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Effectiveness analysis of
deceleration capacity and
traditional heart rate variability in
diagnosing vasovagal syncope
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1Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease,
Fujian Medical University Union Hospital, Fuzhou, China, 2Department of Epidemiology, School of
Public Health, Fujian Medical University, Fuzhou, China
Background: Vasovagal syncope (VVS) is a prevalent medical condition with a
lack of efficient methods for its detection.
Aim: This study aimed to explore an objective clinical indicator in diagnosing VVS.
Methods: The retrospective analysis involved clinical data of 243 syncope
patients from 1 June 2020 to 31 July 2023. Among them, 108 patients had a
negative result in the tilt test (TTT), while the remaining 135 patients had a
positive result in the TTT. Relevant statistical methods were utilized to examine
the correlation between VVS and different indicators of heart rate variability.
Results: After screening, 354 patients being considered for VVS were evaluated,
resulting in a final sample size of 243. Sex, age, deceleration capacity (DC), and
standard deviation of all normal-to-normal intervals (SDNNs) were the variables
that showed statistical significance between the TTT(−) group and the TTT(+)
group. Independent risk factors identified by multivariate logistic regression
were DC [odds ratio (OR) 1.710, 95% confidence interval (CI) 1.388–2.106,
P < 0.001] and SDNN (OR 1.033, 95% CI 1.018–1.049, P < 0.001). Comparing
the groups, receiver operating characteristic analysis revealed a notable
distinction in both DC and SDNN [the respective areas under the curve were
0.789 (95% CI 0.730–0.848) and 0.702 (95% CI 0.637–0.767); the cutoff
values were 7.15 and 131.42; P < 0.001, respectively].
Conclusion: In summary, DC can function as an impartial and easily accessible
clinical marker for differentiating VVS. A value exceeding 7.15 ms might
suggest a higher likelihood of syncope.
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1 Introduction

Vasovagal syncope (VVS) is the predominant reason for fainting in individuals of all

age groups (1–4), characterized by an abrupt decline in blood pressure (BP) and/or heart

rate (HR). It is distinguished by rapid onset, brief duration, and natural full recovery (5).

Due to the high prevalence and lack of efficient medical treatments for VVS (6), numerous

patients experience significant physical and psychological distress, resulting in a

diminished quality of life (2, 7–10).
Abbreviations

DC, deceleration capacity; ROC, receiver operating characteristic; SDNN, standard deviation of all normal-
to-normal intervals; VVS, vasovagal syncope.
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The complex pathophysiological mechanisms responsible for

vasovagal syncope are still not completely understood. An

imbalance in the parasympathetic and sympathetic nerves could

have a substantial impact (11–13). Cardioinhibition occurs due

to the heightened stress on the parasympathetic nerve of the

heart, resulting in bradycardia, asystole, and conduction blockage.

Conversely, vasodilation is caused by the inadequate tension of

the sympathetic nerve in the blood vessels (14, 15). Several

studies have supported the association between VVS and

dysfunction of the parasympathetic nervous system (14–21).

In addition to the patient’s medical background and usual

clinical symptoms, an objective measure of the performance of

the pneumogastric nerve is also a crucial factor in diagnosing

VVS. Previous research has yielded inconsistent findings

regarding VVS, despite the conventional assessment of heart rate

variability (HRV) for analyzing cardiac autonomic function

(22, 23). After the initial clinical evaluation, the tilt test (TTT)

