing SCFAs are reduced, LPS

has a pressor effect, and H2S can reduce blood pressure (46).

The gut microbiota and its metabolites are involved in the

development of hypertension (Figure 1).
6.1 SCFAs

SCFAs are short-chain fatty acids with chain lengths ranging from

1 to 6 carbon atoms, produced by microbial fermentation of dietary

carbohydrates.SCFAs are metabolites produced by microbial

fermentation of dietary carbohydrates and are currently the most

well-studied among gut microbial metabolites. Of all these short-

chain fatty acids in fermentation products, acetate (C2), propionate

(C3) and butyrate (C4) account for about 80% of all short-chain

fatty acids. In the human gut, phylum Bacteroidetes mainly produce

acetate and propionate, while Firmicutes mainly produce butyrate

(47). These short-chain fatty acids regulate blood pressure by

dilating blood vessels (48).

Increasing evidence suggests that SCFA levels and abundance

of intestinal bacteria are lower in hypertensive patients than in

normotensive people. It has been found that the abundance of

SCFAs-producing bacteria Faecalibacterium prausnitzii, and

Roseburia hominis were lower in hypertensive population,

whereas the abundance of Bacteroides coprocola, Bacteroides

plebeius and genera of Lachnospiraceae were higher. SCFAs

showed antagonistic effects in both plasma and feces, and fecal

levels of SCFAs were detected to be Significantly higher levels of

SCFA in feces, and significantly lower levels of SCFA in plasma

were detected in the hypertensive population, possibly due to less

efficient SCFA absorption in the hypertensive population (49). A

5-year follow-up study of a cohort of 26 patients showed that

SCFAs (including acetate, propionate, and butyrate) in the stool

of hypertensive patients were higher than those in normotensive

patients, and were significantly associated with 24-h mean blood

pressure in both genders (50). Another study in patients with

essential hypertension also confirmed that fecal SCFA excretion

was positively correlated with blood pressure (51).

SCFAs act as ligands and bind to host microbial metabolites

G protein-coupled receptors (GPCRs) to regulate blood pressure,
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FIGURE 1

The role of gut microbiota in hypertension.
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including GPR41, GPR43, GPR109A, and olfactory receptor 78

(Olfr78) (52). Depending on the length of their aliphatic tails,

receptors exhibit different affinities for short-chain fatty acids.

GPR41 and Olfr78 prefer to bind to acetate and propionate, while

GPR43 binds propionate, butyrate, and acetate with lower affinity,

and GPR109a binds mainly butyrate (53). GPR41 expression sites

are mainly located in the vascular endothelium, and GPR43 is

more prevalent in immune cells. GPR109A is widely expressed in

white and brown adipose tissue, keratinocytes, and various

immune cells (48). Compared with wild-type mice, GPR41,

GPR109A and GPR43/109A knockout mice had higher diastolic

pressure and pulse pressure, and the degree of peripheral vascular

fibrosis increased (54). Pluznick et al. (55) found that Olfr78

distributed in vascular smooth muscle affects renin secretion and

increases blood pressure by acting on renal afferent arterioles,

SCFAs regulate renin release through afferent arterioles, resulting

in increased blood pressure, and Gpr41 has an antagonistic effect.

The above studies suggest that short-chain fatty acids affect blood

pressure differently depending on the receptor involved.

SCFAs also exert potent anti-inflammatory effects by regulating

the activity of immune cells, thereby reducing the damage of

hypertension to target organs. Oral administration of acetate and

butyrate to hypertensive rats inhibited the vascular LPS/TLR4

pathway, increased the infiltration of Treg cells into the vascular

system, and reduced the F/B ratio (56). In TLR7-induced systemic

lupus erythematosus mice, acetate and butyrate enhanced

intestinal integrity, reduced endotoxemia, and reduced Th17

infiltration in the vascular wall, rebalanced the intestinal immune
Frontiers in Cardiovascular Medicine 05
system, reduced endothelial dysfunction, and prevented the