remains the most valuable diagnostic examination for individuals

with suspected reflex syncope (24–26). Vagal modulation has

been characterized using the novel measure of heart rate

deceleration capacity (DC) (16, 27–30). A decrease in cardiac

direct current indicates a decline in the vagal tone of the cardiac

autonomic function. Hence, it appears that DC exhibits a higher

diagnostic efficacy in individuals with VVS (3, 20, 31). The

objective of this research was to determine the involvement of

DC and other measures of fundamental autonomic nervous

system (ANS) activity in forecasting VVS.
2 Materials and methods

2.1 Patient recruitment

The institutional research ethics committee of Fujian Medical

University Union Hospital approved this retrospective study

conducted at a single center. Between June 2020 and May 2023,

this hospital gathered clinical information from 354 individuals

diagnosed with suspected VVS. VVS was considered if syncope

was triggered by fear, pain, or standing up and was accompanied

by the usual progressive prodrome (pallor, perspiration, and/or

queasiness) (5). The exclusion criteria included (a) heart rhythm

abnormalities (paroxysmal supraventricular tachycardia,

ventricular tachycardia, atrial fibrillation, Mobitz type Ⅱ second-

degree or third-degree atrioventricular block, arrhythmias caused

by medication); (b) severe heart or cardiopulmonary conditions

(coronary heart disease, cardiac valve diseases, hypertrophic

obstructive cardiomyopathy, New York Heart Association class

Ⅲ or Ⅳ heart failure, pulmonary hypertension, pulmonary

embolism); (c) cerebrovascular disorders (stroke, severe

neurological disorders, seizures); (d) syncope caused by

medication (antidiabetic drugs, antipsychotics, vasodilators); and

(e) conditions affecting the autonomic nervous system (diabetes

mellitus, diseases related to the nervous system). The exclusion of

patients with orthostatic hypotension was based on the criteria

of a minimum decrease of 20 mmHg in systolic blood pressure

or 10 mmHg in diastolic blood pressure within the initial 3 min
Frontiers in Cardiovascular Medicine 02
of TTT, as it had been previously demonstrated to impact HRV

in a prior study (32). The study included 243 patients who were

clinically suspected of having VVS and were screened to rule out

any related conditions. These patients underwent echocardiograms,

general and biochemical examinations, 24-h Holter recordings,

and TTTs after admission.
2.2 Tilt test

All TTTs followed the same protocol (33). TTTs were

conducted in a softly illuminated chamber following a minimum

of 6 h of fasting on an electrically powered table equipped with a

footboard. Electrocardiography (ECG) and BP were continuously

monitored during the test. The procedure included two stages.

Initially, the individuals were inclined at a 70° angle for 30 min

(passive stage), followed by an additional 20 min with sublingual

administration of 0.25 mg of nitroglycerin (provocative stage) in

case the initial stage yielded negative results. TTT was considered

positive only if syncope occurred during the testing (5). As per

the classification of the Vasovagal Syncope International Study

(VASIS) (34), positive findings were categorized into different

types. Type 1 (mixed) involved a simultaneous decrease in heart

rate and blood pressure, with the heart rate remaining above

40 bpm. Type 2a (cardioinhibition without asystole) indicated a

heart rate below 40/min without asystole lasting more than 3 s.

Type 2b (cardioinhibition with asystole) referred to a decreased

heart rate accompanied by asystole lasting more than 3 s. Type 3

(vasodepressor) was characterized by a rapid drop in blood

pressure during syncope, without a decrease in heart rate

exceeding 10/min from the baseline. Negative evaluations were

assigned to tests with different outcomes.
2.3 Holter recording

A minimum of 20 h was spent obtaining 12-channel 24-h

Holter data. The digitized recordings were automatically

processed using dedicated software (Cardio Care H1200, Nalong

Health Technology Co, LTD, Xiamen, China) to determine DC

and HRV.
2.4 Deceleration capacity

The calculation of DC is based on the phase-rectified signal

averaging (PRSA) algorithm, which uses referenced heartbeat

intervals (20, 31, 35). Anchors are defined as heartbeat intervals

that are longer than the previous interval. To prevent errors

caused by artifacts, R-R interval prolongations greater than 5%

are excluded. Segments of equal dimensions surrounding the

anchors are chosen and aligned with the anchors. Next, the X

signals in the aligned segments are averaged. The quantification

of DC is determined by the following equation: DC = 1/4 (X0+

X1− X−1− X−2), where X0 and X1 represent the mean values of

the anchor points and the subsequent R-R intervals and X−1 and
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X−2 denote the averages of the two R-R intervals preceding the

anchor points. Daytime DC and nighttime DC were computed

for the full 24-h period spanning from 8:00 to 23:00 and from

23:00 to 8:00, respectively.
2.5 Heart rate variability

HRV was assessed using five time-domain indexes (36): (a)

SDNN, which measures the standard deviation of all normal-to-

normal intervals; (b) RMSSD, which calculates the square root of

the mean squared differences of successive normal-to-normal

intervals; (c) pNN50, which determines the proportion of

adjacent R-R intervals differing by more than 50 ms in the 24-h

recording; and (d) the frequency domain indices of HRV

including the low-frequency (LF) and high-frequency (HF)

spectral components, along with the LF/HF ratio.
FIGURE 1

Flowchart of the study patients’ enrollment.
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3 Statistical analysis

The data were examined using IBM SPSS version 27.0 in

Somers, NY, USA. With this sample size, it was possible to

achieve a statistical power of 80% to evaluate a notable

distinction (with a margin of error of 0.05). Data normality was

assessed using the Kolmogorov–Smirnov test. The normal

distribution was followed by all continuous variables, which were

expressed as mean ± standard deviation (SD) and examined using

an independent-samples t-test. The chi-square test and Fisher’s

exact test were used to compare the case proportion when the

expected frequency was less than 5. Multivariate logistic

regression analysis was used to investigate the potential link

between risk factors and VVS. The discriminatory ability was

assessed using the area under the receiver operating characteristic

(ROC) curve and its corresponding 95% confidence interval (CI).
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A two-sided probability value of less than 0.05 was chosen as the

threshold for statistical significance.
TABLE 2 Multivariable predictors of VVS.

Multivariate logistic regression analysis

OR 95% CI of OR P-value
DC 1.710 1.388–2.106 <0.001
4 Results

4.1 Patient characteristics

In summary, 354 patients diagnosed with suspected VVS

underwent TTT, performed from 1 June 2020 to 31 July 2023 in

Fujian Medical University Union Hospital. After removing

individuals with orthostatic hypotension (OH), postural orthostatic

tachycardia syndrome (POTS), psychogenic pseudosyncope, and

incomplete or unavailable data, 243 patients were divided into two

groups based on their TTT outcomes (Figure 1). In the TTT(−)
group, 108 patients exhibited increased height, reduced weight, lower

rates of hypertension and diabetes mellitus, and higher average

maximum HR, minimum HR, mean HR, supine SBP, supine DBP,

and supine HR. However, no statistical significance was observed in

these measurements. In addition, both groups noted a similarity in

RMSSD, pNN50, and LF/HF (P > 0.05 for all). According to the

independent-samples t-test, the TTT(−) group reported significantly

lower values of DC (6.07 ± 1.76 vs. 8.30 ± 2.33, P < 0.05) and SDNN

(111.11 ± 22.05 vs. 139.44 ± 46.02, P < 0.05) and seemingly higher LF

(968.25 ± 1,772.92 vs. 814.79 ± 918.32, P = 0.032) and HF (670.82 ±

1,391.01 vs. 419.42 ± 507.0, P < 0.05) than the TTT(+) group.

Meanwhile, the TTT(−) group showed an older age (53.68 ± 16.67

vs. 48.31 ± 17.33, P = 0.015) and a greater proportion of male

patients (58.3 vs. 43.7, p = 0.023) (Table 1).
TABLE 1 Baseline clinical characteristics of patients stratified by TTT.