development of hypertension (57). Studies have shown that

propionate attenuates the hypertensive immune inflammatory

response by inhibiting the expression of CD4+ T cells, CD8+ T

cells, and Th17 in hypertensive mice (58). Propionate and butyrate

supplementation therapy can reduce the inflammatory response

and exert antihypertensive effects by promoting autophagy and

M2 polarization of placental bed macrophages in rats with

preeclampsia (59). Short-chain fatty acids may also be activated by

reducing the CoII oxidase-intracellular reactive oxygen species

pathway, interfering with gut-neuronal communication in the

paraventricular nucleus of the hypothalamus, or directly reducing

norepinephrine production, thereby inhibiting sympathetic

hyperactivation (35). Besides, Wang et al. (60) showed that

sodium butyrate exerts an anti-Ang II-induced hypertensive effect

by inhibiting the renin-angiotensin system mediated by the renin

receptor (PRR). The above indicates the involvement and

therapeutic potential of SCFAs in hypertension. It is important to

note that the pharmacokinetics of SCFAs (e.g., production and

tissue utilization) vary widely between humans and smaller

animals, which limits the direct extrapolation of SCFAs peripheral

effects from animal models to human disease (61).
6.2 TMAO

TMAO is a metabolite and bioactive molecule whose precursor

is TMA (62). TMAs come directly from foods rich in choline,
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L-carnitine, and phosphatidylcholine, such as red meat, salted fish,

eggs, and dairy products (63). TMA is mainly absorbed into the

circulation and then oxidized to TMAO by the hepatic

rate-limiting enzyme heparin monooxygenase 3 (FMO3).

TMAO is small in size and hydrophilic and hydrophobic at the

same time, and manifests itself as a chaotropic agent capable of

altering protein conformation and possibly acting as an allosteric

modulator of proteins, for example, influencing intracellular protein

unfolding or endoplasmic reticulum stress responses (64). It has

been found that TMAO promotes Ang II-induced vasoconstriction

and thereby hypertension, which is associated with the protein

kinase R (PKR)-like endoplasmic reticulum kinase (PERK)/reactive

oxygen species (ROS)/Ca2+/calmodulin-dependent protein kinase II

(CaMKII)/phospholipase Cβ3 (PLCβ3) axis (65). Ufnal et al. (66)

speculated that TMAO et al. could enhance protein folding and

ligand binding, thereby affecting the structure of Ang II and

prolonging the effect of increasing blood pressure. TMAO may also

be involved in tissue osmotic pressure in vertebrates. It has been

found that the increase of plasma TMAO levels in SHR leads to

higher plasma osmolality, triggers the regulation of TMAO-AVP-

AQP-2 in SHR, causes greater water reabsorption, and ultimately

leads to hypertension (67). In addition, TMAO increases the risk of

hypertension by promoting vascular endothelial dysfunction (68).

The above studies illustrate that hypertension has a mutually

promoting relationship with TMAO.

Several studies have shown a significant correlation between

TMAO concentrations and the risk of hypertension (69, 70).

People with high TMAO concentrations had a 12% increased

risk of hypertension compared to those with low circulating

TMAO concentrations (71). Nie et al. (72) found that higher

TMAO levels in serum were associated with an increased risk of

first stroke in hypertensive patients. However, it has also been

found that chronic low doses of TMAO can reduce diastolic

dysfunction in the heart of hypertensive rats (73). Therefore, the

effect of TMAO on hypertension remains to be further explored.
6.3 LPS

LPS is a component of the outer membrane of gram-negative

bacteria and is composed of lipids and sugars (74). In healthy

subjects, the gut-blood barrier prevents LPS from entering the

circulating bloodstream. However, leakage of the gut-blood

barrier due to ecological dysregulation leads to LPS entering the

bloodstream (75). Toll-like receptor 4 (TLR4) is the membrane

receptor of LPS, which, when activated, triggers NF-κB signaling

and produces pro-inflammatory cytokines to release TNF-α, IL-1,

IL-6, interferon, etc., further damaging intestinal mucosal

function and increasing intestinal permeability (76).

In human studies, plasma LPS concentration was positively

correlated with hypertension, LPS stimulated and increased the

expression of TLR4, releasing inflammatory factors to promote

the occurrence of hypertension (56, 77). Dange et al. (78, 79)

found that LPS administration to rats increased heart rate and

norepinephrine levels, decreased baroreflex sensitivity, increased

neuroinflammation, and increased TLR and TNF-α expression in
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PVN, thereby increasing hypertension. If TLR4 is inhibited in