TTT(−)
n= 108

TTT(+)
n = 135

P-value

Age (years) 53.68 ± 16.67 48.31 ± 17.33 0.015

Male, n (%) 63 (58.3) 59 (43.7) 0.023

Height (cm) 162.37 ± 18.05 164.12 ± 8.30 0.318

Weight (kg) 64.06 ± 12.01 61.25 ± 11.38 0.063

Hypertension, n (%) 6 (5.6) 10 (7.4) 0.563

Diabetes mellitus, n (%) 2 (1.9) 4 (3.0) 0.452

Maximum HR (bpm) 121.73 ± 22.30 120.31 ± 22.13 0.621

Minimum HR (bpm) 49.8 ± 9.27 48.76 ± 7.75 0.345

Mean HR (bpm) 72.78 ± 15.0 70.19 ± 11.38 0.128

Supine SBP (mmHg) 128.01 ± 18.63 124.65 ± 17.38 0.148

Supine DBP (mmHg) 79.55 ± 11.49 77.02 ± 10.88 0.081

Supine HR (mmHg) 70.36 ± 15.65 68.27 ± 12.44 0.248

DC (ms) 6.07 ± 1.76 8.30 ± 2.33 0.000

SDNN (ms) 111.11 ± 22.05 139.44 ± 46.02 0.000

RMSSD (ms) 39.84 ± 39.60 39.80 ± 24.83 0.992

pNN50 (%) 11.09 ± 17.05 11.81 ± 14.64 0.726

LF (ms2) 968.25 ± 1,772.92 814.79 ± 918.32 0.032

HF (ms2) 670.82 ± 1,391.01 419.42 ± 507.0 0.000

LF/HF 2.31 ± 1.25 2.33 ± 1.19 0.497

DBP, diastolic blood pressure; DC, deceleration capacity; HF, high frequency; HR, heart rate;

LF, low frequency; pNN50, percentage of differences exceeding 50 ms between adjacent
normal number of intervals; RMSSD, square root of the mean squared differences of

successive normal-to-normal intervals; SBP, systolic blood pressure; SDNN, standard

deviation of all normal-to-normal intervals.
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4.2 Logistic regression and ROC curve
analyses

Table 2 summarizes the indexes (DC, SDNN, RMSSD, pNN50,

LF, HF, and LF/HF) from Table 1 with a significance level of

P < 0.05. Multivariate logistic regression analysis revealed that

VVS was independently associated with DC [odds ratio (OR)

1.710, 95% CI 1.388–2.106, P < 0.001] and SDNN (OR 1.033,

95% CI 1.018–1.049, P < 0.001). The forest plot (Figure 2)

displayed the associations between different variables and VVS,

highlighting DC as the factor with the strongest correlation.

Figure 3 displays the ROC curve analysis, which helped identify

the critical value of continuous variables (DC and SDNN) for

detecting patients with VVS. Comprehensive optimization results

of sensitivity and specificity were used as the basis for selecting

the optimal cutoff point criterion. A clear distinction was noted

in DC and SDNN, with corresponding areas under the curve of

0.789 (95% CI 0.730–0.848) and 0.702 (95% CI 0.637–0.767)

(P < 0.001 for both). According to the ROC curves, the

occurrence of VVS was more probable when DC was greater

than 7.15 ms or SDNN surpassed 131.42 ms. Table 3 displays all

the data related to the ROC curve.
SDNN 1.033 1.018–1.049 <0.001

RMSSD 1.011 0.994–1.028 0.222

PNN50 0.991 0.956–1.027 0.622

LF 1.000 1.000–1.001 0.565

HF 0.999 0.999–1.000 0.262

LF/HF 1.112 0.808–1.532 0.514

DC, deceleration capacity; HF, high frequency; LF, low frequency; pNN50, percentage of

differences exceeding 50 ms between the adjacent normal number of intervals; RMSSD,

square root of the mean squared differences of successive normal-to-normal intervals;
SDNN, standard deviation of all normal-to-normal intervals.

FIGURE 2

Predictors of the VVS forest plot.
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FIGURE 3

ROC curve for DC, SDNN, and their combination to predict TTT.

TABLE 3 ROC curve analysis of key indexes between the two groups.

Variables AUC 95% CI Critical value Sensitivity Specificity P-value
DC 0.789 0.730–0.848 7.15 0.791 0.843 0.000

SDNN 0.702 0.637–0.767 131.42 0.533 0.88 0.000

Combine 0.845 0.795–0.896 — 0.704 0.90 0.000

AUC, area under the curve; DC, deceleration capacity; ROC, receiver operating characteristic; SDNN, standard deviation of all normal-to-normal intervals.
Joint indicators: a combination of DC and SDNN.