PVN, sympathetic activity is inhibited, and then blood pressure

is reduced. Some studies have found intestinal dysbacteriosis in

patients with preeclampsia, and their plasma LPS is higher than

that in healthy controls (80). The above studies show that LPS

increases blood pressure by promoting the inflammatory response.
6.4 H2S

Intestinal microbial fermentation also produces gaseous

compounds, the main component of which is hydrogen sulfide

(H2S), which has physiological functions such as improving

endothelial dysfunction and alleviating vascular oxidative stress

(81). Tomasova et al. (82, 83) found that H2S may help to reduce

blood pressure, and if H2S synthesis is dysregulated it promotes

the occurrence of hypertension. H2S is an endogenous vasoactive

factor that causes concentration-dependent vasodilation to exert a

hypotensive effect, and its mechanism may be related to the

activation of ATP-sensitive K channel opening (84, 85). It has

been found that in AngII-induced hypertension mouse models,

the addition of NaHS treatment reduces blood pressure (86). In

addition, H2S plays a protective role in renal artery endothelium

in hypertensive patients by activating the peroxisome proliferator-

activated receptor δ/endothelial nitric oxide synthase (PPARδ/

eNOS) pathway to activate the pathway (87). The antihypertensive

effect of H2S has been confirmed, but its specific mechanism still

needs further exploration, and H2S may be applied in the clinical

treatment of hypertension in the future.
7 The therapeutic potential of
targeting the gut microbiota in
hypertension

Improving or reversing gut microbiota has become a hot topic

in treating hypertension. This includes exercise, dietary regulation,

probiotic supplements, antibacterial interventions, medication, and

fecal microbiota transplantation (Figure 2).
7.1 Diet and exercise

For patients with hypertensive cardiovascular diseases, non-drug

prevention strategies, diet, and exercise are currently the most direct

and easy ways to prevent and treat hypertension. By changing

dietary habits, people can alter the gut microbiota and protect the

body, helping to regulate blood pressure. Studies have shown that a

high-fiber diet can enhance gut health, increase the presence of

acetate-producing bacteria, and effectively reduce both systolic

and diastolic blood pressure in hypertensive mice (88). The

Mediterranean diet is a nutritionally recommended dietary pattern

that includes high consumption of cereals, fruits, vegetables, and

legumes (89). Studies have shown that the gut microbiota of people

on the Mediterranean diet can prevent the onset of chronic non-

communicable degenerative diseases and reduce all-cause mortality
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FIGURE 2

Selection of treatment plans for gut microbiota in patients with hypertension.
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(90). Choo et al. (91) found that compliancewith aMediterranean diet

supplemented with dairy decreased blood pressure in high

experimenters. It has been found that daily consumption of vitamin

C reduces blood pressure in SHR and can improve the diversity and

abundance of gut microbiota, facilitate the recovery of intestinal

mucosal integrity, and reduce inflammatory response and oxidative

stress (92). In a cross-sectional study, it was determined that food

polyphenolic compounds induced changes in intestinal bacterial

composition to influence SCFA production and absorption, which

in turn affected blood pressure. All of the above indicate that dietary

habits can regulate gut microbiota and lower blood pressure (93).

Intermittent fasting has been found to lower blood pressure by

altering gut microbiota and thereby normalizing bile acid signaling

(94). The above different dietary habits can reduce blood pressure by

changing the gut microbiota, and an individualized diet can be

developed to treat hypertension in the future.

Moderate exercise has numerous benefits on the gut microbiota,

including promoting changes in its structure and state, producing

beneficial metabolites, regulating the immune response system, and

helping to prevent and control hypertension. According to a study

conducted by Xia et al. (95), exercise training for male SHRs

resulted in a sustained decrease in systolic blood pressure.

Furthermore, the study reported a decrease in the number of

activated microglia, an improvement in neuroinflammation,
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intestinal pathology, inflammation, and permeability of PVN. These

improvements may be associated with the enrichment of probiotics.

Liuzijue training is a traditional exercise that combines breathing

meditation with physical exercise. This exercise can transform the

structure of the gut microbiota in hypertensive patients to that of

healthy individuals (96). Relative increases in fecal metabolites (e.g.,

microbially produced acetic acid, propionate, and butyrate) are

associated with enhanced overall health in athletes compared with

sedentary individuals (97). The above shows that exercise can affect

the gut microbiota and effectively reduce blood pressure.

Meanwhile, exercising for long periods can yield significant and

long-term benefits.
7.2 Medication

7.2.1 Oral antihypertensive drugs
Oral antihypertensive drugs have an immediate effect on

the treatment of hypertension and are currently the preferred

method for the control of hypertension. Some studies (98) have

found that captopril affects the structure and composition of

the intestinal microbiota, and improvements in intestinal pathology

and permeability, reduced fibrosis area, increased goblet cells,

increased villus length, reduced neuroinflammation, and prolonged
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antihypertensive effects after discontinuation have been observed, the

mechanismofwhichmaybe related to the brain-gut axis.Wuet al. (99)

found that candesartan protected ileal and colonic pathology in SHR,

prevented hypertension-related intestinal barrier damage, increased

microbial production of SCFAs, and retained intestinal lactobacilli

under hypertensive conditions. Lactobacillus may contribute to its

ability to reduce inflammatory cytokines and oxidative stress,

protect intestinal integrity and increase the production of short-

chain fatty acids (100). In addition, losartan has been found to

reduce sympathetic activity in the colon, reduce the intestinal F/B

ratio, protect the intestinal mucosa, and lower blood pressure

losartan has been found to decrease colonic sympathetic activity,

increase intestinal integrity, and decrease blood pressure (101, 102).

Spironolactone also has the above-mentioned antihypertensive

mechanism (103). Oral antihypertensive drugs provide new ideas for

the treatment of hypertension by regulating blood pressure through

gut microbiota.
7.2.2 Traditional Chinese medicine treatment
In recent years, several studies have shown that traditional

Chinese medicine may intervene in hypertension treatment

through gut microbiota. Baicalin repairs intestinal barrier

damage, promotes the expression of tight junction proteins, and

promotes the level of butyric acid-producing bacteria to

participate in the antihypertensive mechanism (104). Wang et al.

(105) found that berberine decreased the proportion of F/B,

increased the abundance of lactic acid bacteria, inhibited the

production of TMAO in hypertensive mice, and decreased blood

pressure in Ang II-induced hypertensive rats. Sanoshashinto

contains baicalin and berberine, which can dilate blood vessels,

protect the endothelium, reduce left ventricular hypertrophy,

change the intestinal microbiota, and have a comprehensive

antihypertensive effect (106). The antihypertensive effect of

curcumin is related to the brain-gut axis, it increases the level of

butyrate in the serum of SHR rats, activates GPR43 in PVN,

improves the dysregulation of the brain-gut axis, thereby

increasing the length of goblet cells and villi, and restores the

mRNA levels of tight junction protein 1 and occlusin in the

intestine (107). Su et al. (108) used Polygonatum sibiricum Red.

superfine powder to inhibit LPS-induced activation of TLR4/

MyD88 signaling in blood vessels, improve vascular endothelial

function, regulate gut microbiota structure, and then reduce

metabolic hypertension. Zhengan Xifeng decoction can change

the proportion of SCFAs produced in SHRs, repair the damaged

intestinal mucosa, and reduce D-lactate, diamine oxidase, and

other inflammatory factors in blood circulation, thereby reducing

blood pressure (109).

Currently, two main issues need to be addressed regarding

traditional Chinese medicine and hypertension. Firstly, the

antihypertensive mechanism of traditional Chinese medicine is

not yet fully understood. Secondly, there is a lack of substantial

clinical data to support the relationship between traditional

Chinese medicine and hypertension. Therefore, it is necessary to

conduct a large number of basic experiments along with clinical

studies to provide more definitive information in this area.
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7.3 Probiotics

Probiotics are live microorganisms that exert beneficial effects

on the body, and may exert antihypertensive effects by regulating

gut microbiotametabolites, improving oxidative stress, and

reducing chronic inflammation of blood vessels. A meta-analysis

involving 2,037 participants showed that the consumption of

probiotics SBP reduced by 3.05 mmHg and DBP by 1.51 mmHg,

indicating that probiotics were effective in lowering blood

pressure (110). According to Khalesi et al. (111) found that the

intake of probiotics could moderately improve blood pressure,

and the effect was better when the type of probiotics ingested

increased and the intake time was prolonged.

On the one hand, the engineered probiotic (CB-GPL-1)

participates in maintaining intestinal homeostasis by up-

regulating the abundance of Lactobacillus and down-regulating

the level of Porphyromonas, and on the other hand, it is

mediated by glucagon-like peptide-1 (GLP-1) and butyric acid,

regulates the RAAS system and GPR109A in the kidney and

initiates the antihypertensive mechanism, and activates the

AMPK signaling pathway to regulate myocardial proliferation

and apoptosis, and improves myocardial cell hypertrophy and

ventricular wall fibrosis (112). Kong et al. (113) found that the

antihypertensive effect of probiotic yogurt was associated with

the abundance of SCFA-producing bacteria in the stool, such as

Blautia, Roseburie, Bacteroides, Streptococcus, and Alloprevotella,

as well as SCFA levels, including acetic acid, propionic acid, and

butyric acid.