Guo et al. 10.3389/fcvm.2024.1333684
5 Discussion

Fainting is a prevalent and harmless condition, with a

cumulative incidence of at least 35% throughout a person’s

lifetime and a high likelihood of recurring after the first

occurrence (37). Among these fainting cases, approximately 60%

are classified as VVS (3, 4), resulting from a combination of

various central and peripheral mechanisms (5, 38). As previously

stated, VVS is closely linked to dysfunction of both the

parasympathetic and sympathetic systems, leading to withdrawal

symptoms. To clarify further, triggers that are understood to

cause VVS likely lead to vasodilation, resulting in a decrease in

the return of blood to the heart and a reduction in the amount

of blood in the heart before contraction, as well as a potential
Frontiers in Cardiovascular Medicine 05
decrease in resistance in the outer parts of the body. The low

blood pressure linked to VVS could be caused by a lack of

narrowing in the small arteries, constriction in the veins, or both

(6). Conversely, irregular heart rhythms in VVSs are mainly

controlled by the parasympathetic system through the vagal

nerve. The heightened activity of the cardiac parasympathetic

nerve results in cardioinhibition, resulting in bradycardia,

asystole, and conduction blockage (14, 15).

VVS patients believe that heightened parasympathetic activity

has a greater role in triggering syncope events (16). HRV refers

to the capacity of the heart rate to fluctuate during a specific

timeframe and is impacted by the ANS. In recent years, the risk

stratification of patients with various diseases has significantly

improved due to advancements in parameters related to cardiac
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autonomic function, measured by HRV (39). A reduced HRV,

indicating dysfunction of the cardiac autonomic system, has been

linked to an elevated risk of death in various conditions like a

heart attack (23, 40, 41), aortic stenosis (42), blood poisoning

(43, 44), neurological and psychiatric disorders, blood disorders

(45), and even in cancer patients (46, 47). Hence, 24-h Holter

monitoring of HRV has emerged as a reliable, non-invasive

method for evaluating the ANS, gaining popularity for its

practicality and efficiency (48, 49). Nevertheless, prior research

has presented contradictory findings regarding VVS (22, 23).

Several factors are likely responsible for the inconsistent findings.

Analyzing HRV makes it challenging to distinguish the initial

impact of vagal and sympathetic modulators on the heart.

Furthermore, the absence of a standardized methodology hinders

HRV assessments, as the parameters vary depending on factors

such as age, gender, physical fitness, sleep quality, and

medication use (35, 48, 50).

By analyzing the advantages and disadvantages of HRV, we

tried to find some parameters that differed from traditional HRV

parameters. Table 1 presents a comparison between DC and

SDNN, RMSSD, pNN50, LF, HF, and other commonly used

HRV indicators. The findings revealed that the negative group

exhibited significantly lower levels of DC and SDNN than the

positive group. Moreover, DC displayed a stronger correlation

with this disparity than SDNN, with an odds ratio of 1.710 vs.

1.033. This indicated that DC is more effective than conventional

HRV in assessing autonomic nervous system function, and this

capability seemed to be measurable. Simultaneously, TTT is

regarded as a valuable diagnostic instrument for VVS despite its

various constraints. The TTT does not meet the desired levels of

sensitivity and specificity (51–53). In the present investigation,

TTT yielded a positive result in only 55.56% of the individuals

who met the clinical diagnostic criteria for VVS. In addition,

certain individuals may experience discomfort, particularly

during a positive test (3, 20, 31, 54). DC, with its high sensitivity

and specificity, addresses the limitations of traditional methods

like TTT and HRV while also providing two additional

advantages. First, DC allows for the extraction and quantification

of the deceleration-induced modulations of the heart rate,

enabling a quantitative assessment of vagal tone in patients with

VVS. Some studies have shown that DC is consistently modified

in patients with VVS (16). Furthermore, the DC algorithm can

identify recurring elements of the autonomic regulation process

while removing non-recurring elements like disruptive artifacts

or irregular heart rhythms. This leads to more consistent and

trustworthy assessments in patients with VVS (16). Finally, a

recent study indicates that DC seems to have a more robust

predictive significance when diagnosing VVS in patients who

have a negative TTT response (16).
6 Conclusions

The present study found a strong correlation between the

cardiac DC index and VVS in patients. A DC value greater
Frontiers in Cardiovascular Medicine 06
than 7.15 ms suggests a considerably higher likelihood of

vasovagal syncope.
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