Probiotics have been found to reduce systolic blood pressure in

rats by increasing TLR4 mRNA levels, increasing NADPH oxidase

activity and endothelial nitric oxide synthase phosphorylation, and

improving vascular pro-oxidative and pro-inflammatory states,

changing the proportion of gut microbes (114). Kefir is a probiotic

fermented dairy product derived from cereals (115). It has been

found that kefir improves pathological changes in the small

intestine, including restoration of Paneth cell mass and capsular

myometrial thickness; normalization of circulating serum LPS

levels, and reduction of TNF-α and IL-6 levels, thereby reducing

the patient’s blood pressure (116). In addition, Friques et al. (117)

found that kefir also improved endothelial function in SHR, and

the mechanism may be to restore ROS/NO imbalance and

endothelial structure. Chronic use of probiotics increases intestinal

integrity and reduces bacterial endotoxin entry into the circulation.

Preventing intestinal dysbiosis in SHR patients prevented the

development of endothelial dysfunction and hypertension (56). In

addition, probiotics also suppress risk factors for hypertension by

improving blood lipid levels, controlling body weight, and

lowering body blood glucose levels (118–120). These studies

suggest that probiotic therapy targeting gut microbiota has an

important impact on the intervention of hypertension.
7.4 Antibiotic

The use of antibiotics is a recent development in the treatment

of hypertension. It is important to consider individual differences
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during the treatment process, and not to overlook the adverse

reactions and clinical effects of antibiotics. Sharma et al. (33)

found that chemically modified tetracycline-3 (CMT-3) inhibition

of the neuroinflammation of PVN can directly affect the gut

microbiotaand its pathology to reduce hypertension. Galla’s team

treated young genetically hypertensive rats with amoxicillin to

remodel the gut microbiota, particularly reducing succinate-

producing microbiota, thereby lowering blood pressure, even

after discontinuation of the drug (121). Doxycycline has been

found to reduce the population of lactate-producing bacteria and

plasma lactate levels, improve intestinal barrier integrity, inhibit

endotoxemia, and reduce deoxycorticosterone acetate-induced

hypertension in rats (122). Neomycin, minocycline, and

vancomycin treated different types of hypertensive rats and it

was found that all of the above antibiotics increased systolic

blood pressure in Dahl salt-sensitive hypertensive rats, whereas

minocycline and vancomycin lowered systolic blood pressure in

SHR (123). Taken together, these studies strongly suggest the

role of gut microbiota composition in hypertension, and an

individualized approach to the use of antibiotics in hypertensive

patients needs to be considered in the future.

However, some studies have shown that antibiotics can lead to

reduced diversity of gut microbes and even adverse consequences

of bacterial resistance (124, 125). The role of antibiotics in the

treatment of hypertension remains controversial, and the selection

of appropriate antibiotics requires further experimental validation.
7.5 Fecal microbiota transplantation

Replacement of the native microbiome of patients with

microbiota-associated diseases with “healthy” microbial feces is

called “fecal microbiota transplantation” (FMT) (126). By

transplanting feces from hypertensive humans into germ-free mice,

it was found that elevated blood pressure can be transferred through

the microbiota (127). Adoptive transfer of fecal material from

conventionally housed mice on a high-salt diet into germ-free mice

makes them more susceptible to inflammation and hypertension

(28). Kim et al. (128) transplanted fecal bacteria from healthy mice

fed resveratrol into Ang II-induced hypertensive mice and found

that systolic blood pressure (SBP) was decreased in hypertensive

mice. However, the optimal FMT approach, including donor

selection, screening, and preparation, has yet to be determined and

therefore requires deeper exploration (37).
8 Conclusion and outlook

Increasing evidence suggests that the gut microbiota is

associated with the development of hypertension and may be a
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novel target for hypertension treatment. The disruption of

intestinal barrier function in hypertensive patients leads to

bacterial translocation and endotoxin release into the blood,

triggering a series of inflammatory and immune responses and

aggravating hypertension, metabolites of gut microbiota can

interact with hypertension, but the mechanism still needs

further verification. Exercise, diet regulation, probiotic

supplementation, antibacterial drug intervention, drug therapy,

and fecal bacteria transplantation can effectively remodel the

structure and richness of gut microbiota, increase the

corresponding metabolites, and then relieve hypertension.

However, the application of regulating the improvement of gut

microbiota and its metabolites in the prevention, control, and

treatment of hypertension is still in the animal experimental

stage, and we need to continue to carry out more experiments

to study its deeper mechanism and provide new ideas for the

prevention and treatment of hypertension.
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